成都市冬季不同粒径大气颗粒物水溶性 无机离子的变化特征^{*}

杨周¹²李晓东^{1**}于静³石友香³杜锋³

(¹中国科学院地球化学研究所环境地球化学国家重点实验室,贵阳 550002;²中国科学院大学,北京 100049;³成都理工大学 环境与土木工程学院,成都 610059)

摘 要 利用 Anderson 冲击式分级采样器,在 2010 年冬季采集了成都市城东区不同粒径的大气颗粒物样品,分析了 9 种水溶性离子(SO_4^{2-} 、 NO_3^- 、 Cl^- 、 F^- 、 NH_4^+ 、 Ca^{2+} 、 Mg^{2+} 、 K^+ 、 Na^+) 的含量,并探讨其分布变化特征。 SO_4^{2-} 、 NO_3^- 、 NH_4^+ 、 Cl^- 、 K^+ 、 Na^+ 等离子主要集中在粒径为 3.3 ~0.65 µm 的细颗粒物中,而 Ca^{2+} 、 Mg^{2+} 则集中在粒径为 11 ~4.7 µm 的粗颗粒物中。 SO_4^{2-} 、 NO_3^- 、 NH_4^+ 、 Ca^{2+} 是主要的无机离子;在不同天气条件下, SO_4^{2-} 、 NO_3^- 的质量浓度按雾天、阴天、雨天递减,且雾天较阴天高 2.5 倍左右,较雨天高 5 倍左右,而其他离子也高出 2 倍左右;在不同粒径颗粒物中[NO_3^-]/[SO_4^{2-}]比值均较小(<1),说明成都市目前仍然以固定(燃煤)污染源为主 移动污染源(汽车尾气)的影响正逐步增强。

关键词 Anderson 分级采样器;大气颗粒物;天气条件;水溶性无机离子

中图分类号 P402 文献标识码 A 文章编号 1000-4890(2013)3-0682-07

Variation characteristics of water-soluble inorganic ions in size-segregated atmospheric particles in Chengdu in winter. YANG Zhou¹², LI Xiao-dong^{1**}, YU Jing³, SHI You-xiang³, DU Feng³ (¹ State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; ² University of Chinese Academy of Sciences, Beijing 100049, China; ³ College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu 610059, China). Chinese Journal of Ecology, 2013, **32**(3): 682–688.

Abstract: By means of the Andersen stage sampler , size-segregated atmospheric particles were collected in Chengdu City in winter , 2010. The size distribution spectra of major water-soluble inorganic ions ($SO_4^{2^-}$, NO_3^- , CI^- , F^- , NH_4^+ , Ca^{2^+} , Mg^{2^+} , K^+ , and Na^+) were determined. Mass contents of $SO_4^{2^-}$, NO_3^- , NH_4^+ , CI^- , K^+ and Na^+ mainly concentrated in the fine particles within the size range of 3.3 – 0.65 μ m, and those of Ca^{2^+} and Mg^{2^+} concentrated in the coarse particles ($11.0 - 4.7 \ \mu$ m). $SO_4^{2^-}$, NO_3^- , NH_4^+ and Ca^{2^+} were the major inorganic ions in the collected atmospheric particles. Under different weather conditions , mass concentrations of $SO_4^{2^-}$ and NO_3^- decreased in sequence of foggy day , cloudy day and rainy day , and their contents in the foggy day were about 2.5 and 5 times higher than that in cloudy day and rainy day , respectively. Accordingly , the other ions were also about 2 times higher. In the all size-segregated particles , the ratios of $[NO_3^-]/[SO_4^{2^-}]$ were less than 1.0 , indicating that the air pollution in Chengdu City are still dominated by stationary source (coal combustion) while the mobile pollution source (main as vehicle exhaust) is becoming increasingly important.

Key words: Anderson stage sampler; atmospheric particles; weather condition; water-soluble inorganic ions.

