磁铁矿和钛铁矿成分对四川太和富磷灰石钒钛磁铁 矿床成因的约束^{*}

佘宇伟¹² 宋谢炎^{1**} 于宋月¹ 陈列锰¹ 魏宇³ 郑文勤¹

SHE YuWei^{1,2}, SONG XieYan¹**, YU SongYue¹, CHEN LieMeng¹, WEI Yu³ and ZHENG WenQin¹

1. 中国科学院地球化学研究所 矿床地球化学国家重点实验室 ,贵阳 550002

- 2. 中国科学院大学 北京 100049
- 3. 四川省冶金地质勘查院 成都 610051
- 1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
- 2. University of Chinese Academy of Science, Beijing 100049, China
- 3. Sichuan Institute of Metallurgical Geology and Exploration, Chengdu 610051, China

2013-09-01 收稿, 2014-01-27 改回.

She YW, Song XY, Yu SY, Chen LM, Wei Y and Zheng WQ. 2014. The compositions of magnetite and ilmenite of the Taihe layered intrusion, Sichuan Province: Constraints on the formation of the P-rich Fe-Ti oxide ores. *Acta Petrologica Sinica*, 30(5): 1443 – 1456

Abstract The ~260Ma Taihe layered intrusion is one of the mafic-ultramafic intrusions host giant magmatic Fe-Ti oxide ore deposit in the central Emeishan Large Igneous Province. It outcrops ~3km long and ~2km wide , and has a thickness of ~1.2km. According to mineral assemblages and petrography textures, the intrusion can be divided into three lithologic zones: Lower Zone (LZ), Middle Zone (MZ) and Upper Zone (UZ). The LZ comprises (olivine) gabbros and thick massive Fe-Ti oxide ores. The MZ consists of six cyclic units, which are comprised of (apatite) magnetite clinopyroxenites and (apatite) gabbros from the base to the top. The UZ is comprised of Fe-Ti oxide-poor apatite gabbros. The apatite magnetite clinopyroxenites of the Taihe MZ contain 5% ~ 12% apatite, 20% ~ 35% Fe-Ti oxides and 50% ~ 60% silicates which occur as cumulus phases together with apatite. The magnetite compositions of the apatite magnetite clinopyroxenites are characterized by high TiO2, FeO, MnO and MgO contents and its variations are similar to those of the Panzhihua intrusion. Meanwhile, the ilmenite compositions display the negative correlations between FeO and TiO_2 and MgO, respectively. The FeO of ilmenite is positively correlated to Fe₂O₃ and MnO, respectively. These features suggest that magnetite and ilmenite crystallized from the Fe-Ti-P-rich silicate magma rather than immiscible nelsonitic melts. It thus can be concluded that the origin of apatite magnetite clinopyroxenites is resulted from crystal fractionation associated with gravitational sorting and setting. In the LZ, magnetite inclusions in olivine contain relatively high $Cr_2O_3(0.07\% \sim 0.21\%)$, whereas the $Cr_2O_3(0.00\% \sim 0.03\%)$ of magnetite inclusions in olivine from the MZ abruptly decreased. The Cr₂O₃ contents of magnetite inclusions in olivine are positively correlated with An content of plagioclase and Cr content of clinopyroxene. It confirms the replenished parental magmas formed the MZ rocks are different from the relatively primitive parental magmas formed the LZ rocks and ores. The MZ Fe-Ti-P-rich magma may be produced by the Fe-Ti enriched magma from a deep-seated magma chamber mixing with the extensively evolved P-rich magma in a middle level magma chamber. The relatively low Ti + V contents of magnetite of the UZ and the top of MZ suggest the compositions of these magnetites may be modified by magmatic hydrothermal resulted from late stage of magma differentiation.

