2013 年第 41 卷第 2 期 Vol. 41. No. 2,2013

黄铁矿吸附一还原金络合物的实验研究进展

李肃宁^{1,2},周 丽¹,李和平^{1,*},张 为^{1,2},陈 柱^{1,2}

(1. 中国科学院地球化学研究所地球内部物质高温高压实验室,贵阳 550002;2. 中国科学院大学,北京 100049)

摘 要:金的吸附成矿作用是表生和低温条件下的一种重要成矿机制。本文综述了黄铁矿吸附-还原金络合物的实验研究方法,探讨了黄铁矿吸附-还原不同金络合物的反应机制和影响因素。黄铁矿对 Au-S 络合物的吸附作用主要是黄铁矿与 Au-S 络合物之间的静电吸附以及表面络合,由于吸附的 Au-S 络合物的还原反应相当缓慢,随着周围环境的变化很容易发生解吸 附作用;而黄铁矿对 Au-Cl 络合物的吸附作用实质上是黄铁矿表面金络合物迅速的还原反应,通过还原作用形成自然金而使 得解吸附率极低。As 掺杂形成的 p 型黄铁矿以及和 n 型黄铁矿构成 p-n 结是导致金络合物在黄铁矿表面发生电化学沉淀的 驱动因素。目前有关金的吸附实验都是在温度小于 90℃的表生条件下进行的,开展一定温度和压力条件下的吸附成矿实验, 尤其是利用电化学方法原位研究高温高压下黄铁矿-金络合物溶液之间的界面反应以及原电池效应对金络合物还原作用的影响,是今后研究的重点。

关键词:吸附成矿;黄铁矿;金沉淀;电化学反应;原电池效应 中图分类号:P599 文献标识码:A 文章编号:1672-9250(2013)02-0185-08

热液中金的沉淀机理是阐明热液金矿床成矿机 制的关键,目前普遍认为金的沉淀机制主要有两 种[1]:①溶解度控制机制,即含金的成矿流体,由于 温度、压力、流体混合、相分离和 pH 等物理化学条 件的变化而造成含金热液过饱和而发生沉淀[2-5]; ②矿物表面作用机制,即含金热液(尤其是金不饱和 的热液)中金络合物被硫化物矿物表面吸附-还原而 导致金沉淀^[6-11]。金的吸附成矿作用使得金的沉 淀富集不再受金的溶解度所限制,而是受硫化物矿 物和金络合物溶液之间的固液界面反应所控制,尤 其在表生和低温条件下,吸附作用是一种重要的成 矿机制^[12, 13]。黄铁矿是金矿床中最重要的载金矿 物,开展黄铁矿吸附-还原金络合物的实验研究,揭 示金络合物在黄铁矿表面的吸附作用和还原过程以 及影响因素,对于丰富和完善金的吸附成矿机理具 有重要意义。本文综述了吸附实验的研究方法,探 讨了黄铁矿吸附一还原不同金络合物的反应机制和 影响因素,并且展望了今后实验研究的重要方向。

1 吸附实验研究方法概述

1.1 金络合物的选择

吸附实验金络合物的选择,不仅要考虑到实验 条件下易于制备、存放等要素,还要保证选取的金络 合物最大限度与地质事实相符合。金的溶解实验、 地质样品分析和热力学计算表明,热液体系中金通 常以 Au-Cl 络合物^[14-17]、Au-S 络合物^[18-20]、金的 羟基络合物^[21-23]以及胶体金 Au^{o[13, 24, 25]}的形式进 行迁移。另外,在富硅的热液中,AuH₃SiO⁴₄ 的作用 要远比 AuCl² 和 Au(HS)² 重要的多^[26]。尽管成 矿流体有多种金的迁移形式,但被认为占主导地位 的还是 Au-Cl 络合物和 Au-S 络合物^[5, 27]。因此, 黄铁矿的吸附实验大部分都选用 Au-Cl 络合物和 Au-S 络合物作为金的吸附物种。鉴于 Au-S 络合 物制备、存放所需的复杂条件,多数吸附都是选用 Au-Cl 络合物^[6-8, 28-30],仅有少数实验采用 Au-S 络合物^[11, 31, 32]。

收稿日期:2012-09-25;改回日期:2012-11-25

基金项目:国家自然科学基金资助项目(40903028);中国科学院地球化学研究所"135"项目;中国科学院重大科研装备研制项目(YZ200720)。

第一作者简介:李肃宁(1986-),男,硕士研究生,研究方向为高温高压实验地球化学。E-mail.lsn_iggcas@sina.com.

^{*}通讯作者:李和平(1963-),男,研究员。E-mail.liheping@vip.gyig.ac.cn.