近几年来,随着社会经济的快速发展,成都市大 气污染已日趋严重,而大气颗粒物已成为成都市大 气污染物的主要成分之一,其在影响人体健康、区域性能见度,以及城市灰霾的形成等方面都有极大贡献(董雪玲,2004),颗粒物粒径越小(如 PM₁₀、 PM_{2.5})其影响越大。研究表明,PM₁₀可直接进入人

^{*} 国家自然科学基金项目(41173022)资助。

^{**}通讯作者 E-mail: lixiaodong@ mail.gyig.ac.cn

收稿日期: 2012-07-25 接受日期: 2012-11-09

体 影响人的呼吸系统、导致心血管和呼吸道疾病的 增加(Chan et al.,1997; Houthuijs et al. 2001; 时宗 波等 2002); PM_{2.5}粒径微小,可在肺泡中沉积,并可 进入血液循环,对人体危害更大,但目前对大气颗粒 物对人体健康影响的生物学因素并不清楚(Ho et al. 2003); 不同粒径大气颗粒物所含的可溶性无机 组分不同,其对区域能见度的影响不同,如主要光吸 收物质炭黑和光散射物质硫酸盐等多在细颗粒物 中。因此,研究不同粒径大气颗粒物的可溶性组分 的物化性质有助于阐明大气颗粒物的毒性以及对大 气能见度的影响等。

目前,对大气颗粒物污染状况的研究集中在研究大城市TSP、PM₁₀和PM_{2.5}上(He *et al.* 2001; 李东 升等 2005; 张裕芬等 2009),也有很多学者针对大 气颗粒物可溶组分的特征展开了研究(Ye *et al.*, 2003; Xiao & Liu 2004),但仅集中在 PM_{2.5}、PM₁₀和 TSP 几个层面上,而对不同粒径大气颗粒物的水溶 性无机组分的化学特征及其来源和形成机制的研究 较少(Guo *et al.* 2010; Zhao *et al.* 2011)。因此,研 究成都市不同天气条件下不同粒径大气颗粒物的可 溶性无机组分的变化特征,有助于研究不同粒径大 气颗粒物的来源及其形成机制。成都市是中国西南 特大的中心城市,大气环境质量的中度及重度污染 均为可吸入颗粒物,因此本研究对评价成都市大气 颗粒物的环境效应具有重要意义。

1 研究地区与研究方法

1.1 研究区概况

成都市位于四川盆地西部,成都平原腹地。成都市境内的地形特殊,东部有龙泉山脉和盆中丘陵,中部为成都平原,西部为邛崃山脉。2010年成都市城区环境空气质量优良率为86.6%。空气质量未达到国家二级标准,二氧化硫、氮氧化物、可吸入颗粒物均超标。城区可吸入颗粒物年均浓度值为104 μ g·m⁻³,年均浓度范围为99~107 μ g·m⁻³;日均浓度值均有不同程度的超标,城区日均浓度值超标率为14.2%,最大日均浓度值超标1.98 倍(成都市环保局 2011)。可吸入颗粒物已成为成都市大气污染物中的主要污染物。

最近几年,随着成都市工业结构的调整和汽车 保有量的大幅增加,成都市空气污染特征正由煤烟 型污染向汽车尾气-煤烟混合型污染转变(成都市环 保局 2011)。本研究采样点位于成都市城东区域, 成都的老工业区,这里曾集中了一大批火电、电子、 纺织、印染、交通运输等企业,目前正向教育、商业、 住宅等多功能区域发展转型,区域大气颗粒物污染 严重,对市区大气环境质量影响较大,是成都市大气 环境重点监控区之一。

1.2 样品采集与实验分析

1.2.1 样品采集 采样点位于成都市城东成都理 工大学一教学楼楼顶 距地面高度为 15 m。采用日 本 SIBATA 公司生产的 AN-200 型 Anderson 冲击式 采样器采集样品 流量为 28.3 L • min⁻¹ ,大气颗粒 物粒径分段(空气动力学直径)范围分别为 > 11、 11 ~7.0、7.0~4.7、4.7~3.3、3.3~2.1、2.1~1.1、 1.1~0.65、0.65~0.43、<0.43 μm。滤膜采用石英 纤维滤膜 ,直径 80 mm 滤膜在采样前需在马弗炉中 (450 ℃) 煅烧 6 h ,煅烧后置于干燥器中 ,冷却后称 其初始重量;采完样后称重 ,前后重量相减即为采样 重量 称重后滤膜用锡箔纸包好放在干燥器中保存。 本次研究采样日期从 2010 年 9 月 15 日—2011 年 1 月 14 日 ,共采样 8 次 ,采样时间、温度、天气描述、空 气污染指数(API) 以及首要污染物见表 1。