Key words Magnetite; Ilmenite; Apatite; Layered intrusion; Taihe; Emeishan Large Igneous Province

摘要 产于层状镁铁质-超镁铁质岩体中的太和岩浆型 Fe-Ti 氧化物矿床是峨眉山大火成岩省内带几个超大型 Fe-Ti 氧

 * 本文受国家 "973"项目(2012CB416804)、矿床地球化学国家重点实验室项目群(SKLODG-ZY125-06)、中国科学院国家外国专家局创新 团队国际合作伙伴计划 "陆内成矿作用研究团队"(KZZD-EW-TZ-20)和国家自然科学基金项目(40730420)联合资助.
 第一作者简介: 佘宇伟 , 月, 1983年生, 博士生, 矿物学、岩石学、矿床学专业, E-mail: sheyuwei@ aliyun. com

** 通讯作者: 宋谢炎 男 1962 年生 博士 研究员 地球化学专业 E-mail: songxieyan@ vip.gvig.ac. cn

化物矿床之一。太和岩体长超过3km,宽2km,厚约1.2km。根据矿物含量和结构等特征,整个岩体从下向上可划分为下部岩相带、中部岩相带、上部岩相带。下部岩相带主要以(橄榄)辉长岩和厚层不含磷灰石的块状Fe-Ti氧化物矿层组成。中部岩相带韵律旋回发育,(磷灰石)磁铁辉石岩主要位于旋回的底部,旋回上部为(磷灰石)辉长岩。上部岩相带主要是贫Fe-Ti氧化物的磷灰石辉长岩。太和中部岩相带磷灰石磁铁辉石岩含有5%~12%磷灰石、20%~35%Fe-Ti氧化物、50%~60%硅酸盐矿物,且硅酸盐矿物与磷灰石呈堆积结构。磷灰石磁铁辉石岩中磁铁矿显示高TiO₂、FeO、MnO、MgO,且变化范围与趋势接近于攀枝花岩体。钛铁矿FeO分别与TiO₂、MgO显示负相关,而FeO分别与Fe₂O₃、MnO显示正的相关,且TiO₂、FeO、MnO、MgO含量变化较大,这些特征都暗示磁铁矿和钛铁矿是从富Fe-Ti-P岩浆中分离结晶。因此,可以推断太和磷灰石磁铁矿辉石岩形成于矿物重力分选和堆积。太和下部岩相带包裹在橄榄石中磁铁矿含有相对较高Cr₂O₃(0.07%~0.21%),而中部岩相带包裹在橄榄石中磁铁矿含有相对较高Cr₂O₃(0.07%~0.21%),而中部岩相带包裹在橄榄石中磁铁矿Cr₂O₃含量变化与单斜辉石Cr含量和斜长石An牌号呈正相关。这些特征印证了形成中部岩相带的相对演化的富Fe-Ti-P母岩浆可能是源自中部岩浆房的混合岩浆。上部岩相带磁铁矿和中部岩相带顶部少量磁铁矿显示较低Ti+V可能是由于岩浆房中累积的岩浆热液对磁铁矿成分进行了改造。 关键词 磁铁矿;钛铁矿;磷灰石;层状岩体;太和;峨眉山大火成岩省

中图法分类号 P611; P618.31

1 引言

岩浆型的 Fe-Ti 氧化物矿床主要产于斜长岩套中如挪威 Rogaland 斜长岩省的 Tellnes 矿床(Duchesne, 1999; Charlier et al., 2006),也可以赋存于大型层状岩体的上部如南非的 Bushveld 杂岩体、格陵兰的 Skaergaard 岩体、加拿大的 Sept Iles 岩体(Tegner et al., 2006; McBirney, 1996; Namur et al., 2010)。然而,有关岩浆 Fe-Ti 氧化物矿床的成因仍存在较大 的争议。一些学者认为岩浆 Fe-Ti 氧化物矿床是由于硅酸盐 岩浆发生熔体不混溶导致分离 Fe-Ti-(P) 熔体结晶形成 (Kolker, 1982; Chen et al., 2013; Vantongeren and Mathez, 2012; Jakobsen et al., 2005; Charlier and Grove, 2012; Zhou et al., 2005),另一些学者则认为 Fe-Ti 氧化物可以从富铁岩 浆中结晶并通过重力分选堆积形成 Fe-Ti 氧化物矿床 (Tegner et al., 2006; Tollari et al., 2008; Dymek and Owens, 2001; Charlier et al., 2006; Pang et al., 2008a; Zhang et al., 2009; 张招崇等, 2014)。