1.2 黄铁矿粉末吸附实验

粉末吸附实验即是将细小的黄铁矿粉末放入金 络合物溶液中进行吸附实验。通常用于吸附的黄铁 矿粉末主要有两种来源:天然黄铁矿晶体和人工合 成黄铁矿样品。前者是将天然的黄铁矿晶体粉碎后 用分选筛选取一定粒径的黄铁矿粉即可:后者是实 验合成黄铁矿颗粒,目前的合成方法主要有①热液 合成法^[11, 33-35];②化学气相运移法^[36, 37]和③微波 合成法^[38, 39]。合成的黄铁矿样品粒径一般较小,从 纳米级一直到几十个微米不等,且由于多数采用化 学试剂直接合成,所以合成的黄铁矿成分均一。合 成黄铁矿能够有效消除金络合物在黄铁矿表面沉淀 时成分不均一性所造成的影响,但合成黄铁矿的过 程中,可能会出现铁的其它硫化物相,会对金络合物 的吸附产生一定的影响。吸附实验结束后,固相通 常采用 X 射线光电子能谱(XPS)、扫描电子显微镜 (SEM)、原子力显微镜(AFM)和扫描隧道显微镜 (STM)等进行表面分析,液相多采用原子吸收光谱 (AAS)分析。目前黄铁矿的粉末吸附实验已进行 了大量研究,取得了很多重要研究成果,但由于粉末 吸附实验只能采用离位分析方法,无法对吸附过程 的反应机制进行研究,这就需要采用黄铁矿电极进 行原位吸附实验。

1.3 黄铁矿电极吸附实验

黄铁矿是导电性矿物,金络合物在黄铁矿表面 的还原过程实质是一个电化学反应,黄铁矿表面和 金络合物溶液相互作用过程中的电位变化可以表征 固液界面的反应过程,对于揭示金络合物在黄铁矿 表面的沉淀机理有重要意义^[6,7,9]。黄铁矿电极制 作的主要步骤为:选样-切样-端面抛光-导线焊接-浇 铸-反应面精细抛光,电极制作好了以后,通过高阻 电压表监测金络合物溶液中黄铁矿电极的电位变 化,即可研究金络合物在黄铁矿电极表面吸附-还原 的反应过程。

2 影响黄铁矿吸附能力的主要因素

吸附作用分为物理吸附和化学吸附,其中物理 吸附就是带电含金络合物通过静电作用被吸附到矿 物表面电荷密度高的地方,而化学吸附主要通过还 原机制,氧化态的金被表面含硫基团所还原,同时硫 化物被氧化成硫酸盐^[1,30]。黄铁矿对金络合物的吸 附能力主要受以下因素的影响:

2.1 pH 的影响

pH 不仅影响热液中金络合物的迁移形式(图 1),而且更重要的是制约着黄铁矿表面的电荷零点。 当体系的 pH 达到某值而使矿物表面上的电位决定 离子(H⁺和 OH⁻)相等时,表面净电荷为零,此时 体系的 pH 值称为电荷零点(pH_{zpc}),电荷零点的变 化主要取决于可变电荷部分。可变电荷密度以 σ_v (esu/cm²)表示,可按 Gouy-Nerst 公式计算:

$$\sigma_{\rm v} = (\frac{2n_0 \,\mathrm{DkT}}{\pi})^{\frac{1}{2}} \sinh 1.143(\rm pH_{\rm zpc} - \rm pH) \qquad (1)$$

 n_0 是电解质浓度(离子/cm³);D 是介电常数;k 是玻尔兹曼常数;T 是绝对温度; pH_{zpc} 是电荷零点 的 pH 值;pH 是平衡溶液的 pH 值。

由(1)式可知,当溶液中 pH 或 pH_{4pe}值改变时, 可以计算出可变电荷的增量 $\Delta \sigma_v \otimes \Delta \sigma_v$ 预示着黄铁 矿表面和金络合物结合的稳定性,当此值为正时趋 向于吸附,此值为负时趋向于解离^[40]。黄铁矿表面 和金络合物结合的稳定性程度可用排斥能的高低来 衡量^[41]。如 $\Delta \sigma_v$ 为已知,黄铁矿与金络合物间的静 电排斥能的变化(ΔE)可由下式计算:

$$\Delta E = \frac{2\pi (\Delta \sigma_v)^2 d}{D}$$
(2)

其中 d 是黄铁矿和金络合物之间的距离(Å);D 为介质的介电常数。

 ΔE 的大小主要和 $\Delta \sigma_v$ 有关, $\Delta \sigma_v$ 负值增加,排 斥能增大。由(1)式可知,增加 $\Delta \sigma_v$ 负值的方法是提 高溶液的 pH 或降低电荷零点 pH_{zpc}。通过电势滴 定和电泳实验测量得到黄铁矿 pH_{zpc}均 $\approx 2^{[11,42]}$,所 以随着 pH 的升高,黄铁矿对金络合物的静电吸附 率会逐渐减弱。由此可见,黄铁矿表面对金络合物 的吸附能力严重依赖 pH 值^[11]。