1.2.2 实验分析 样品前处理过程:首先取 1/2 石 英滤膜 將其剪碎置于 50 mL 的烧杯中,加入 15 mL 的 Milli-Q 超纯水,然后利用必能信超声波(美国, Branson 2510 型)清洗机清洗 3 次,每次 10 min,清 洗完后将清洗液倒入 50 mL 的离心管中。再将离心 管用 H-1650 台式高速离心机离心(转速: 7000 r・ min⁻¹) 10 min,提取上清液,并保存在冰箱(4 ℃) 中。

前处理结束后 采用电感耦合等离子发射光谱仪 (ICP-OES 美国 Varian 公司, Vista MPX 型)测试上清 液中的 K⁺、Na⁺、Ca²⁺、Mg²⁺ 4 种阳离子的含量; 采用荷兰SKALAR San⁺⁺连续流动营养盐分析仪测

表1 样品采集信息 Table 1 Information of sampling

		1 0		
采样时间	温度(℃)	天气描述	API	首要污染物
2010-09-15-09-18	32 ~16	阴天 静风	86	可吸入颗粒物
2010-10-04-10-06	23 ~16	阵雨 静风	75	可吸入颗粒物
2010-10-20	$24 \sim 16$	轻雾 静风	110	可吸入颗粒物
2010-11-0611-08	$20 \sim 9$	阴天 静风	96	可吸入颗粒物
2010-11-28-11-30	18~6	阵雨 静风	77	可吸入颗粒物
2010-12-21-12-23	$14 \sim 2$	轻雾 静风	107	可吸入颗粒物
2010-12-28-12-31	$10 \sim 1$	轻雾 静风	140	可吸入颗粒物
2011-01-1201-14	8 ~ -1	阴天 静风	93	可吸入颗粒物

定 NH_4^+ ; 采用(美国 Dionex 公司 ICS-90 型) 离子色 谱仪测试上清液中的 Cl^- 、 NO_3^- 、 SO_4^{2-} 、 F^-4 种阴 离子的含量。所有测试均在中国科学院地球化学研 究所环境地球化学国家重点实验室完成。

2 结果与分析

2.1 水溶性离子的基本特征

2.1.1 水溶性离子浓度 在不同粒径分级中,成都市大气颗粒物中主要水溶性无机离子的质量浓度按 $SO_4^{2-} > NO_3^- > NH_4^+ > Cl^- > Ca^{2+} > K^+ > Na^+ > F^- > Mg^{2+}$ 递减 SO_4^{2-} 的质量浓度最高,质量浓度变化范围0.05~3.38 μ g·m⁻³,而 Mg^{2+}的质量浓度最低,其质量浓度变化范围0~0.52 μ g·m⁻³。实验数据显示,在成都市大气颗粒物中, NO_3^- 、 $SO_4^{2-} 2$ 种离子的质量浓度分别占总离子质量浓度的20.4%和42.4%,说明成都市大气颗粒物中主要的可溶性组分为硫酸盐和硝酸盐。

从表 2 可知 9 种离子从 2010 年 9 月—2011 年 1 月的 8 次采样的质量变化,其中 SO_4^{2-} 、 NO_3^{-} 、 Cl^- 、 F^-4 种阴离子的变化趋势基本相似,最大值均 出现在样品 2010 – 12 – 21(雾天),说明冬季燃煤等 因素对大气颗粒物中的 SO_4^{2-} 、 NO_3^{-} 等离子贡献 大,而 NH_4^+ 的变化趋势和 SO_4^{2-} 、 NO_3^- 的变化趋势 相似。 Ca^{2+} 和 Mg^{2+} 、 Na^+ 和 K^+ 的变化趋势基本— 致,最大值也同样出现在样品 2010 – 12 – 21,说明 在雾天天气条件下,大气颗粒物中阴阳离子均有一 定程度的增加,其中 SO_4^{2-} 、 NO_3^- 变化最大。

