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Oceanic redox conditions and atmospheric oxygenation likely played a crucial role in the evolution ofmacroscop-
icmulticellular eukaryotes during the early Ediacaran period. However, the oxidationmechanism andmagnitude
of the Ediacaran ocean–atmosphere system remain controversial. To constrain the oceanic redox conditions and
the contemporaneous oxygenation of the atmosphere, we present a comprehensive investigation of redox-sen-
sitive elements (e.g., Mo and U), Fe speciation and S isotopes of pyrite from the platform, slope and basin sections
across the Doushantuo Formation in South China. Our results suggest a redox-stratified Ediacaran ocean with a
fluctuating chemocline from the slope to platform location across the Doushantuo Formation. In particular,
euxinic/intermittently euxinic conditions developed not only at the platform and slope but also in the deep
basin. Furthermore, these euxinic conditions indicate that high sulfate concentrations may have accumulated
not only at the ending of the Ediacaran Doushantuo Formation but also at the middle and beginning. Thus,
these results suggest that the extensive euxinic conditions associated with the continuous oceanic sulfate
inputwere in response to progressive oxygenation of the atmosphere during the early Ediacaranperiod. Integrat-
ed with previously published results, if the dissolved organic carbon (DOC) reservoir existed, different mecha-
nisms may be responsible for the oxidation of deep ocean in each part of the studied sections across the
Doushantuo Formation. One mechanism is oxidation by sulfate through a bacterial sulfate reduction (BSR) pro-
cess under anoxic conditions. Another mechanism is oxidation by dissolved free oxygen under oxic/suboxic con-
ditions. Finally, a dynamic evolution model of the Ediacaran ocean–atmosphere system across the Doushantuo
Formation, South China, was suggested.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The increasing oxygen levels and progressive oxygenation of the
deep oceans throughout the entire Ediacaran (635–542Ma) likely stim-
ulated the radiation of macroscopic multicellular eukaryotes (Fike et al.,
2006; Canfield et al., 2007; McFadden et al., 2008; Sahoo et al., 2012).
Early animal evolution and diversification were commonly followed
by an increased atmospheric oxygen concentration (e.g.,
Neoproterozoic Oxygenation Event) and a fluctuating marine environ-
ment. These have been intensively studied on the basis of multiple geo-
chemical methods, such as carbon, sulfur, strontium, iron, chromium,
uranium and molybdenum isotopes, redox-sensitive elements and
iron speciation (Fike et al., 2006; Canfield et al., 2007, 2008; Jiang et
al., 2007, 2011; Kaufman et al., 2007; Shields, 2007; McFadden et al.,
2008; Scott et al., 2008; Shen et al., 2008; Frei et al., 2009; Li et al.,
2010; Sahoo et al., 2012; Och and Shields-Zhou, 2012; Fan et al., 2014;
Kendall et al., 2015). Although the mechanism and magnitude of the
Neoproterozoic Oxygenation Event are still uncertain, a rise in atmo-
spheric oxygen concentration has been widely recognized (Canfield
and Teske, 1996; Canfield, 2005; Shen et al., 2008; Frei et al., 2009;
Campbell and Squire, 2010; Sahoo et al., 2012; Och and Shields-Zhou,
2012). Nevertheless, the redox condition of the Ediacaran ocean re-
mains open to debate and is the focus of conflicting viewpoints, such
as whether there was an oxic or anoxic (ferruginous or euxinic) deep
ocean. Several studies with investigations of Fe speciation, redox-sensi-
tive elements and carbon, sulfur and nitrogen isotopes, have proposed
that the Ediacaran deep ocean was widely oxygenated (Canfield,
1998; Fike et al., 2006; Canfield et al., 2007; Scott et al., 2008; Ader et
al., 2014). However, other studies using similar geochemical ap-
proaches, have suggested a redox-stratified ocean (Jiang et al., 2007,
2011; Canfield et al., 2008; Shen et al., 2008; Ader et al., 2009; Li et al.,
2010; Fan et al., 2014; Wood et al., 2015). Taking an example from the
Ediacaran Doushantuo Formation in South China, alternative oceanic
redox models have been proposed in recent years, such as themetasta-
ble zone of the euxinic water column sandwiched within anoxic open
deep water at the platform and slope locations (Li et al., 2010; Wang
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et al., 2012; Fan et al., 2014), or the strongly stratified shelf lagoon and
open ocean with oxic shallow water and anoxic/euxinic deep water
(Jiang et al., 2007, 2011).

The Ediacaran Doushantuo Formation, one of the best-preserved
sedimentary sequences in theworld, has been highly investigated in re-
lation to its biological evolution, its stratigraphic correlation and the
evolution of the ocean–atmosphere system (Xiao et al., 2002; Zhao et
al., 2004; Zhou et al., 2007; McFadden et al., 2008; Xiao and Laflamme,
2008; Li et al., 2010; Jiang et al., 2011; Sahoo et al., 2012; Zhu et al.,
2013). Fortunately, a number of integrated stratigraphy (including
chemo- and chrono-) and paleogeography reviews have documented
a wealth of fundamental information about the Doushantuo Formation
(Zhou and Xiao, 2007; Zhu et al., 2007; Jiang et al., 2011; Xiao et al.,
2012). Among the numerous geochemical efforts during the past de-
cades, prominently negative carbonate carbon isotope (δ13Ccarb) excur-
sions have been characterized for the Doushantuo Formation in the
Yangtze Three Gorges (Zhou and Xiao, 2007; Zhu et al., 2007; Jiang et
al., 2007, 2011; McFadden et al., 2008). These were often correlated
with other Ediacaran systems, such as those in Oman, Australia, Canada,
Namibia, India, and the United States (Calver, 2000; Hoffman and
Schrag, 2002; Jiang et al., 2002, 2003; Halverson et al., 2005; Fike et
al., 2006; Kaufman et al., 2007; Le Guerroué and Cozzi, 2010). Several
different hypotheses have been proposed for the origin of these unusu-
ally negative δ13Ccarb excursions, such as mantle-derived sources
(Hoffman et al., 1998; Hoffman and Schrag, 2002), methane hydrate re-
lease (Kennedy et al., 2001; Jiang et al., 2003, 2006a; Bjerrum and
Canfield, 2011), seawater overturn/upwelling (Kaufman et al., 1991;
Knoll et al., 1996; Grotzinger and Knoll, 1995; Shields, 2005; Schröder
and Grotzinger, 2007; Fan et al., 2014), and the oxidized weathering
of terrigenous and marine organic-rich sediments (Kaufman et al.,
2007; Higgins and Schrag, 2006). Additionally, another model has also
been suggested which includes the oxidation of the deep oceanic dis-
solved organic carbon (DOC) reservoir (Rothman et al., 2003; Fike et
al., 2006; Jiang et al., 2007; McFadden et al., 2008). If this DOC reservoir
existed, the remineralization of deep oceanic DOC was likely related to
the oxygenation of the Ediacaran ocean–atmosphere system (Fike et
al., 2006; Jiang et al., 2007; McFadden et al., 2008; Fan et al., 2014). Fur-
thermore, S isotopes, Fe speciation and redox-sensitive elements have
also been used to reconstruct the paleoceanographic environment of
the Ediacaran Doushantuo Formation. Despite the lower-resolution
samples and the lack of comparison among different sedimentary sec-
tions, these geochemical data have still provided relevant information
for continued investigation of the ocean redox conditions and atmo-
spheric oxygenation in the Ediacaran (McFadden et al., 2008; Shen et
al., 2008; Li et al., 2010; Sahoo et al., 2012).