峨眉山大火成岩省内带(攀西地区)是世界上最大的 Fe-Ti 氧化物矿集区(Zhang et al., 2014),超大型的 Fe-Ti 氧化 物矿床产于几个镁铁质-超镁铁质层状岩体中,如攀枝花、白 马、红格、太和岩体。厚层的 Fe-Ti 氧化物矿石主要赋存于攀 枝花和白马岩体的下部岩相带和红格岩体的中部岩相带 (Zhou et al., 2005; Song et al., 2013; Zhang et al., 2012; Zhong et al., 2002; Bai et al., 2012)。然而,攀枝花、白马、 红格岩体的 Fe-Ti 氧化物矿石中都不含磷灰石,但太和岩体 除了下部岩相带顶部不含磷灰石的块状矿层,岩体中部岩相 带巨厚的磁铁辉石岩中含有大量磷灰石(She et al., 2014)。 之前的研究根据太和岩体硅酸盐矿物成分、全岩地球化学以 及 Sr-Nd 同位素地球化学暗示太和岩体的原始岩浆是源自于 地幔柱的苦橄质岩浆,这些苦橄质岩浆在深部岩浆房中经过 广泛的橄榄石和单斜辉石结晶分离形成富 Fe-Ti 的母岩浆,最 后这种富 Fe-Ti 的母岩浆侵入到太和岩浆房中由于 Fe-Ti 氧化 物的早期结晶和重力分选堆积形成下部岩相带顶部的块状 Fe-Ti 氧化物矿层(Hou et al., 2012; She et al., 2014)。She et al. (2014)认为太和中部岩相带磷灰石磁铁辉石岩是一种不 寻常的富 Fe-Ti-P 岩浆分离结晶的产物 这种岩浆是由源自深 部的富 Fe-Ti 岩浆与中部岩浆房中富 P 残余岩浆混合形成。 然而,该模式尚缺乏矿物学的证据。本文主要是通过对比太 和岩体富磷灰石 Fe-Ti 氧化物矿石与攀枝花岩体不含磷灰石 Fe-Ti 氧化物矿石以及大庙斜长岩套中富磷灰石 Fe-Ti 氧化物 矿石中磁铁矿和钛铁矿成分来探讨太和中部岩相带磷灰石磁 铁辉石岩的成因,为太和矿床的成因提供矿物学的约束。

2 地质背景

峨眉山大火成岩省位于扬子板块西部 向西延伸至青藏 高原东缘 向东延伸至广西北部 向南延伸至越南北部 出露 面积超过 5 × 10⁵ km²(图 1) (Xu et al., 2001; Xiao et al., 2004; Ali et al. , 2005; Fan et al. , 2008; Song et al. , 2001, 2004)。峨眉山大火成岩省主要由分布广泛的二叠纪溢流玄 武岩、镁铁质-超镁铁质侵入体和长英质侵入体组成。一般 认为 峨眉山大火成岩省是峨眉山地幔柱岩浆活动的产物 (如 Chung and Jahn, 1995; Xu et al., 2001; Zhang et al., 2006, 2008, 2009)。 锆 U-Pb 定年表明峨眉山大火成岩省主 要形成于约 260Ma 的晚二叠世(Zhou et al., 2002, 2005, 2008; Zhong and Zhu, 2006; Zhong et al., 2011)。根据溢流 玄武岩的厚度、成分等特点可以将峨眉山大火成岩省分为内 带和外带。几个赋存超大型岩浆 Fe-Ti 氧化物矿床的镁铁 质-超镁铁质层状侵入体如攀枝花、红格、白马、太和岩体,沿 着几条南北走向的深大断裂侵位于峨眉山大火成岩省的内 带(攀西地区)(图1)。

3 太和岩体地质特征

太和岩体位于攀西地区的北部,距四川省西昌市约

图 1 攀西地区镁铁-超镁铁层状侵入体分布图(据 Song et al., 2013 修改)

12km(图1) 岩体出露长约3km,宽约2km,厚约1.2km 岩体 呈层状展布,倾向东南,倾角50°~60°(图2)。岩体规模小 于攀枝花、白马、红格岩体,含有大约810×10⁷t 矿石,全 FeO 平均品位约为33%,TiO₂ 平均品位约为12%, N_2O_5 平均品 位约为0.3%(攀西地质大队,1984^①)。锆石 U-Pb 年龄表明 太和岩体的结晶年龄约为260Ma 左右(She *et al.*,2014; Zhong *et al.*,2011)。而岩体被正长岩所包围和穿插则暗示 正长岩侵入时间晚于太和岩体(攀西地质大队,1984;钟宏 等2009;魏宇等2012)。根据岩石矿物组合和矿物含量变 化,以及岩石结构构造和韵律层的发育等岩相特征,太和岩 体自下而上可以划分为下部岩相带、中部岩相带和上部岩相 带(图2)。