2.1.2 离子粒径分布 各离子的粒径分布如图 1 (主要列举了 SO_4^{2-} 、 NO_3^{-} 、 NH_4^{+} 、 Ca^{2+})。不同粒 径的大气颗粒物所含的各种离子含量不同,如 SO_4^{2-} 是细颗粒物(<3.3 μ m)的主要成分,在粗颗 粒物(>3.3 μ m)中含量较低,仅为 10% 左右。而 Ca^{2+} 在细颗粒物中含量较少,主要集中在>11 μ m 及 11~4.7 µm 的粒径范围内,占总钙量的 76.4%。 成都市大气中的 SO_4^{2-} 、 NO_3^- 在不同粒径颗粒物呈 单峰分布,即主要集中在 0.65~3.3 µm 粒径范围 内,峰值出现在 1.1~2.1 µm,与前期研究结果一致 (石琼林等,2008), NH_4^+ 的分布特征与 SO_4^{2-} 、 NO_3^- 的分布特征基本一致;颗粒物中的碱性离子 $Ca^{2+}(Mg^{2+})$ 呈双峰分布特征,峰值分别出现在 >11 µm、7.0~4.7 µm 粒径范围内,且二者的分布特征 基本一致。而 K⁺、Na⁺呈单峰出现,峰值出现在 3.3 ~2.1 µm,二者的分布特征与 SO_4^{2-} 、 NO_3^- 的分布 特征一致,这说明 K⁺、Na⁺可能与 SO_4^{2-} 、 NO_3^- 等离 子的来源类似。

2.2 不同天气条件下的变化特征

研究采样期间有雾天、阴天及雨天3 类天气现 象(表1)。结合图1可知 雾天比非雾天污染严重, 在采样期间凡有雾天出现的情况下空气质量均为轻 微污染状态(101 < API < 150),而其他天气状况下 均为良(50 < API < 100),其中雨天的 API 指数最 低。在3类天气现象中,不同粒径大气颗粒物中水 溶性无机离子 SO_4^{2-} 、 NO_3^- 的质量浓度按雾天 > 阴 天>雨天递减,且雾天较非雾天气增加了2~5倍, 尤其在粒径为 3.3~2.1、2.1~1.1、1.1~0.65 µm 的颗粒物中变化最明显 这可能与雾天雾滴对大气 颗粒物的吸收机制及 SO42-、NO3-主要集中在细颗 粒物有关。而其他离子(除 Ca^{2+} 、 Mg^{2+} 外) 均增加 了2倍左右,其中Ca²⁺、Mg²⁺的质量浓度逐渐降低, Mg²⁺在后3次样品中均未能检测出,这可能是因为 冬季土壤扬尘减少及雨水的冲刷效应,使 Ca²⁺、 Mg²⁺减少 因此在雾天相对阴天差别较小,而相对 雨天差别较大。

在雨天气条件下,雨水的冲刷作用能够减少大气 中颗粒物的含量,其中对 Ca^{2+} 、 Mg^{2+} 、 SO_4^{2-} 的冲刷 效率较高,而对 Cl^- 、 NO_3^- 等离子的冲刷效率较低,

表2 水	、溶性尢机离子的总质量浓度(μg・	m ⁻³)
------	-------------------	-------------------

Table 2	Total	mass	concent	ration	of	wat	ter-so	lub	le	inorgani	c i	ons

样品编号	SO_4^{2}	NO ₃ -	Cl -	F -	$\mathrm{NH_4}$ +	Ca ^{2 +}	Mg ^{2 +}	K *	Na ⁺
2010-09-15	28.83	3.76	11.81	0.39	8.21	4.79	0.34	3.61	2.99
2010-10-04	17.27	7.46	4.51	0.24	6.89	3.69	0.06	5.12	2.16
2010-10-20	41.58	13.02	5.29	0.45	17.47	8.05	0.37	5.19	1.90
2010-11-06	44. 17	26.55	6.00	0.72	12.82	8.54	0.41	4.31	2.12
2010-11-28	30. 54	17.34	8.39	0.90	10.97	8.87	0.48	3.64	2.26
2010-12-21	80. 81	47.06	12.56	1.16	27.33	10. 27	0.81	6.99	3.34
2010-12-28	53. 59	28.15	9.65	0.66	16.57	8.44	0.43	4.89	2.42
2011-01-12	41.29	19.33	4.17	0.51	13.05	4.82	0.10	3.01	1.34