2.2 络合物类型的影响

前人实验研究发现,相比于标准氢电极(SHE) (25℃时,饱和甘汞电极的电极电势为 0.242 V),黄 铁矿在 pH=3 时的开路电压约为 0.53 V^[44]。黄铁 矿电极表面金沉淀速率的控制步骤是 Au^{3+} 到 Au^{+} 的还原作用,而沉淀的开路电压取决于 Au^{+} 到 Au^{0} 的还原作用,而沉淀的开路电压取决于 Au^{+} 到 Au^{0} 的还原作用^[6,7]。25℃标准条件下,利用 Au^{+} 还原 为 Au^{0} 的标准电势^[45]和热力学计算数据^[46],根据 能斯特方程可以计算出不同金络合物沉淀时的电极 电势依次为^[6]:

$$AuCl_{2}^{-} + e^{-} = Au + 2Cl^{-}$$

$$E^{0} = 1.152 \text{ V SHE}$$

$$Au(HS)_{2}^{-} + H^{+} + e^{-} = Au + H_{2}S + HS^{-}$$

$$E^{0} = 0.335 \text{ V SHE}$$
(4)

$$Au(HS)_{2}^{-} + e^{-} = Au + 2HS^{-}$$

 $E^{0} = -0.079 V SHE$ (5)

 $(IIC) = 1 = - \Lambda$

根据电化学原理,电位差越大,反应进行的越强 烈也越彻底,当电位小干 0.3 V 时,反应进行缓慢且 不完全^[47]。而以上三个方程式中,式(3)的 $E^0 =$ 1. 152 V SHE, 而 10⁻⁴ mol/L KAuCl₄ 和 1 mol/L KCl, pH=3时, 实际测得 E=0.832 V SHE^[6]和 $10^{-4} \text{ mol/L KAuCl}_{4}$, pH = 1.5 时, E = 0.662 V SHE^[7]。这说明 Au-Cl 络合物在黄铁矿上的氧化 还原反应迅速彻底;Au-S络合物与黄铁矿之间的氧 化还原反应较为缓慢。而研究表明,Au-S络合物在 黄铁矿表面主要是形成表面络合物^[11,48]。Au-Cl 络合物在黄铁矿电极上通过还原作用而形成金纳米 粒子[6-8,49],且金纳米粒子的结合能随着粒子的尺 寸变小而增大^[7]。所以,Au-Cl络合物在黄铁矿表 面的还原作用形成金纳米粒子而不易被解吸附。金 纳米粒子修饰后的黄铁矿电极降低了电荷在界面转 移时的电阻[50],从而使得金纳米粒子易于导电并与 半导体黄铁矿构成原电池对,不断把半导体的电子 转移到有更多的金络合物被还原的自然金一溶液界 面,促使电化学反应持续进行。

黄铁矿对 Au-S 络合物的吸附作用主要是黄铁 矿与 Au-S 络合物之间的静电吸附以及表面络 合[11, 48, 51],而且只有在 $pH < pH_{zpc}$ 时,黄铁矿表面 带正电,吸附作用才显著,但由于吸附的 Au-S 络合 物的还原反应相当缓慢,则随着周围环境的变化很 容易发生解吸附作用。黄铁矿对 Au-Cl 络合物的 吸附作用实质上是黄铁矿对金络合物迅速的还原作 使得解吸附率降低。

2.3 不同类型黄铁矿的影响

不同类型的黄铁矿具有不同的导电性,对金络 合物的吸附一还原作用有着不同的机制。黄铁矿具 有 n 型(电子导电)和 p 型(空穴导电)两种导电类 型,纯净的黄铁矿具有 n 型导电性, As 掺杂后的黄 铁矿其导电性由 n 型转变为 p 型^[7,48,54-56]。n 型黄 铁矿对金络合物的富集主要是靠黄铁矿的物理吸附 作用而形成表面络合物;而 p 型的黄铁矿则会进一 步发生电子转移,使金络合物发生电化学还原而产 生自然金颗粒。前者键合较弱,容易发生解吸附作 用;后者则更为稳定。同时,p型黄铁矿在生长端常 聚集负电荷,n型黄铁矿在生长端聚集正电荷,p型 黄铁矿可引起周围热液中的氧化态金发生电化学反 应而沉淀结晶^[57],从而使得 p 型黄铁矿的载金能力 高于 n 型黄铁矿。地质事实也强有力的印证了这一 点,卡林型金矿床中的金主要是赋存在含砷的 p 型 黄铁矿环带中^[58-62],且Au和As具有如下关 系[63]:

$$C_{Au} = 0.02 \cdot C_{As} + 4 \times 10^{-5}$$
 (6)