To constrain the oceanic redox conditions and the atmospheric oxy-
genation during the Ediacaran Doushantuo period, the high resolution
variations in redox-sensitive elements (e.g., Mo and U) coupled with
Fe speciation and S isotope data of the comprehensive sedimentary fa-
cies including platform, slope and basin sections, all from the
Doushantuo Formation, were investigated in this contribution. Based
on our data in combination with previously published results, we
would like to suggest a dynamic evolution model of the Ediacaran
ocean–atmosphere system across the Doushantuo Formation, South
China.

2. Geological backgrounds

The Ediacaran Doushantuo Formation, which constrained between
635.2 ± 0.6Ma and 551.1 ± 0.7Ma by zircon U–Pb ages of interbedded
volcanic ash, is underlain closely by the Cryogenian Nantuo Formation
and is deposited at a passive continentalmargin setting, without tecton-
ic events and igneous activities, in South China (Fig. 1; Condon et al.,
2005; Jiang et al., 2011). The sediment of the Doushantuo Formation
commonly starts with the cap carbonate and terminates with organic-
rich black shale. Whether on the platform or in the slope and basin
facies, the similar lithology and geochemical characteristics of the cap
carbonate make it a lithostratigraphic marker bed at the base of the
Doushantuo Formation (Jiang et al., 2006b, 2011). After the cap carbon-
ate, the sedimentary facies and the thickness of the Doushantuo Forma-
tion exhibit large variations from the platform, to the slope to the basin
(Zhu et al., 2007; Jiang et al., 2011; Wang, 2012). In general, the plat-
form section is dominated by interbedded carbonate and black shale,
whereas the main lithology of black shale is characterized for the
slope and basin locations (Zhu et al., 2007; Jiang et al., 2011; Wang,
2012). At the top of the Doushantuo Formation, the organic-rich black
shale is recommended as another regional lithostratigraphic marker
bed because it can distinguish the Doushantuo Formation from the
overlying Dengying/Liuchapo/Laobao Formations (Jiang et al., 2011;
Wang, 2012).

In this work, two well-studied sections (the platform, Jiulongwan,
and the slope, Wuhe) and one new basin section (Xiangtan) are includ-
ed and provide a comprehensive comparison across the Doushantuo
Formation (Fig. 1). The Jiulongwan section, one of the most well-
known sections, is located in the Yangtze Gorges area with a rough
thickness of 155 m, and it can be divided into four members as follows.
Member 1 consists of cap carbonate with a thickness of approximately
5m at the base of theDoushantuo Formation.Member 2 (ca. 80m) con-
tains interbedded carbonates and organic-rich black shale accompanied
by numerous pea-sized chert nodules. Member 3 (ca. 60m) is primarily
characterized by carbonates with bedded chert layers and minor shale
beds. Member 4 (ca. 10 m) is mainly deposited as the organic-rich
black shale at the top of the Doushantuo Formation (Fig. 2; McFadden
et al., 2008; Li et al., 2010; Jiang et al., 2011; Wang, 2012).

Nevertheless, these distinctive features and divisions in the
Jiulongwan platform section are not identified in the Wuhe slope and
Xiangtan basin sections due to the absence of correlation of the biostra-
tigraphy and lithostratigraphy. Therefore, the variations of geochemical
lines are expected to provide rough evolutionary stages in this study.
The Doushantuo Formation in theWuhe section, with a thickness of ap-
proximately 120 m, has approximately 2.5 m of cap carbonate and 5 m
of organic-rich black shale, which are distributed at the base and top of
the Doushantuo Formation, respectively. The remainder of the Wuhe
section is mainly characterized by interbedded black shale and carbon-
ates,with a fewolistostrome layers (Fig. 3; Jiang et al., 2007; Sahoo et al.,
2012; Wang, 2012). Regarding the Xiangtan basin section, the overall
thickness of the Doushantuo Formation is approximately 190 m, and
black shale is the predominated feature. The distinctive markers of the
Doushantuo Formation in the Xiangtan section, distinguishing it from
the underlying Nantuo Formation and the overlying Liuchapo Forma-
tion, aremainly based on thedistributions of the underlying cap carbon-
ate and the overlying chert layer (Fig. 4).
3. Samples and methods

3.1. Samples

All of the studied black shale sampleswere freshly collected from the
Jiulongwan (30°48′54″N, 110°3′20″E, 36 samples, platform, Fig. 2),
Wuhe (26°45′57″N, 108°24′59″E, 48 samples, slope, Fig. 3) and Xiang-
tan (27°58′24″N, 112°49′51″E, drill-hole samples, 52 samples, basin,
Fig. 4) sections. These samples were ground to minus 200 mesh in an
agate mortar for further elemental analysis. The Fe speciation and S iso-
tope of the Jiulongwan section were cited from Li et al. (2010) and
McFadden et al. (2008). Another data of Mo, U and Fe speciation of
the upper part of the Jiulongwan section (Member 4) were cited from
Kendall et al. (2015) (Fig. 2). In addition, other further 25 data points
for black shale samples from the base (21 samples from 2.4–8.6 m)
and the top (4 samples from 117 to 120 m) of the Wuhe section were
taken from Sahoo et al. (2012) and Wang (2012), respectively (Elec-
tronic Appendix Table 1).