图1 离子含量随粒径分布的变化

Fig. 1 Ions concentration as a function of particle size distribution change

总体来说,降雨对大气颗粒物冲刷效应为碱性离子 大于酸性离子(汪安璞和杨淑兰,1991),而在2010-11-28(雨天)Ca²⁺、Mg²⁺的浓度依然偏高,这可能与 采样前的天气状况及污染程度有关,而表现比较明 显的是SO4²⁻,都较雾天及阴天有所降低。

2.3 [NO₃⁻]/[SO₄²⁻]比值

 NO_3^{-} 、 $SO_4^{2^-}$ 主要是由其气态前体物(NO_x 、 SO_2) 经 大气化学反应而形成的二次离子,属于二次污染物。 常用[NO_3^{-}]/[$SO_4^{2^-}$]的质量比值来指示大气中硫和 氮主要来自于固定污染源或移动污染源,若[NO_3^{-}]/ [$SO_4^{2^-}$]比值较低(<1),说明固定污染源(含硫煤燃 烧)占主要贡献;若[NO_3^{-}]/[$SO_4^{2^-}$]比值较高(>1), 说明移动污染源(如机动车尾气)占主要贡献(Arimoto et al. 1996; Yao et al. 2002)。

因 Anderson 冲击式采样器规格限制 故以粒径 为 3.3、11 μm 为界点 将大气颗粒物分为粗颗粒物 (11~3.3 μm)和细颗粒物(<3.3 μm),而将所有 粒径的大气颗粒物质量相加作为 TSP。在粗、细颗 粒物中, $[NO_3^{-}]/[SO_4^{2-}]$ 的质量比值范围分别为 0.26~0.94(平均为0.61)和0.05~0.66(平均为 0.38); 而在 TSP 中, [NO3⁻]/[SO4²⁻]的质量比值 范围分别为 0.11~0.60(平均为 0.45);比贵阳 (0.13)、青岛(0.35)和台湾(0.20)等城市高,比北 京(0.58) 低(Fang et al., 2002; Hu et al., 2002; Wang et al. 2005)。由上述 [NO3⁻]/[SO4²⁻]的质 量比值可知,成都市大气颗粒物中 NO_3^- 、 SO_4^{2-} 的 来源主要以固定污染源(燃煤)为主,以移动污染源 为辅。我国汽油和柴油的含硫率分别为 0.12% 和 0.20% (Kato ,1996) ,二者燃烧排放出 SO2和 NOx的 比率分别为 12: 1 和 8: 1(Wang et al. 2006)。另 外 在雾天天气状况下, [NO3⁻]/[SO4²⁻]的质量比 值都较其他天气高,这可能是因为在雾天大气颗粒 物的浓度比较高,且汽车尾气排放的 NO、NO,在湿 度和稳定度较大的情况下,NOx更加容易转化为 NO_3^- 使得大气中 NO_3^- 的浓度增大。而雨天、阴天 天气条件下, $[NO_3^{-}]/[SO_4^{2-}]$ 的质量比值在雨天 大干阴天 这可能是降雨过程对大气颗粒物的冲刷 作用导致的,因降雨对 SO42-的冲刷作用较强而对 NO₃⁻的冲刷较弱(汪安璞和杨淑兰,1991)。

2.4 不同粒径颗粒物中阴阳离子的相关分析

阴阳离子在不同粒径颗粒物中的相关性差别较 大,通过研究阴阳离子的相关性,可以初步推断不同 粒径大气颗粒物中阴阳离子的存在形式及其来源。

由图 2 可知 NO_3^{-} 与 SO_4^{2-} 在几乎所有粒径分级 都具有良好的相关性 结合二者的离子含量随粒径分 布的变化趋势 可以推测 NO_3^{-} 、 SO_4^{2-} 有相似的形成过 程(Guo et al. 2010) 。因在大气颗粒物中 空气动力学 直径 $\leq 2.5 \ \mu\text{m}$ 的细微颗粒物($PM_{2.5}$) 占可吸入颗粒物 的比重约为 70% $PM_{2.5}$ 也是目前大众关注的热点。因 此 根据本研究分级采样器的实际情况,选择与 2.5 μm 相近的 3.3 μm 粒径作为划分粗颗粒和细颗粒 的依据,分析颗粒物中阴阳离子的相关性。在细颗 粒 物 中, NH_4^{+} 与 NO_3^{-} 、 SO_4^{2-} 的 相 关 性很好,而在粗颗粒物中相关性较差, $LINH_4^{+}$ 的浓