式(6)中 C_{Au}和 C_{As}分别代表 Au 和 As 的摩尔 分数。而不含砷的黄铁矿中一般不含金或其含量远 低于含砷黄铁矿^[61, 62, 64, 65]。

金在含砷的 p 型黄铁矿上富集是由于黄铁矿结 构中存在 As-S 共价键,这使得含砷黄铁矿结构中

存在电价不平衡、缺位、扭曲^[66],从而为金的沉淀创 造了有利条件。同时,金的掺入能量(incorporation energy)大于1 eV,相比于纯净黄铁矿来说,金更容易 进入含砷黄铁矿^[67]。另外 Pokrovski 等(2002)^[68]研 究发现,富砷黄铁矿和毒砂比不含砷黄铁矿拥有更 强的集聚金的能力,是由于富砷黄铁矿和毒砂比不 含砷黄铁矿有更低的电位,这意味着砷在黄铁矿中 只是标定了一个有利的条件,金在富砷黄铁矿和毒 砂上的沉淀富集由电化学电位所控制,而与矿物中 As 和 Au 之间的结构关系无关^[7]。

3 金络合物的电化学还原机制

3.1 在黄铁矿表面低电位处的还原

Au-S金络合物在黄铁矿表面的吸附-还原作 用,优先发生在黄铁矿表面处于低电位的物理或化 学缺陷部位(如晶体边缘、生长台阶、断面、溶蚀坑、 微量元素置换区等)。这些部位金的成核作用,一般 涉及到两个过程:一是在这些电荷密度增加的区域, 带电的金络合物首先被物理吸附而形成弱的分子键 支撑,二是再被化学吸附,通过电子交换化学还原而 产生一个更强的联接^[69]。利用光学显微镜和扫描 电子显微镜研究了来自4个脉型金矿床中分离出的 单独黄铁矿颗粒,Starling等(1989)^[52]发现金的沉 淀是发生在黄铁矿一热液界面的两阶段过程,涉及 到金物种的物理吸附和随后还原驱动的化学吸附使 得金物种沉淀为自然金,且发现金不连续分布在黄 铁矿边缘及缺陷等特殊部位。

金络合物在黄铁矿表面处于低电位处的沉淀富 集,不仅包含金络合物的还原过程,而且还涉及硫化 物矿物表面微裂纹、晶体边缘和元素掺杂等在局部 环境中处于低电位的表面部位的氧化过程,实质是 以电化学反应机制进行的^[6,7,55,70,71]。黄铁矿的阳 极氧化半反应^[72]为:

 $FeS_2 + 8H_2O \longrightarrow Fe^{2+} + 2SO_4^{2-} + 16H^+ + 14e^-$ (7)

黄铁矿阳极氧化产生的电子为金络合物的阴极 还原提供保障,金络合物在黄铁矿表面阴极还原半 反应^[30]为:

$$L_{3}Au-Sf+3e^{-} \longrightarrow Au^{0}-Sf+3L^{-}$$
(8)

其中 L 表示配位体,Sf 表示黄铁矿表面部位, 金沉淀在黄铁矿表面晶体边缘或者表面机械缺陷等 特殊部位。

3.2 原电池效应

天然原电池效应在自然界普遍存在^[48,73],热液 中不仅不同硫化物矿物共生在一起由于电位不同可 组成原电池,而且同一硫化物矿物由于杂质的不均 一性和化学环带也能够导致 p=n 两相存在而形成微 结点,这些微结点被认为是驱动电化学反应的原 因^[74]。

图 2 所示为原电池效应对金络合物还原作用影响的示意图,当含金热液流过 n 型黄铁矿与 p 型黄 铁矿的接触带或由 n 型与 p 型组成的具有环带的黄 铁矿晶体裂隙时,将会发生金络合物的电化学还原 作用。由于 As 含量的变化而引起的硫化物晶体分 带现象无疑是 p=n 结形成的基础,氧化还原反应的 驱动力来自于电位差,多组分体系中氧化还原反应 优先发生在电位差较大的矿物对之间。p=n 结的存 在使得晶体破碎后易于流体进入,且使得 p=n 结相 对于单一类型黄铁矿矿物对之间有较大的电位差, 从而使金易于在 p 型和 n 型硫化物相互结合的部位 发生电化学沉淀。

图 2 含金流体在 n 型与 p 型黄铁矿组成的小孔 和具有环带的碎裂黄铁矿晶体中流动时的 电化学反应(据文献[55])

Fig. 2 Electrochemical reactions of a gold-bearing fluid moving along a pore made up of n-type and p-type pyrite as well as fractured n-and p-type zoned crystals (From ref. [55])