Fig. 1. Paleogeographic reconstruction of the Ediacaran Doushantuo Formation in South China (modified after Jiang et al., 2011; Guo et al., 2011), the five-pointed star symbols are the
locations of the studied sections.
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3.2. Analytical methods

The concentrations of Mo and U in black shale samples were deter-
mined by a Perkin-Elmer Sciex ELANDRC-e ICP-MS at the State Key Lab-
oratory of Ore Deposit Geochemistry (SKLODG), Institute of
Fig. 2. Lithological column (modified after Jiang et al., 2011), sampling locations, authigenicMo–
section. Data of the δ34Spyrite are from McFadden et al. (2008) (square) and Li et al. (2010) (rot
angle) with a dashed line Fepy/FeHR = 0.7 (Poulton and Canfield, 2011 and references therein)
Geochemistry, Chinese Academy of Sciences. A 50 mg powder sample
was dissolved in a high-pressure Teflon bomb with HF and HNO3 at
190 °C for 48 h. Subsequently, the residue was redissolved in H2O and
HNO3 with an appropriate amount of Rh at 145 °C for 12 h. The Rh
was used as an internal standard to monitor instrumental drift during
U enrichment and other collected published geochemical data of the Jiulongwan platform
undity); data of Fepy/FeHR are from Li et al. (2010) (square) and Kendall et al. (2015) (tri-
and data of δ13Ccarb are from Jiang et al. (2007).

Image of &INS id=
Image of Fig. 2


Fig. 3. Lithological column (modified after Jiang et al., 2011), sampling locations, authigenic Mo–U enrichment and other collected published geochemical data of theWuhe slope section.
Data of the lower enriched part (21 samples from 2.4–8.6 m) and the upper enriched part (4 samples from 117 to 120m) of theWuhe section are collected from Sahoo et al. (2012) and
Wang (2012), respectively; data of δ13Ccarb are from Jiang et al. (2007). Dashed linewith Fepy/FeHR=0.7 for distinguishing euxinic from ferruginouswater columns (Poulton and Canfield,
2011 and references therein).
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the analysis (Qi et al., 2000). The standard reference materials AGV-2,
AMH and GBPG were measured together with our samples (Elec-
tronic Appendix Table 1). Al and Fe concentrations were determined
by a PANalytical B.V. Axios (PW4400) X-ray fluorescence spectrom-
eter (XRF) at the SKLODG, Institute of Geochemistry, Chinese
Academy of Sciences. A 0.7 g sample and 7 g of composite flux
(Li2B4O7 + LiBO2 + LiF) was melted at 1100 °C into fused glass
disks for determination, and the Chinese standard reference material
(GSR-5: black shale) was analyzed together (Electronic Appendix
Table 1). Total S contents were measured by a Leco CS230 carbon
and sulfur analyzer at the ALS Chemex (Guangzhou) Company
Limited and the relative standard deviation was better than 5%.

Analyses of Fe speciation and S isotopes of pyrite were carried out at
the State Key Laboratory of Biogeology and Environmental Geology,
China University of Geosciences (Wuhan) according to a previously
published procedure (Li et al., 2010). The highly reactive iron (FeHR)
Fig. 4. Lithological column, sampling locations, authigenic Mo–U enrichment of the basin Xiang
water columns (Poulton and Canfield, 2011 and references therein).
consists of pyrite (Fepy), carbonate-associated iron (Fecarb), ferric oxides
(Feox) andmagnetite (Femag). Fecarb, Feox and Femag concentrationswere
extracted sequentially by sodiumacetate solution, sodiumdithionite so-
lution and ammonium oxalate and then determined by ICPMS. Fepy was
calculated from the sulfur concentration of pyrite determined by the
chromium reduction method. The precision of Fe speciation data was
monitored by duplicate samples. The S isotope compositionwas report-
ed as per mil deviations from the V-CDT international standard, and the
results of standard reference materials for IAEA S1, IAEA S2 and IAEA S3
were −0.2‰, 22.7‰ and −32.3‰, respectively.

An enrichment factor (EF), as used in previous studies, was applied
to describe the authigenic Mo–U enrichment with the equation XEF =
[(X/Al)sample/(X/Al)PAAS] (Tribovillard et al., 2006, 2012; Algeo and
Tribovillard, 2009). The values of X and Al refer to their weight concen-
trations, and the PAAS (post-Archean average shale) data for normaliza-
tion were from Taylor and Mclennan (1985). In addition, although the
tan section. Dashed line with Fepy/FeHR = 0.7 for distinguishing euxinic from ferruginous

Image of &INS id=
Image of Fig. 4
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concentrations of Mo and U during the Ediacaran seawater are uncer-
tain, the (Mo/U)auth ratio (average modern seawater weight ratio is
about 3.1 and molar ratio is 7.5 to 7.9, Tribovillard et al., 2012), was
used here to compare the relative degree of authigenic Mo–U enrich-
ment among the studied sections during the Doushantuo Formation.
Note that the application of the redox-sensitive elements for sedimenta-
ry analyses must be consistent with their exclusive seawater uptake,
rather than the detrital origin. In general, the correlation coefficient be-
tween the given element and Al or Ti can confirmwhether the given el-
ement is controlled by the detrital flux (Tribovillard et al., 1994, 2006).
In our studied sections, an absence of positive correlationswas observed
among Mo, U and Al (Fig. 5), which indicates that Mo and U were not
affected by the detrital components and can be used as proxies for
paleo-environmental investigation of the Doushantuo Formation.
Fig. 5. Scatter diagram among Mo, U and Al of the black shale samples in the studied s
4. Results

All of thedata are listed in the Electronic Appendix Table 1. Three dif-
ferent distributions shown in the Doushantuo Formation based on the
above-mentioned geochemical parameters, and they are referred to as
the lower part, themiddle part and the upper part, with an approximate
relative location for each section in this study (Figs. 2, 3 and 4).

4.1. Jiulongwan platform section

In the lower part (7–86m) of the Jiulongwan section, the concentra-
tions of Mo and U were equal to or less than the crustal values in most
samples, with values ranging from0.0 to 2.0 ppmand 0.1 to 2.3 ppm, re-
spectively (Fig. 2). This part also has low EFs ranging from 1.6 to 15.7 for
ections for checking whether the given element is controlled by the detrital flux.

Image of Fig. 5
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Mo and 2.5 to 31.5 for U, and it has low (Mo/U)auth ratios less than 0.3
times that of modern seawater in most samples. The sulfur isotope ra-
tios of pyrite (δ34Spyrite) in this lower part varied substantially and
ranged from −12.6 to 33.8‰. Moreover, Fepy/FeHR ratios of the lower
part also changed substantially and ranged from 0 to 0.8 (Li et al.,
2010; Kendall et al., 2015; Fig. 2).