图 2 主要水溶性无机离子的相关性 Fig. 2 Correlation of major water-soluble inorganic ions

度变化趋势与 NO_3^- 、 SO_4^{2-} 相似,都主要集中在细 颗粒物中,因此可以推测 NH_4^+ 在 < 3.3 μ m 颗粒物 中主要以 $NH_4 NO_3$ 、(NH_4) $_2SO_4$ 或 $NH_4 HSO_4$ 的形式 存在。

亲石元素 Ca(Mg) 主要在大粒径段分布,其主 要来自风砂和土壤等自然来源(谢华林等,2002)。 结合 Ca²⁺和 NO₃⁻、SO₄²⁻的相关性和浓度分布趋 势,可以推测 Ca²⁺主要以 Ca(NO₃)₂、CaSO₄ 的形式 存在于粗颗粒物中,Mg²⁺与 Ca²⁺相似。F⁻也主要 在大粒径段分布(与 Ca²⁺分布趋势相似),且 Ca²⁺ 与 F⁻在11~7.0 μm 粒径段的相关系数为0.82,这 说明由煤炭燃烧释放的 F⁻可能被大气粉尘中的 Ca²⁺吸附形成了 CaF₂。

分析研究大气颗粒物样品发现 ,Na⁺ 与 Cl⁻ 的 相关性非常好;在所有粒径范围内 ,二者的相关系数 最低为 0. 64 ,最高为 0. 93 ,多超过 0. 75 ,由此可以推 断 ,Na⁺ 与 Cl⁻ 可能来源于盐类起源的 NaCl。K⁺ 与 Cl⁻ 在 11 ~ 4. 7 μm 及 3. 3 ~ 1. 1 μm 粒径段的相关 系数均超过 0. 70 ,而在 11 ~ 7. 0 μm 高达 0. 98 ,可以 推断在这 2 个粒径范围内 K⁺ 可能主要以 KCl 的形 式存在; 而 K⁺ 与 SO₄²⁻ 、NO₃⁻ 在 2. 1 ~ 0. 65 μm 的 相关系数均 > 0. 81 ,可以推断这个粒径范围内 K⁺ 可能以 K₂SO₄、KNO₃的形式存在。

3 结 论

成都市大气颗粒物中硫酸盐、硝酸盐是主要的 水溶性无机组分。在不同粒径颗粒物中,碱性离子 Ca^{2+} 、 Mg^{2+} 呈双峰分布特征,而 SO_4^{2-} 、 NO_3^{-} 、 Cl^- 、 F^- 、 NH_4^+ 等离子呈单峰分布。

在不同天气条件下 SO_4^{2-} 、 NO_3^- 的质量浓度按雾 天 > 阴天 > 雨天递减 ,且二者雾天较阴天高 2.5 倍左 右 较雨天高 5 倍左右 而其他离子也高出 2 倍左右。

成都市大气颗粒物中的 [NO₃⁻]/[SO₄²⁻]的质 量比值均较小,说明成都市仍然以固定污染源(燃 煤)为主 机动车尾气等移动污染源为辅,且成都市 的二次污染较为严重。

在不同粒径颗粒物中所含的物质组成不同。根 据阴阳离子的相关关系及在各粒径段浓度变化趋势 可知,在粗颗粒物(>3.3 μ m)中,主要的物质组分 可能为 Ca(NO₃)₂、CaSO₄及 CaF₂等,而在细颗粒物 (<3.3 μ m)中,主要的物质组分可能为 NH₄NO₃、 $(NH_4)_2SO_4$ 或 NH_4HSO_4 等。