此外,Tan 等(2005)^[75]利用纯黄铁矿和黄铁 矿精矿对比研究了黄铁矿上碳或石墨涂层对金氰化 物吸附的影响。黄铁矿精矿由于存在碳物质而比纯 黄铁矿具有更高的吸附金的能力。这可能是由于碳 质是连接 n 型和 p 型黄铁矿的导电介质,从而构成 一组完整的原电池,有利于金以电化学的方式进行 富集,这可以为多数金矿床中的金主要是赋存在碳 质页岩的黄铁矿中^[76,77]提供一个可能的解释。

4 研究展望

目前有关金的吸附实验都是在温度小于 90℃ 的表生条件下进行的,研究结果对于揭示表生条件 下金的吸附成矿作用尤其重要。但根据金络合物的 Eh-pH 图(图 1)可知,中低温热液条件下溶液的 pH 和氧化还原电位对金络合物的类型以及还原电位均 有很大影响,而且半导体硫化物矿物的载流子(电子 或空穴)浓度随温度呈指数变化,这些因素必将使得 水热条件下的固-液界面反应不同于常温,为了更好 的贴合金矿床形成的实际地质环境,需要设计新的 实验来进行研究。因此,今后有必要开展一定温度 和压力下黄铁矿吸附-还原金络合物的实验,尤其是 利用电化学方法原位研究高温高压下黄铁矿-金络 合物溶液之间的界面反应以及原电池效应对金络合 物还原沉淀的影响,为金不饱和热液中金的吸附成 矿作用研究提供直接的实验依据,同时还可为难处 理金矿加压湿法预处理工艺的设计和优化提供参 考。

参考文献

- [1] 毛华海,张哲儒. 热液中金的沉淀机理研究综述[J]. 地质地球化学, 1997, 2(2): 89-92.
- [2] Muntean J L, Cline J S, Simon A C, et al. Magmatic-hydrothermal origin of Nevada's Carlin-type gold deposits[J]. Nature Geoscience, 2011,4(2):122-127.
- [3] Sung Y H, Brugger J, Ciobanu C L, et al. Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia[J]. Mineralium Deposita, 2009,44(7): 765 -791.
- [4] Williams-Jones A E, Bowell R J, Migdisov A A. Gold in solution[J]. Elements, 2009,5(5): 281-287.
- [5] Zhu Y F, An F, Tan J J. Geochemistry of hydrothermal gold deposits: A review[J]. Geosciences Frontiers, 2011,2(3): 367-374.
- [6] Maddox L M, Bancroft G M, Saini M J. Invisible gold comparison of Au deposition on pyrite and arsenopyrite[J]. American Mineralogist, 1998,83(11-12 Part1): 1240-1245.
- [7] Mikhlin Y L, Romanchenko A S. Gold deposition on pyrite and the common sulfide minerals: An STM/STS and SR-XPS study of surface reactions and Au nanoparticles[J]. Geochimica et Cosmochimica Acta, 2007,71(24): 5985-6001.
- [8] Mikhlin Y L, Romanchenko A S, Likhatski M, et al. Understanding the initial stages of precious metals precipitation: Nanoscale metallic and sulfidic species of gold and silver on pyrite surfaces[J]. Ore Geology Reviews, 2011,42(1): 47-54.
- [9] Mycroft J R, Bancroft G M, Mcintyer N S, et al. Spontaneous deposition of gold on pyrite from solutions containing Au (III) and Au (I) chlorides. Part I: A surface study[J]. Geochimica et Cosmochimica Acta, 1995,59(16): 3351-3365.
- Bancroft G M, Jean G. Gold deposition at low temperature on sulphide minerals[J]. Nature, 1982,298(5876): 730-731.
- [11] Widler A M, Seward T M. The adsorption of gold(I) hydrosulphide complexes by iron sulphide surfaces[J]. Geochimica et Cosmochimica Acta, 2002,66(3): 384-402.
- [12] 涂光炽. 低温地球化学[M]. 科学出版社, 1998.
- [13] 朱笑青, 黄艳, 张乾, 等. 银和金的选择吸附实验研究及意义[J]. 矿床地质, 2005, 24(4): 445-450.
- [14] Zotov A V, Baranova N N. Thermodynamic properties of aurochloride solute complex AuCl₂⁻ at temperature of 350-500°C and pressure of 500-1500 bars[J]. Sciences Géologiques Bulletin, 1989,42: 335-342.
- [15] Pokrovski G S, Tagirov B R, Schott J, et al. An in situ X-ray absorption spectroscopy study of gold-chloride complexing in hydrothermal fluids[J]. Chemical Geology, 2009,259(1): 17-29.
- [16] Stefansson A, Seward T M. Stability of chloridogold(I) complexes in aqueous solutions from 300 to 600°C and from 500 to 1800 bar[J]. Geochimica et Cosmochimica Acta, 2003,67(23): 4559-4576.
- [17] 郁云妹, Gammons C H, Williams-Jones A E. 金沉淀的一个可能机理—歧化反应[J]. 中国科学: D 辑, 1997,27

(005): 419-424.