In contrast, Mo and U were strongly enriched in the upper part
(142–155 m) of the Jiulongwan section, with sharp increases from
Fig. 6. (Mo/U)auth ratios of the black shale samples in the studied sections for the degree of
enrichment between the authigenic Mo and U, the averageMo/Uweight ratio of seawater
is 3.1 (the Mo/U molar ratio is 7.5–7.9, Algeo and Tribovillard, 2009; Tribovillard et al.,
2012). Data of Mo and U (square) of upper part (Member 4) in the Jiulongwan section
are from Kendall et al. (2015) and data of the lower enriched part and the upper part of
the Wuhe section are collected from Sahoo et al. (2012) and Wang (2012), respectively.
63.6 to 291.0 ppm for Mo and from 7.7 to 30.3 ppm for U (Fig. 2).
These elemental distributions also corresponded to high EFs ranging
from 84.8 to 398.0 for Mo and 13.9 to 52.8 for U (Fig. 2). Additionally,
the strongly enriched upper part mainly exhibited (Mo/U)auth ratios be-
tween one and six times that of modern seawater (Fig. 6). In addition,
the upper part of the Jiulongwan section exhibited negative δ34Spyrite
values ranging from −3.0 to −16.8‰. The Fepy/FeHR ratios of the
upper part had relatively uniform values near 0.9 (Li et al., 2010;
Kendall et al., 2015; Fig. 2).

4.2. Wuhe slope section

Three distinctive enriched intervals for Mo and U were observed in
the lower, middle, and upper parts of the Wuhe slope section, with
rough locations at 2.4–8.6 m (lower enriched part), 55.3–56 m (middle
enriched part) and 117–120 m (upper part), respectively (Fig. 3). Nev-
ertheless, the remainder of the samples (e.g., lower depleted andmiddle
depleted parts) typically showed relatively low Mo concentrations
ranging from 0.1 ppm to 10.6 ppm, and low EFs ranging from 0.3 to
14.6 (Fig. 3). In terms of the three enriched intervals, most samples
had high Mo concentrations (tens of ppm) and EFs, and one sample
reached 172 ppm with EFs of 154 (Fig. 3). In contrast, throughout the
black shale sample of the Wuhe section, the concentrations of U did
not vary markedly, with values ranging from 0.7 ppm to 20.2 ppm.
Moreover, the EFs of U for most samples were typically less than 20, ex-
cept for a few samples with EFs between 20 and 50 (Fig. 3). Above all,
most samples of the three enriched intervals (lower enriched, middle
enriched and upper parts) had (Mo/U)auth ratios between 0.3 and four
times that of modern seawater, and these were much higher than
those of the lower depleted and middle depleted parts, which are
equal to or less than 0.3 times that of modern seawater (Fig. 6).

Moreover, the δ34Spyrite values of the lower enriched part andmiddle
enriched parts were similar to those of the upper part of the Jiulongwan
section and ranged from −17.2 to −34.6‰ and −3.2 to −5.3‰, re-
spectively (Sahoo et al., 2012; Fig. 3). These highly negative δ34Spyrite
values were different from those of the lower depleted and middle de-
pleted samples with values ranging from 0.2 to 8.1‰ and 0.8 to
11.9‰, respectively (Fig. 3). However, the distributions of the Fepy/
FeHR ratios for the lower enriched part andmiddle enriched parts are in-
consistent, such as 0.20–1 for the lower enriched part and 0 for themid-
dle enriched part. Furthermore, the Fepy/FeHR ratios of the lower
depleted and middle depleted parts were irregular and ranged from 0
to 0.69 (Fig. 3). Unfortunately, we failed to collect the samples and ob-
tain the Fe speciation and S isotope data for the upper part in the
Wuhe section.

4.3. Xiangtan basin section

The Xiangtan section showed strongly authigenic Mo–U enrichment
compared with the Jiulongwan and Wuhe sections. Most black shale
samples of the Xiangtan section were characterized by high Mo and U
concentrations andEFs. Therewere also three different distributions ob-
served in the Xiangtan basin section. For the lower part (20.6–40.3 m),
the concentrations ranged from 1.3 to 30.9 ppm with EFs between 1.7
and 69.6 for Mo, and from 1.3 to 16.1 ppm with EFs between 1.7 and
39.8 for U (Fig. 4). Subsequently, abruptly increasing and largely fluctu-
ating authigenic Mo–U enrichments were found in the middle part of
this basin section (47.2–102 m). The concentrations of Mo ranged
from 0.7 to 474 ppmwith EFs between 2.9 and 1102. Similarly, the con-
centrations of U ranged from 8.0 to 347.0 ppm, with EFs between 34.5
and 841 in the middle of the Xiangtan section (Fig. 4). It appeared that
a relatively stable elemental enrichment was present in the upper part
of the Xiangtan section (104–190 m), where the concentrations ranged
from 12.7 to 67.4 ppm with EFs between 42.7 and 139.0 for Mo, and
from 5.9 to 24.5 ppm with EFs between 17.0 and 64.9 for U (Fig. 4). In

Image of Fig. 6
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particular, with respect to the (Mo/U)auth ratios, almost all of the sam-
ples were between 0.3 and one times that of modern seawater (Fig. 6).

The δ34Spyrite results of the lower, middle and upper parts for the
Xiangtan section were within the scope of −9.1–41.6‰, 4.2–30.0‰
and 1.17–18.5‰, respectively (Fig. 4). Furthermore, the Fepy/FeHR ratios
ranged from 0.09 to 0.93 and 0.44 to 0.82 in the lower andmiddle parts,
which were slightly higher than those of the upper part (0.41 to 0.69)
(Fig. 4).

5. Discussion

5.1. The principle of the multiple paleo-redox proxies

The geochemical behavior of the redox-sensitive elementsMo and U
have been intensively investigated and understood in seawater, which
could make them useful for reconstructing and evaluating the marine
paleo-environment reliably and effectively (Anderson et al., 1989;
Klinkhammer and Palmer, 1991; Crusius et al., 1996; Helz et al., 1996;
Erickson and Helz, 2000; Zheng et al., 2000; Chaillou et al., 2002;
Vorlicek and Helz, 2002; Tribovillard et al., 2004; Vorlicek et al., 2004;
Algeo and Maynard, 2004). The differences among the geochemical
characteristics of Mo and U regulate their distributions and facilitate
their different behaviors under oxic and anoxic (ferruginous or euxinic)
conditions. In one situation, Mo is primarily sensitive to the extent of
euxinic conditions and can be strongly enriched in anoxic conditions
in the presence of free hydrogen sulfide (H2S) (Scott et al., 2008;
Sahoo et al., 2012; Scott and Lyons, 2012). This enrichment is usually
achieved by the conversion of soluble MoO4

2− to particle-reactive
thiomolybdates (MoOxS4 − x

2− , x = 0–3) which can subsequently be ef-
fectively captured bymetal-rich particles or sulfidized organicmaterials
(Helz et al., 1996; Erickson and Helz, 2000; Tribovillard et al., 2004;
Vorlicek et al., 2004). On the other side, U is more sensitive than Mo
to the extent of suboxic and ferruginous conditions and the enrichment
of U commences under suboxic condition, near the redox interface be-
tween Fe (III) and Fe (II), via the formation of UO2, U3O7, or U3O8 in sed-
iment (Klinkhammer and Palmer, 1991; Crusius et al., 1996; Zheng et
al., 2000; Chaillou et al., 2002; Partin et al., 2013).