参考文献

- 成都市环保局. 2011. 2010 年成都市环境质量公报. 成都: 成都市环境保护局.
- 董雪玲. 2004. 大气可吸入颗粒物对环境和人体健康的危 害. 资源・产业,6(5): 50-53.
- 李东升,程温莹,汪模辉.2005.成都市大气细颗粒物的特 性研究.广东微量元素科学,(12):47-51.
- 石琼林,程温莹,罗 丽.2008. 成都市东郊(工业区)分级 颗粒物及酸雨中水溶性酸性离子分析.地质灾害与环 境保护,19(1):79-82.
- 时宗波,邵龙义,李 红,等.2002.北京市西北城区取暖 期环境大气中 PM₁₀的物理化学特征.环境科学,23 (1):30-34.
- 汪安璞,杨淑兰.1991.西南地区降雨对大气中元素的清洗 作用.环境化学,10(6):52-55.
- 谢华林,张 萍,贺 惠,等.2002.大气颗粒物中重金属 元素在不同粒径上的形态分布.环境工程,**20**(6):55 -57.
- 张裕芬,朱 坦,冯银厂,等. 2009. 大气污染控制有效性 的评估模型及应用. 中国环境科学, 29(3): 225 – 230.
- Arimoto R , Duce RA , Savoie DL , et al. 1996. Relationships among aerosol constituents from Asia and the North Pacific during PEM – West A. Journal of Geophysical Research , 101: 2011 – 2023.
- Chan YC , Simipson RW , McTainsh GH , et al. 1997. Characterization of chemical species in PM_{2.5} and PM₁₀ aerosols in Brisbane , Australia. Atmospheric Environment ,**31**: 3373 – 3785.
- Fang G , Chang C , Wu Y , et al. 2002. Ambient suspended particulate matters and related chemical species study in central Taiwan , Taichung during 1998 – 2001. Atmospheric Environment , 36: 1921 – 1928.
- Guo S , Hu M , Wang ZB , et al. 2010. Size-resolved aerosol water-soluble ionic compositions in the summer of Beijing: Implication of regional secondary formation. Atmospheric Chemistry and Physics , 10: 947 – 959.
- He K , Yang F , Ma Y , et al. 2001. The characteristics of PM_{2.5} in Beijing , China. Atmospheric Environment , 35: 4959 – 4970.
- Ho KF , Lee SC , Chan CK , et al. 2003. Characterization of chemical species in PM_{10} and $PM_{2.5}$ aerosols in Hong Kong. Atmospheric Environment , **31**: 31 33.
- Houthuijs D , Breugelmans O , Hoek G , et al. 2001. PM₁₀ and PM_{2.5} concentrations in Central and Eastern Europe: Results from the CESAR study. Atmospheric Environment , 5: 2757 – 2771.
- Hu M , He L , Zhang YH , et al. 2002. Seasonal variation of ionic species in fine particles at Qingdao , China. Atmospheric Environment , 36: 5853 – 5859.

- Kato N. 1996. Analysis of structure of energy consumption and dynamics of emission of atmospheric species related to the global environmental change (SO_x , NO_x and CO_2) in Asia. *Atmospheric Environment*, **30**: 757 785.
- Wang Y , Zhuang G , Tang AH , et al. 2005. The ion chemistry and the source of PM_{2.5} aerosol in Beijing. Atmospheric Environment , 39: 3771 – 3784.
- Wang Y , Zhuang G , Zhang XY , et al. 2006. The ion chemistry , seasonal cycle , and sources of $PM_{2.5}$ and TSP aerosol in Shanghai. Atmospheric Environment , **40**: 2935 2952.
- Xiao HY , Liu CQ. 2004. Chemical characteristics of water-soluble components in TSP over Guiyang , SW China. Atmospheric Environment , 38: 6297 – 6306.
- Yao X , Chan CK , Fang M , et al. 2002. The water-soluble ion-

ic composition of $PM_{2.5}$ in Shanghai and Beijing , China. Atmospheric Environment , **36**: 4223 – 4234.

- Ye B , Ji X , Yang HZ , et al. 2003. Concentration and chemical composition of PM_{2.5} in Shanghai for a 1-yr period. Atmospheric Environment , 37: 499 – 510.
- Zhao JP , Zhang FW , Xu Y , et al. 2011. Characterization of water-soluble inorganic ions in size-segregated aerosols in coastal city , Xiamen. Atmospheric Research , 99: 546 – 562.

作者简介 杨 周,男,1987年生,硕士研究生,主要从事环 境地球化学研究。E-mail: yangzhanyuan1987@163.com 责任编辑 魏中青