- [18] Seward T M. Thio complexes of gold and the transport of gold in hydrothermal ore solutions[J]. Geochimica et Cosmochimica Acta, 1973,37(3): 379-399.
- [19] Hayashi K, Ohmoto H. Solubility of gold in NaCl− and H₂S− bearing aqueous solutions at 250-350°C[J]. Geochimica et Cosmochimica Acta, 1991,55(8): 2111−2126.
- [20] Pokrovski G S, Tagirov B R, Schott J, et al. A new view on gold speciation in sulfur-bearing hydrothermal fluids from in situ X-ray absorption spectroscopy and quantum-chemical modeling[J]. Geochimica et Cosmochimica Acta, 2009,73 (18): 5406-5427.
- [21] Vlassopoulos D, Wood S A. Gold speciation in natural waters: I. Solubility and hydrolysis reactions of gold in aqueous solution[J]. Geochimica et Cosmochimica Acta, 1990,54(1): 3-12.
- [22] Mironov I V, Makotchenko E V. The Hydrolysis of AuCl₄⁻ and the Stability of Aquachlorohydroxocomplexes of Gold (III) in Aqueous Solution[J]. Journal of Solution Chemistry, 2009,38(6): 725-737.
- [23] Stefansson A, Seward T M. The hydrolysis of gold(I) in aqueous solutions to 600℃ and 1500 bar[J]. Geochimica et Cosmochimica Acta, 2003,67(9): 1677-1688.
- [24] Hough R M, Noble R R P, Reich M. Natural gold nanoparticles[J]. Ore Geology Reviews, 2011,42(1): 55-61.
- [25] Kolotov B A, Spasskaya T S, Vagner B B, *et al.* on the relation between true and colloidal forms of gold migration in waters of hypergenesis zone of ore-deposits[J]. Geokhimiya, 1980,(7): 1104-1106.
- [26] 樊文苓,王声远.低温热液中金一硅络合作用的实验标定[J].科学通报,1993,38(010):933-935.
- [27] Mikucki E J. Hydrothermal transport and depositional processes in Archean lode-gold systems: A review[J]. Ore Geology Reviews, 1998,13(1-5): 307-321.
- [28] 曾贻善,姜士军. 金在黄铁矿表面沉淀机理的实验研究[J]. 地质科学, 1996, 31(1): 90-96.
- [29] Scaini M J, Bancroft G M, Knipe S W. An XPS, AES, and SEM study of the interactions of gold and silver chloride species with PbS and FeS₂ Comparison to natural samples[J]. Geochimica et Cosmochimica Acta, 1997,61(6): 1223-1231.
- [30] Jean G E, Bancroft G M. An XPS and SEM study of gold deposition at low temperatures on sulphide mineral surfaces: Concentration of gold by adsorption reduction[J]. Geochimica et Cosmochimica Acta, 1985,49(4): 979-987.
- [31] 张世柏. 黄铁矿表面物理化学与金的富集关系[D]: 中国科学院广州地球化学研究所, 1995.
- [32] Renders P J, Seward T M. The stability of hydrosulphido- and sulphido-complexes of Au(I) and Ag(I) at 25°C[J]. Geochimica et Cosmochimica Acta, 1989,53(2): 245-253.
- [33] Kalinichenko A M, Fadeev V V, Kozerenko S V, et al. Gold in pyrite formation processes: 2. Proton magnetic resonance in synthetic gold-bearing pyrites[J]. Geochemistry International, 2001,39: S160-S166.
- [34] Kozerenko S V, Wagner F E, Friedl J, et al. Gold in pyrite formation processes: 3. Mossbauer study of synthetic goldbearing iron sulfides[J]. Geochemistry International, 2001,39: S167-S172.
- [35] 赵伦山,陈岳龙,叶荣. 含金黄铁矿的模拟合成实验及热液作用中金富集机制[J]. 地学前缘,1998,5(1-2): 301-310.
- [36] Lehner S, Savage K, Ayers J. Vapor growth and characterization of pyrite (FeS₂) doped with Co, Ni, and As: Variations in semiconducting properties[J]. Journal of Crystal Growth, 2006,286(2): 306-317.
- [37] Diener A, Köppe R. Synthesis of selenium doted pyrite single crystals prepared by chemical vapor transport[J]. Journal of Crystal Growth, 2012,349(1): 55-60.
- [38] Kim E J, Batchelor B. Synthesis and characterization of pyrite (FeS₂) using microwave irradiation[J]. Materials Research Bulletin, 2009,44(7): 1553-1558.
- [39] Li M L, Yao Q Z, Zhou G T, et al. Microwave-assisted controlled synthesis of monodisperse pyrite microspherolites [J]. Crystengcomm, 2011,13(19): 5936-5942.
- [40] 袁朝良. 高岭石的胶体稳定性与其电荷零点的关系[J]. 矿物学报, 1989, 9(4):358-363.
- [41] Ei-Swaify S A. Changes in the physical properties of soil clays due to precipitated aluminum and iron hydroxides: II. Colloidal interactions in the absence of drying[J]. Soil Science Society of America Journal, 1976,40(4): 516-520.
- [42] Bebie J, Schoonen M A A, Fuhrmann M, et al. Surface charge development on transition metal sulfides: An electrokinetic study[J]. Geochimica et Cosmochimica Acta, 1998.62(4): 633-642.