Previous studies have proposed several geochemical indicators (e.g.,
EF, (Mo/U)auth ratio, and Mo concentration) based on Mo and U rela-
tionships in the modern marine system that have also been applied to
the study of paleoceanography (Tribovillard et al., 2006, 2012; Algeo
and Tribovillard, 2009; Scott and Lyons, 2012). Here, and first, the con-
centrations of Mo and U under oxic conditions were very low and close
to those of the upper continental crust. Second, under suboxic condi-
tions, authigenic U enrichment tended to be higher than that of Mo,
with the EFs often less than 10, and the (Mo/U)auth ratios were equal
to or less than 0.3 times that of modern seawater. Third, under anoxic
to euxinic conditions, the authigenic Mo enrichment exceeded that of
U, with the EFs being more than 10, and the (Mo/U)auth ratios ap-
proaching, or even exceeding that of modern seawater (Algeo and
Tribovillard, 2009; Tribovillard et al., 2012). Furthermore, the concen-
tration of Mo can also provide indications of paleo-redox conditions as
follows. For instance, Mo enrichment between the crustal value and
25 ppm indicates non-euxinic condition with dissolved H2S restricted
to the pore water; whereas Mo enrichment exceeding 100 ppm shows
permanently euxinic condition, and Mo enrichment between 25 and
100 ppm can result from other complicated factors, but it at least indi-
cates the occurrence of intermittently euxinic bottom waters (Scott
and Lyons, 2012). Nevertheless, the concentrations of Mo and U during
the Ediacaran seawater are uncertain, the (Mo/U)auth ratio used here
could show the relative degree of authigenic Mo–U enrichment
among the studied sections.

The analysis of Fe speciation has been applied to large amount stud-
ies of paleo-ocean redox conditions (e.g., Canfield et al., 2008; Li et al.,
2010; Sahoo et al., 2012). The main principle of this methodology is to
obtain total Fe content and highly reactive mineral Fe species (e.g.,
pyrite, Fe oxides, magnetite and carbonate-associated species). Many
previous studies have concluded that FeHR/FeT ratios greater than 0.38
or 0.15 (if suffered by metamorphism) indicate anoxic conditions,
whereas Fepy/FeHR ratios greater than 0.7 point to euxinic conditions
(Raiswell et al., 2008; Poulton and Canfield, 2011 and references there-
in). However, Sahoo et al. (2012) suggested that the FeHR/FeT ratio may
be not suitable to delineate anoxia because the unusually low Fe/Al ra-
tioswere notwell understood, but the Fepy/FeHR ratio can be used to dis-
tinguish the euxinic (sulfidic) from ferruginous (nonsulfidic) water
column during the Doushantuo Formation.

5.2. The redox conditions of three studied sections across the Doushantuo
Formation

5.2.1. Jiulongwan platform section
In the Jiulongwan platform section, the authigenic Mo–U enrich-

ment, Fe speciation and S isotope ratios of the black shale samples ex-
hibit a clear trend from suboxic to euxinic conditions.

For the lower part, unambiguous features in most samples, such as
the similar crustal concentrations, low EFs (˂10), and low (Mo/U)auth ra-
tios (˂0.3 times that of modern seawater), were consistent with those of
suboxic conditions (Figs. 2 and 6). Nevertheless, the suboxic conditions
of the lower part inferred here was incompatible with the previous two
euxinic episodes indicated by the Fe speciation study (Li et al., 2010).
This contradiction might be caused by the formation of pyrite during
the diagenetic process, and the explanation can be inferred by the S iso-
tope ratios and total S contents. The δ34Spyrite, with values generally be-
tween 20‰ and 30‰, and relatively small S isotope fractionation
between pyrite and sulfate in most samples (McFadden et al., 2008; Li
et al., 2010, Fig. 2) appear to indicate that BSR processes are impossible
in this environment. In addition, the extremely low and variable total S
content (0.03 to 1.93%, Electronic Appendix Table 1) should not be com-
patible with anoxic conditions where the S is buried steadily, but it
should be consistent with suboxic conditions where the S was easy to
activate and lose. Hence, together with the absence of enrichment of
Mo and U, the suboxic conditions might be much more reasonable in
the lower part of the Jiulongwan section. In another aspect, high
δ238U, low δ98Mo and highMo concentrations in the upper part suggest
a large seawater Mo inventory in well-oxygenated oceans (Kendall et
al., 2015), which seems consistent with the indication of prevailing
suboxic conditions before the deposition of the upper part.

Furthermore, high concentrations (up to 291.0 ppm Mo and
30.3 ppm U), high EFs (up to 398.0 for Mo and 52.8 for U) and high
(Mo/U)auth ratios (1–6 times that of modern seawater) in the black
shale samples of the upper part (Figs. 2 and 6) indicated that these
strongly authigenic Mo–U enrichments occurred under euxinic condi-
tions in the presence of free H2S. Moreover, the euxinic conditions in
the upper part of this study area were compatible with the previous in-
dications of Fe speciation (Li et al., 2010; Kendall et al., 2015). This con-
sistency can also be supported by the negative δ34Spyrite values and large
S isotope fractionation, which may result from the BSR processes
(McFadden et al., 2008; Li et al., 2010). Moreover, the total S content
of the upper part (2.38 to 3.70%) was higher than that of the lower
part (0.03 to 1.93%), which also suggests different sedimentary condi-
tions for the lower and upper parts (Electronic Appendix Table 1).

5.2.2. Wuhe slope section
The redox condition at theWuhe slope section varied repeatedly be-

tween euxinic and suboxic conditions during the sedimentary period of
the lower, middle and upper parts. This situation may be attributed to
the fluctuating chemocline.