下部岩相带约 200m 厚,主要以橄榄辉石岩、(橄榄)辉 长岩、不含磷灰石的块状 Fe-Ti 氧化物矿石为主。橄榄辉石 岩含有约 60% 单斜辉石、约 30% 橄榄石、约 5% 磁铁矿、约 1% 钛铁矿。(橄榄)辉长岩含有 30% ~45% 单斜辉石、45% ~60% 斜长石、8% 橄榄石和 5% ~10% 磁铁矿和 2% ~4% 钛铁矿。块状矿层位于下部岩相带的顶部,主要由 40% ~ 70% 磁铁矿、15% ~40% 钛铁矿以及小于 30% 的硅酸盐矿物 组成。磁铁矿与钛铁矿颗粒边缘平直,且常呈 120°角(图 3a)。中部岩相带厚约 500m,韵律旋回发育,其中共有 6 个 较大韵律旋回(I-VI)。除了旋回 I 底部由磁铁辉石岩构成, 旋回 II、III、IV、V 和 VI 的底部均为磷灰石磁铁辉石岩构成, 旋回 II、III、IV、V 和 VI 的底部均为磷灰石磁铁辉石岩构成, 旋口 XI 和 VI 的底部均为磷灰石磁铁辉石岩,而旋 回上部都为(磷灰石)辉长岩。磁铁矿辉石岩含有约 10% 磁 铁矿、约 8% 钛铁矿、70% ~80% 单斜辉石和少量斜长石。磷 灰石磁铁辉石岩主要组成矿物为 50% ~60% 单斜辉石、5% ~15% 磁铁矿、5% ~20% 钛铁矿、5% ~12% 磷灰石和少量 的斜长石和角闪石以及含量变化的橄榄石。自形的磷灰石 常与半自形-他形的 Fe-Ti 氧化物和硅酸盐矿物堆积在一起

Fig. 1 Distribution map of mafic-ultramafic layered intrusions in the Pan-Xi region, SW China (after Song et al., 2013)

攀西地质大队.1984.攀枝花-西昌地区钒钛磁铁矿共生矿成矿规 律与预测研究报告

表1 太和岩体磁铁矿主要氧化物组成(wt%)

Table 1	Analyses of	magnetite	from the	Taihe	intrusion (wt%)	١
rubic r	rinary 505 or	magnetite	monn the	1 anno	manuality	110/0	ε.