191

- [43] Baranova N N, Ryzhenko B. Computer simulation of the Au-Cl-S-Na-H₂O system in relation to the transport and deposition of gold in hydrothermal processes[J]. Geokhimiyia, 1981,7: 989-1001.
- [44] Wei D W, Osseo-Asare K. Semiconductor electrochemistry of particulate pyrite: Dissolution via hole and electron pathways[J]. Journal of the Electrochemical Society, 1996,143(10): 3192-3198.
- [45] Bard A J, Parsons R, Jordan J. Standard potentials in aqueous solution[M]. IUPAC/Marcel Dekker, Inc. New York., 1985: 313-320.
- [46] Benning L G, Seward T M. Hydrosulphide complexing of Au(I) in hydrothermal solutions from 150-400°C and 500-1500 bar[J]. Geochimica et Cosmochimica Acta, 1996,60(11): 1849-1871.
- [47] **曾实. 电化学的实验方法**[M]. 科学出版社, 1985.
- [48] 张世柏,吴大清,谢先德. 不同类型黄铁矿对金的吸附实验[J]. 地球化学, 1996, 25(1): 84-92.
- [49] Deditius A P, Utsunomiya S, Reich M, et al. Trace metal nanoparticles in pyrite[J]. Ore Geology Reviews, 2011,42 (1):32-46.
- [50] Eghbalnia M, Dixon D G. Investigation of charge transfer resistance at pyrite electrodes modified by gold and silver nanoparticles[A]. In: Electrometallurgy 2012[M]. John Wiley & Sons, Inc. 2012: 207-215.
- [51] Renders P J, Seward T M. The adsorption of thio gold(I) complexes by amorphous As₂S₃ and Sb₂S₃ at 25 and 90°C[J].
 Geochimica et Cosmochimica Acta, 1989,53(2): 255-267.
- [52] Starling A, Gilligan J M, Carter A H C, *et al*. High-temperature hydrothermal precipitation of precious metals on the surface of pyrite[J]. Nature, 1989,340(6231): 289-300.
- [53] Hyland M M, Bancroft G M. An XPS study of gold deposition at low temperatures on sulphide minerals: Reducing agents[J]. Geochimica et Cosmochimica Acta, 1989,53(2): 367-372.
- [54] Belcher R W, Rozendaal A, Przybylowicz W J. Trace element zoning in pyrite determined by PIXE elemental mapping: evidence for varying ore-fluid composition and electrochemical precipitation of gold at the Spitskop deposit, Saldania Belt, South Africa[J]. X-Ray Spectrometry, 2004,33(3): 174-180.
- [55] Möller P, Kersten G. Electrochemical accumulation of visible gold on pyrite and arsenopyrite surfaces[J]. Mineralium Deposita, 1994,29(5): 404-413.
- [56] 蔡元吉,马承安. 金矿床黄铁矿热电性质形成机理实验研究及其找矿应用[J]. 火山地质与矿产,1999,20(003): 218 -224.
- [57] 高振敏,杨竹森.黄铁矿载金的原因和特征[J].高校地质学报,2000,(2):156-162.
- [58] Fleet M E, MacLean P J, Barbier J. Oscillatory-zoned As-bearing pyrite from strata-bound and stratiform gold deposits: An indicator of ore fluid evolution[J]. Economic Geology Monograph, 1989,6: 356-362.
- [59] Fleet M E, Chryssoulis S L, MacLean P J, et al. Arsenian pyrite from gold deposits: Au and As distribution investigated by SIMS and EMP, and color staining and surface oxidation by XPS and LIMS[J]. The Canadian Mineralogist, 1993,31(1): 1-17.
- [60] Liang J L, Sun W D, Li Y L, et al. An XPS study on the valence states of arsenic in arsenian pyrite: implications for Au deposition mechanism of the Yang-shan Carlin-type gold deposit, western Qinling belt[J]. Journal of Asian Earth Sciences, 2013,62:363-372.
- [61] Su W C, Xia B, Zhang H T, et al. Visible gold in arsenian pyrite at the Shuiyindong Carlin-type gold deposit, Guizhou, China: implications for the environment and processes of ore formation[J]. Ore Geology Reviews, 2008,33(3-4): 667 -679.
- [62] Su W C, Zhang H T, Hu R Z, et al. Mineralogy and geochemistry of gold-bearing arsenian pyrite from the Shuiyindong Carlin-type gold deposit, Guizhou, China: Implications for gold depositional processes[J]. Mineralium Deposita, 2012, 47(6): 653-662
- [63] Reich M, Kesler S E, Utsunomiya S, et al. Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 2005,69(11): 2781-2796.
- [64] Cook N J, Chryssoulis S L. Concentrations of invisible gold in the common sulfides[J]. The Canadian Mineralogist, 1990,28(1): 1-16.
- [65] Tauson V L. Gold solubility in the common gold-bearing minerals: Experimental evaluation and application to pyrite[J]. European Journal of Mineralogy, 1999,11(6): 937-947.