In most samples from the lower and middle enriched parts, the Mo
concentrations were between 25 and 100 ppm, EFs were much greater
than 10, and (Mo/U)auth ratios were between one and four times that of
modern seawater (Figs. 3, 6). All of these Mo–U features indicated that
two euxinic episodes may have occurred during the early sedimentary
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period of theWuhe section. The Fepy/FeHR ratios of most samples in the
lower enriched part were exceeding 0.7, which indicates the occurrence
of euxinic conditions (Sahoo et al., 2012). Furthermore, negative δ-
34Spyrite values and large S isotope fractionation of the lower enriched
part were compatible with BSR processes, which was similar to the
upper part of the Jiulongwan section. However, the Fepy/FeHR ratios of
the middle enriched part near zero (Fepy/FeHR = 0) were not compati-
ble with the euxinic conditions inferred from authigenic Mo–U enrich-
ment. The negative δ34Spyrite values with large S isotope fractionation
of the middle part are similar to the characteristics of the upper part
of the Jiulongwan section, which indicated the presence of BSR process.
These extremely low Fepy/FeHR ratios might have resulted from the re-
oxidation of buried pyrite under the suboxic conditions that occurred
later. Hence, there are two transient euxinic conditions that may be
have ever occurred in the lower and middle parts. In contrast, minor
concentrations, low EFs and modest enrichment of U (relative to Mo)
in most of the samples of the lower depleted and middle depleted
parts suggested that suboxic conditions dominated during the sedimen-
tation of the Wuhe slope section. This presence of suboxic conditions
was compatible with the irregular Fepy/FeHR ratios (0–0.69), the δ-
34Spyrite values (0.2–11.9‰), and the low or variable total S content
(0.01–3.62%) (Fig. 3, Electronic Appendix Table 1). In regard to the
upper part, despite the absence of S isotope and Fe speciation data, the
modest enrichment of Mo and U coupled with the pyrite morphology
study (Wang et al., 2012) suggest the presence of a euxinic water col-
umn in the upper part of theWuhe section. That is to say, three euxinic
conditions occurred transiently during the prevailing suboxic condition
because of the fluctuating chemocline throughout the Doushantuo
Formation.

In brief, these studies suggest that the euxinic conditions may have
occurred not only in the shallow platform (Jiulongwan section) but
also in the slope location (Wuhe section).

5.2.3. Xiangtan basin section
Compared with the Jiulongwan and Wuhe sections, the Xiangtan

basin section exhibited large authigenic Mo–U enrichment and variable
Fepy/FeHR ratios and S isotope values,which indicatedfluctuating ocean-
ic chemical conditions and prevalent anoxic/intermittent euxinic condi-
tions during the sedimentary period.

Three distinctive oceanic conditions occurring during the sedimen-
tary period of the Xiangtan section can be identified. In the lower part,
the concentrations and EFs in most samples were less than 10, but
were higher than the crustal value and those of the suboxic samples in
the Jiulongwan and Wuhe sections. Moreover, the (Mo/U)auth ratios
varied substantially (0–0.7 times that of modern seawater) and were
also inconsistent with the suboxic portions of the Jiulongwan and
Wuhe sections (less than 0.3 times that of modern seawater) (Figs. 4,
6). This enrichment pattern could be explained by the occasional occur-
rence of H2S under anoxic conditions. Additionally, high Fepy/FeHR ratios
greater than 0.7 in a few black shale samples also indicated that an in-
termittently euxinic water column occurred in the lower part. Subse-
quently, the middle part contributed fluctuating concentrations, EFs,
and (Mo/U)auth ratios (0–1 times that of modern seawater). In the
same way, a few samples in the middle part with Fepy/FeHR ratios that
are greater than 0.7 suggested the occurrence of an intermittently
euxinic water column under anoxic conditions in the middle part (Fig.
4). Finally, the modest authigenic Mo–U enrichment, Fepy/FeHR ratios
less than 0.7 and modest S isotope fractionation suggested anoxic con-
ditions in the upper part of the Xiangtan section). Additionally, this an-
oxic condition might be ferruginous, which could be indicated by the
ratio of total Fe to S (Fe/S ratio). The Fe/S ratios of the upper part in
the Xiangtan section (0.83–1.71) are higher than that of stoichiometric
pyrite (Fe/S= 0.875) and those of the upper part of the Jiulongwan sec-
tion (0.68–1.02) (Electronic Appendix Table 1).

In summary, an intermittently euxinic water column occurred in the
lower andmiddle parts of the Xiangtan section, but an episode of anoxic
ferruginous conditions occurred in the upper part. Furthermore, at an-
other basin section (Yuanjia Hu'nan Province), the lower part closely
followed the cap carbonate in showing significant authigenic Mo and
U enrichment and high Fepy/FeHR values greater than 0.7, which indicat-
ed a potentially euxinic water column (Sahoo et al., 2012). Thus, these
studies revealed that euxinic conditions have occurred not only in the
platform and slope locations but also in the deep basin.

5.3. Evolution of the Ediacaran ocean–atmosphere system

5.3.1. A possible link among these multiple geochemical data
The wide variety of C and S isotopes, Fe speciation and redox-sensi-

tive element studies are themost useful tools for understanding the Edi-
acaran ocean–atmosphere system (Hurtgen et al., 2005; Fike et al.,
2006; Canfield et al., 2000, 2007, 2008; Halverson and Hurtgen, 2007;
McFadden et al., 2008; Shen et al., 2008; Jiang et al., 2011). However,
the detailed relationships among oceanic redox condition, atmospheric
oxygenation, and these geochemical data remain unclear. In this study,
using our results and previously published data across the Doushantuo
Formation, we attempt to explore a possible link among them.

S isotopes have been used intensively for studying the evolution of
atmospheric oxygen because oceanic sulfate accumulation is closely in-
fluenced by the atmospheric oxidative weathering of sulfides on land
(Canfield et al., 2000). In addition, the bacterial sulfate reduction
(BSR) processes below the chemoclineplayed an important role in S iso-
tope fractionation (Δ34Ssulfate–pyrite: isotope fractionation between sul-
fate and pyrite), where the sulfate is enriched in 34S and sulfide is
depleted in 34S (Canfield and Thamdrup, 1994). Previous experimental
studies have demonstrated that, with sufficient sulfate (N200 μM), the
BSR processes could produce a large degree of S isotope fractionation
(up to 70‰) in marine sediments (Habicht and Canfield, 2001;
Habicht et al., 2002; Canfield et al., 2010). Across the Doushantuo For-
mation, previous study has shown that the S isotope evolution of seawa-
ter sulfate did not change significantly, and this study took the value of
34‰ (Sahoo et al., 2012 and reference herein). Additionally, large S iso-
tope fractionations were observed in several parts of different sections
across the Doushantuo Formation. For instance, in the upper part of
the Jiulongwan platform section, the relatively large fractionation of Δ-
34Ssulfate–pyrite (23.7–47.9‰) with the low δ34Spyrite values (−2.9 to
−16.8‰) indicated sulfate levels greater than 200 μM at the end of
the Doushantuo Formation (McFadden et al., 2008; Li et al., 2010).
Moreover, the middle enriched part of the Wuhe section demonstrates
potentially largeΔ34Ssulfate–pyrite (37.0–38.6‰)with low δ34Spyrite values
(−3.7 to −5.3‰), which also indicated high concentrations of sulfate
(N200 μM) accumulated during the middle of the Doushantuo Forma-
tion (Electronic Appendix Table 1). In the same way, another study,
which included the lower part of the black shale samples in the Taoying,
Wuhe slope, and basin Yuanjia sections, also exhibited a potential max-
imum Δ34Ssulfate–pyrite exceeding 65‰ and negative δ34Spy values
(−17.2 to −34.9‰), which are also indicative of at least 1 mM sulfate
concentrations at the beginning of the Doushantuo Formation (Sahoo
et al., 2012). Overall, these large S isotope fractionations with 34S-de-
pleted pyritesmight have resulted in BSR processes, and they further in-
dicate that high sulfate concentrations had already accumulated not
only at the ending but also at themiddle and beginning of the platform,
slope and even some basin locations across the Doushantuo Formation.