1 T HH 🗂	ST11-58			ST11-56			ST11-51		ST11-48		ST11-06				
	81			113			173	173 216			323				
岩性	磷灰	灰石辉长岩 磷灰石		磷灰石制	军长岩				灰石辉长岩		磷灰石磁铁辉石岩				
岩相带					上部带						中	部带			
旋回											-	VI			
样品点	58-Mt-I	58-N	It-2	56-Mt-I	56-Mt-2	51-Mt	51-Mt-I 51-Mt-2		48-Mt-I	6-Mt-I	6-Mt-1 6-1		6-Mt-3		
TiO ₂	0.17	0. 1	0	0.38	0.28 0.16		0	. 20	0.14	0.66	0.	88	0.61		
Al_2O_3	0.39	0.0)9	0.02	0.38	0.37	1	. 90	0.31	0.75	0.	82	0.36		
Cr_2O_3	0.01	0.0)2	0.03	0.01	0.03	0	0.01	0.03	0.00	0.	02	0.03		
$V_{2}O_{3}$	0.97	1. ()2	1.03	0.99	1.25	0	. 99	0.75	0.61	0.	68	0.65		
Fe_2O_3	66.86	66.	43	67.79	65.96	67.43	3 65	5.92	66.88	65.35	65.	67	66.29		
FeO	31.09	30.	63	31.67	30.78	31.49	3	1.84	30. 92	30.96	31.	22	31.45		
NiO	0.03	0. (01	0.00	0.01	0.00	0	. 00	0.01	0.03	0.	05	0.00		
MnO	0.00	0. (00	0.00	0.00	0.00	0	. 00	0.00	0.06	0.	10	0.02		
MgO	0. 01	0. (0	0.02	0.07	0.00	0	. 00	0.01	1.80	0.	38	0.02		
Total	99.52	98	30	100 94	98.47	100.7	2 10	0.85	99.04	100.22	99	82	99 42		
Ti ⁴ +	0.00	0.0	0	0.01	0.01	0.00	- 10	01	0.00	0.02	0	03	0.02		
A1 ³ +	0.02	0.0	0	0.00	0.02	0.02	0	08	0.01	0.28	0	04	0.02		
Cr^{3+}	0.00	0.0	0	0.00	0.00	0.00	0	00	0.00	0.00	0	00	0.00		
V ⁵ +	0.03	0.0)3	0.03	0.03	0.04	0	03	0.02	0.02	0.	02	0.02		
к Бо ³⁺	1 94	1.0)6	1 94	1 0/	1 0/	1	87	1 95	1.66	0.	80	1 03		
ге Бо ²⁺	1.94	1. 5	0	1. 94	1. 94	1. 94	1	. 07	1.95	0.02	1.	09	1. 55		
ге N:2 +	0.00	1.0	0	0.00	0.00	0.00	1	. 01	0.00	0.92	1.	00) 0.00		
INI M 2+	0.00	0.0		0.00	0.00	0.00	0	. 00	0.00	0.00	0.	00	0.00		
Mn M ²⁺	0.00	0.0		0.00	0.00	0.00	0	. 00	0.00	0.00	0.	00	0.00		
Mg ⁻¹	0.00	0.0	0	0.00	0.00	2.00	2	00	0.00	0.10	0.	02	0.00		
10tal	3.00	ST11 00	0	3.00	5.00 ST11.12	3.00	3	ST11 19	3.00	5.00 ST1	J.	00 ST1			
<u>作如ち</u> 恣度(m)		201			442			5117		653		665			
<u>休皮(m)</u> 当世		J01 	<u>- ш</u>)) 				
	1%冲火	1口11/21 1大77年	口石			吽石	5 % 例 火 口 133 t		「吽石	<u> </u>		<u> </u>			
							rth ☆7 ±±±								
		37			137		中部带	117							
+++	0 M: 1	V 0 Mi 2	0 M- 2		IV	12 M 2	中部带	IV	10 M. 2	I			II 28 M 2		
 	9-Mt-1	V 9-Mt-2	9-Mt-3	13-Mt-1	IV 13-Mt-2	13-Mt-3	中部带 	IV 18-Mt-2	18-Mt-3	I 27-Mt-1	I 27-Mt-2	28-Mt-1	II 28-Mt-2		
<u>样品点</u> TiO ₂	9-Mt-1 11. 24 5. 32	V 9-Mt-2 11.06	9-Mt-3 10. 84	13-Mt-1 12.01	IV 13-Mt-2 12. 99 2. 63	13-Mt-3 6.31	中部带 18-Mt-1 11.91 3.01	IV 18-Mt-2 10.64	18-Mt-3 11. 89 3. 50	I 27-Mt-I 10. 80 0. 97	I 27-Mt-2 10.00	28-Mt-1 9. 88	II 28-Mt-2 15.14 3.62		
<u>样品点</u> TiO ₂ Al ₂ O ₃ Cr. O.	9-Mt-1 11. 24 5. 32	V 9-Mt-2 11.06 2.82 0.02	9-Mt-3 10. 84 3. 79 0. 24	13-Mt-1 12.01 1.44	IV 13-Mt-2 12. 99 2. 63 0. 00	13-Mt-3 6. 31 1. 03 0. 02	中部带 18-Mt-1 11.91 3.01 0.01	IV 18-Mt-2 10. 64 3. 39 0. 02	18-Mt-3 11. 89 3. 59	I 27-Mt-I 10. 80 0. 97 0. 02	<u>I</u> 27-Mt-2 10.00 1.52 0.00	28-Mt-1 9. 88 1. 35 0. 02	II 28-Mt-2 15. 14 3. 62 0. 07		