- [66] Deditius A P, Renock D, Reich A, et al. Chemical limits of trace elements in pyrite[J]. Geochimica et Cosmochimica Acta, 2011: 733-733.
- [67] Renock D, Deditius A P, Reich A, et al. Gold deposition onto arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 2008,72(12): A788-A788.
- [68] Pokrovski G S, Kara S, Roux J. Stability and solubility of arsenopyrite, FeAsS, in crustal fluids[J]. Geochimica et Cosmochimica Acta, 2002,66(13): 2361-2378.
- [69] Foster R. Gold in the year 2000: A global overview [J]. Australian Journal of Earth Sciences, 1996,43(1): 1-14.
- [70] Meyer F, Möller P, De Bruin D, *et al*. The gold-pyrite association in Witwatersrand reefs: evidence for electrochemical precipitation of gold[J]. Exploration and Mining Geology, 1994,3(3): 207.
- [71] Möller P, Sastri C S, Kluckner M, *et al*. Evidence for electrochemical deposition of gold onto arsenopyrite[J]. European Journal of Mineralogy, 1997,9(6): 1217-1226.
- [72] Holmes P R, Crundwell F K. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: An electrochemical study[J]. Geochimica et Cosmochimica Acta, 2000,64(2): 263-274.
- [73] 李和平. 天然原电池地球化学 [D]: 中南工业大学, 1995.
- [74] Laird J S, Johnson B C, Ganesan K, et al. Impurity mapping in sulphide minerals using Time-resolved Ion Beam Induced Current imaging[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010,268(11-12): 1903-1910.
- [75] Tan H, Feng D, Vandeventer J, et al. Effect of contaminant carbonaceous matter on the sorption of gold by pyrite[J]. International Journal of Mineral Processing, 2005,76(4): 244-259.
- [76] Large R R, Bull S W, Maslennikov V V. A carbonaceous sedimentary source-rock model for Carlin-type and orogenic gold deposits[J]. Economic Geology, 2011,106(3): 331-358.
- [77] Large R R, Danyushevsky L, Hollit C, et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits[J]. Economic Geology, 2009, 104(5): 635-668.

Progress in Experimental Investigations on the Adsorption-reduction of Gold Complexes by Pyrite

LI Su-ning^{1,2}, ZHOU Li¹, LI He-ping^{1,*}, ZHANG Wei^{1,2}, CHEN Zhu^{1,2}

(1. Laboratory for High Temperature & High Pressure Study of the Earth's Interior, Institute of

Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China;

2. University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: Gold adsorption metallogenesis is an important metallogenic mechanism at supergene and low temperature conditions. We summarized the experimental investigation methods of gold adsorption-reduction by pyrite and discussed the gold reduction mechanism on pyrite surface in different gold complexes solutions. The adsorption of Au-S complexes on pyrite surface is mainly the processes of electrostatic adsorption and surface complexation. Because the reduction reaction rate of the adsorption of Au-S complexes on pyrite surface is quite low, desorption will occurs once the conditions are changed. However, the adsorbed Au-Cl complexes on pyrite surface are rapidly reduced, and natural gold particles are produced through it, therefore, a process of desorption hardly occurs. p-type pyrite doped by arsenic is apt to form p-n junctions with n-type pyrite , which is the driving factors to result in electrochemical precipitation of gold complexes on pyrite surface. Gold adsorption experiments are currently conducted at conditions of supergene with temperatures $\leq 90^{\circ}$ C. Therefore, in the future, we should carry out adsorption metallogenic experiments at higher temperature and pressure conditions , especially combining with in-situ electrochemical approaches to investigate the influence of interface reaction between pyrite and gold complexes and galvanic effect on gold complexes reduction.

Key words: adsorption metallogenesis; pyrite; gold precipitation; electrochemical reaction; galvanic effect