For the redox-sensitive elements (Mo and U) and Fe speciation, it
should not be overlooked that a large amount of H2S is produced during
BSR processes, which could result in a euxinic water column and is nec-
essary for the competitive fixation of significant authigenic Mo–U en-
richment (Tribovillard et al., 2006) and the formation of pyrite. It also
should be noted that the above-mentioned parts with large S isotope
fractionation exhibited strongly authigenic Mo–U enrichment and
high Fepy/FeHR ratios (Figs. 2 and 3; McFadden et al., 2008; Li et al.,
2010; Sahoo et al., 2012). In addition, large S isotope fractionations
with BSR processeswere also observed in some euxinicmarine settings,
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such as the Black Sea and the Cariaco Basin (Brunner and Bernasconi,
2005; Canfield et al., 2010). Therefore, this consistency in the geochem-
ical data may be related to BSR processes.

With respect to C isotopes, it is well known that pronounced nega-
tive δ13Ccarb excursions occurred during the Ediacaran sedimentary se-
quences (Fike et al., 2006; Kaufman et al., 2007; Jiang et al., 2011). For
the Doushantuo Formation, these negative δ13Ccarb excursions were
likely ascribed to the oxidation of the deep oceanic DOC reservoir
(Fike et al., 2006; Jiang et al., 2007, 2011; McFadden et al., 2008).
There were three distinctive δ13Ccarb excursions in the platform section
(e.g., the Jiulongwan section; McFadden et al., 2008; Jiang et al., 2011),
whereas entirely negative values were present in the slope and basin
sections (e.g., the Wuhe and Yuanling sections; Jiang et al., 2011). If
the large DOC reservoir existed, the oxidation by sulfate-reducingbacte-
ria through BSR processes could be related to the negative δ13Ccarb

anomalies under anoxic conditions (Rothman et al., 2003).
Comprehensive consideration of the above geochemical processes

indicated a possible link where the BSR processes involving the DOC
reservoir and sulfate-reducing bacteria (BSR process: SO4

2−

+2CH2O→H2S+2HCO3
−) under euxinic conditionswith open system,

could result in negative δ13Ccarb anomalies, large S isotope fractionation
with 34S-depleted sulfide, high Fepy/FeHR ratios and significant
authigenic Mo–U enrichment. In turn, these consistent geochemical re-
sults indicate that high sulfate concentrations are associated with grad-
ually oxidative weathering of sulfides by atmospheric oxygen on land.
However, the situation might be uncertain and complicated under the
ferruginous condition where iron and molybdenum could compete for
the free H2S produced by BSR processes. On the other hand, the oxida-
tion of the DOC reservoir by dissolved free oxygen would also result in
the negative δ13Ccarb anomalies, but be accompanied by the absence
of authigenic Mo-U enrichment, and the irregular S isotope fraction-
ation and Fepy/FeHR ratios under oxic/suboxic conditions.

5.3.2. Dynamic evolution of the Ediacaran ocean and progressive atmo-
spheric oxygenation

Combining the possible link between the geochemical data de-
scribed above with the inferred redox conditions from the authigenic
Mo andU enrichment, the Fe speciation and S isotopes in this study sug-
gest that the Doushantuo Formation might have undergone at least
three stages of evolution during the sedimentary period (Fig. 7).

In Stage 1, the limited euxinic condition was the main characteristic
of the Doushantuo Formation, which showed a stratified ocean at this
stage. At the same time, high sulfate inputs arrived at both the
Jiulongwan platform and theWuhe slope locations, or even at some ba-
sins (Yuanjia and Xiangtan sections) (Figs. 2, 3, 4, 7).

Specifically, the Jiulongwan platform section might have been de-
posited under suboxic conditions above the chemocline, whereas the
Xiangtan basin section may have been deposited under anoxic condi-
tions with an intermittent euxinic water column. However, the Wuhe
slope sectionmay have been deposited during euxinic to suboxic condi-
tions because of the fluctuating chemocline. The geochemical data and
explanations were fairly clear in this stage. 1) In the lower part of the
Jiulongwan section, the Mo and U relationships were consistent with
suboxic conditions. Positive δ13Ccarb values and small S isotope fraction-
ation in this stage might be associated with the absence of activities by
sulfate-reducingbacteria under suboxic conditions, rather thanwith the
lower sulfate levels. However, high Fepy/FeHR values greater than 0.7
might result from the diagenetic processes in this stage (Figs. 2, 6 and
7). 2) Significant authigenic Mo–U enrichment, high Fepy/FeHR values
greater than 0.7 and potentially large Δ34Ssulfate–pyrite values (exceeding
65‰, Sahoo et al., 2012) of the lower enriched part of theWuhe section
indicated that the presence of euxinic conditions with BSR processes is
in response to high sulfate inputs at the slope location at this stage.
The oxidation of the DOC reservoir by sulfate-reducing bacteria could
have led to the negative δ13Ccarb anomalies in the lower enriched part.
However, the subsequently lower depleted part of the Wuhe section,
with negligible Mo–U concentrations, irregular Fepy/FeHR values and S
isotope fractionation, indicated that euxinic conditions had been con-
verted to suboxic conditions due to the descending chemocline. The
negative δ13Ccarb values of this lower depleted part could be a result of
the oxidation of the upwelling DOC by dissolved free oxygen under
suboxic conditions (Figs. 3, 6 and 7). 3) Although there are no C isotope
data for the Xiangtan basin section, the occasional authigenic Mo–U en-
richment and a few high Fepy/FeHR values indicated that this deep oce-
anic location was anoxic but perhaps intermittently had a euxinic
water column (Figs. 4, 6 and 7). However, another basin section
(Yuanjia), with significant authigenic Mo–U enrichment, high Fepy/
FeHR values and potentially large S isotope fractionation (Sahoo et al.,
2012), might indicate euxinic conditions and high sulfate input at
basin locations in this stage. In summary, the limited occurrence of
euxinic conditions and the scope of oceanic sulfate input in this stage
demonstrated a preliminary scenario for the Ediacaran ocean–atmo-
sphere system.

In Stage 2, a transient euxinic condition occurred in the Wuhe slope
in response to the fluctuating chemocline and the continuous sulfate
input and atmospheric oxygenation (Fig. 7). However, the sedimentary
conditions of the Jiulongwan and Xiangtan sections may not have
changed significantly in this stage.

The detailed descriptions were as follows. 1) The Jiulongwan section
still lies above the chemocline andwasmaintained in a suboxic condition
at this stage. Furthermore, the relatively small S isotope fractionation sug-
gests that the seemingly impossible BSR processes were present in this
stage, which is compatible with the suboxic conditions. Similar to Stage
1, the high Fepy/FeHR values may have resulted from the diagenetic pro-
cesses. However, the oxidation of the upwelling DOCwith dissolved oxy-
gen in the suboxic condition might be responsible for the short-term
negative δ13Ccarb excursion (EN2, McFadden et al., 2008; Figs. 2, 6 and
7). 2) In regard to the middle part of the Wuhe section, the redox condi-
tions of the water column in this stage were similar to those of Stage 1.
That is to say, the euxinic condition for the middle enriched part and
the suboxic condition for the middle depleted part were still attributable
to the fluctuating chemocline. Similar to Stage 1, the negative δ13Ccarb
anomalies resulted from different oxidation mechanisms, such as BSR
processes for the middle enriched part, and dissolved free oxygen for
the middle depleted part (Figs. 3, 6 and 7). 3) The middle part of the
Xiangtan section was deposited under anoxic conditions with an inter-
mittently euxinicwater column. The distributions of authigenicMo–Uen-
richment indicate a fluctuant oceanic chemistry in the middle to upper
part of the Xiangtan section (Figs. 4, 6 and 7). To summarize, the occur-
rence of euxinic conditions was associated with the presence of BSR pro-
cesses and high sulfate supplementation in this stage.

In Stage 3, the prevailing euxinic conditions dominated in the upper
parts of the Jiulongwan andWuhe sections, but anoxic ferruginous con-
ditions existed in theXiangtan section at the end of theDoushantuo For-
mation (Fig. 7). In this stage, the uplifted chemocline brought not only
the slope locations but also the platform locations under euxinic condi-
tions. These euxinic conditions might indicate intense BSR processes
with high oceanic sulfate supplementation, which could be associated
with the continuous oxygenation of the atmosphere during the late
Doushantuo period (e.g., Li et al., 2010; McFadden et al., 2008; Fig. 7).
Despite the absence of S isotope data for the Wuhe sections, the large
S isotope fractionation and high Fepy/FeHR values of the Jiulongwan sec-
tion suggest that the presence of BSR processes associated with contin-
uous oceanic sulfate input could have resulted in euxinic conditions.
That is as would be expected: the negative δ13Ccarb anomalies in the
upper parts of the Jiulongwan andWuhe sectionsmay have been caused
by oxidation of the upwelling DOC by oceanic sulfate through bacterial
sulfate reduction process in this stage. However, the modest authigenic
Mo–U enrichment, modest Fepy/FeHR and S isotope fractionation in the
upper part of the Xiangtan section indicated ferruginous conditions
where the H2S produced by the BSR processes might be insufficient
for the fixation of excessive iron.



Fig. 7. Schematic diagram of the dynamic evolution of the Ediacaran Doushantuo Formation, South China. In Stage 1, limited euxinic condition occurred near or below the Wuhe slope
location, high or sufficient oceanic sulfate concentrations may have accumulated at the platform, slope and some basin locations. In Stage 2, a transient euxinic condition occurred in
the Wuhe slope in response to the fluctuating chemocline which is similar to Stage 1. However, other deeper locations below the Xiangtan location are unidentified in this study. In
Stage 3, the prevailing euxinic conditions dominated in the upper parts of the Jiulongwan andWuhe sections, but anoxic ferruginous conditions existed in the Xiangtan section because
of the uplifted chemocline associated with the sufficient oceanic sulfate input in response to continuous atmospheric oxygenation at the end of the Doushantuo Formation. The negative
13Ccarb excursions of the Jiulongwan andWuhe sections are from Jiang et al. (2011) andMcFadden et al. (2008). The Δ34Ssulfate–pyrite ≥ 65‰ of Wuhe section in Stage 1 is from Sahoo et al.
(2012) and Δ34Ssulfate–pyrite ≥ 47.9‰ of Jiulongwan section in Stage 3 is fromMcFadden et al. (2008) and Li et al. (2010). The symbols of EN2 and EN3c are consistent with McFadden et al.
(2008).
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6. Conclusions

The investigation of authigenic Mo–U enrichment, together with Fe
speciation and S isotopes in the Jiulongwan, Wuhe and Xiangtan sec-
tions, suggests distinctive oceanic redox conditions across the platform,
slope and basin sections of the Doushantuo Formation. In the
Jiulongwan platform section, suboxic conditions characterized the
lower part, whereas euxinic conditions were observed in the upper
part. Simultaneously, in theWuhe slope section, three transient euxinic
episodes occurred in the lower, middle and upper parts, and the re-
mainder was deposited under suboxic conditions due to the fluctuating
chemocline. However, the Xiangtan basin section was characterized by
anoxic ferruginous conditions with an intermittently euxinic water col-
umn. Furthermore, our investigation of multiple geochemical results
was compatible with other published geochemical data indicating a
possible link. Specifically, significant authigenic Mo–U enrichment, to-
gether with negative δ13Ccarb anomalies and large S isotope fraction-
ation and high Fepy/FeHR ratios, might be associated with the oxidation

Image of Fig. 7


271T. Han, H. Fan / Chemical Geology 417 (2015) 261–272
of DOC by sufficient sulfate through BSR processes under euxinic condi-
tions, whereas the situation might be complicated and different under
ferruginous conditions. Conversely, the absence of significant
authigenic Mo–U enrichment, together with negative δ13Ccarb anoma-
lies and irregular S isotope fractionation and Fepy/FeHR ratios, could be
related to the oxidation of DOC by dissolved free oxygen under suboxic
conditions. Finally, the euxinic/intermittent euxinic conditions across
the Doushantuo Formation responded to a dynamic evolution of strati-
fied ocean and progressive atmospheric oxygenation during the early
Ediacaran Period.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.chemgeo.2015.09.021.
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