样品点 TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ V ₂ O ₂	9-Mt-1 11. 24 5. 32 0. 02 0. 77	V 9-Mt-2 11.06 2.82 0.02 0.40	9-Mt-3 10. 84 3. 79 0. 24 0. 72	13-Mt-1 12. 01 1. 44 0. 02 0. 00	IV 13-Mt-2 12.99 2.63 0.00 0.31	13-Mt-3 6.31 1.03 0.02 0.28	中部帯 18-Mt-1 11.91 3.01 0.01 0.23	IV 18-Mt-2 10. 64 3. 39 0. 02 0. 14	18-Mt-3 11. 89 3. 59 0. 02 0. 58	I 27-Mt-1 10. 80 0. 97 0. 02 0. 67	I 27-Mt-2 10.00 1.52 0.00 0.34	28-Mt-1 9. 88 1. 35 0. 02 0. 75	II 28-Mt-2 15. 14 3. 62 0. 07 0. 90		
样品点 TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ V ₂ O ₃ Fe ₂ O ₂	9-Mt-1 11. 24 5. 32 0. 02 0. 77 40. 84	V 9-Mt-2 11.06 2.82 0.02 0.40 43.57	9-Mt-3 10. 84 3. 79 0. 24 0. 72 43 45	- 13-Mt-1 12.01 1.44 0.02 0.00 43.96	IV 13-Mt-2 12.99 2.63 0.00 0.31 40.10	13-Mt-3 6. 31 1. 03 0. 02 0. 28 53. 70	中部帯 18-Mt-I 11.91 3.01 0.01 0.23 42.99	IV 18-Mt-2 10. 64 3. 39 0. 02 0. 14 44 70	18-Mt-3 11. 89 3. 59 0. 02 0. 58 42. 06	I 27-Mt-1 10. 80 0. 97 0. 02 0. 67 46. 37	I 27-Mt-2 10.00 1.52 0.00 0.34 46.76	28-Mt-1 9.88 1.35 0.02 0.75 47.29	II 28-Mt-2 15.14 3.62 0.07 0.90 34.10		
样品点 TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ V ₂ O ₃ Fe ₂ O ₃ FeO	9-Mt-1 11. 24 5. 32 0. 02 0. 77 40. 84 38, 51	V 9-Mt-2 11.06 2.82 0.02 0.40 43.57 39.27	9-Mt-3 10. 84 3. 79 0. 24 0. 72 43. 45 38 39	13-Mt-1 12.01 1.44 0.02 0.00 43.96 40.42	IV 13-Mt-2 12.99 2.63 0.00 0.31 40.10 41.72	13-Mt-3 6.31 1.03 0.02 0.28 53.70 38.86	中部帯 18-Mt-1 11.91 3.01 0.01 0.23 42.99 38.77	IV 18-Mt-2 10. 64 3. 39 0. 02 0. 14 44. 70 38. 65	18-Mt-3 11. 89 3. 59 0. 02 0. 58 42. 06 39. 91	I 27-Mt-1 10. 80 0. 97 0. 02 0. 67 46. 37 37. 85	I 27-Mt-2 10.00 1.52 0.00 0.34 46.76 37.59	28-Mt-1 9. 88 1. 35 0. 02 0. 75 47. 29 38. 81	II 28-Mt-2 15. 14 3. 62 0. 07 0. 90 34. 10 42. 17		
样品点 TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ V ₂ O ₃ Fe ₂ O ₃ FeO NiO	9-Mt-1 11. 24 5. 32 0. 02 0. 77 40. 84 38. 51 0. 00	V 9-Mt-2 11.06 2.82 0.02 0.40 43.57 39.27 0.01	9-Mt-3 10. 84 3. 79 0. 24 0. 72 43. 45 38. 39 0. 00	13-Mt-1 12.01 1.44 0.02 0.00 43.96 40.42 0.01	IV 13-Mt-2 12.99 2.63 0.00 0.31 40.10 41.72 0.00	13-Mt-3 6.31 1.03 0.02 0.28 53.70 38.86 0.00	中部带 18-Mt-1 11.91 3.01 0.01 0.23 42.99 38.77 0.00	IV 18-Mt-2 10. 64 3. 39 0. 02 0. 14 44. 70 38. 65 0. 00	18-Mt-3 11. 89 3. 59 0. 02 0. 58 42. 06 39. 91 0. 00	I 27-Mt-1 10. 80 0. 97 0. 02 0. 67 46. 37 37. 85 0. 02	I 27-Mt-2 10.00 1.52 0.00 0.34 46.76 37.59 0.03	28-Mt-1 9. 88 1. 35 0. 02 0. 75 47. 29 38. 81 0. 00	II 28-Mt-2 15. 14 3. 62 0. 07 0. 90 34. 10 42. 17 0. 00 00		
样品点 TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ V ₂ O ₃ Fe ₂ O ₃ FeO NiO MnO	9-Mt-1 11. 24 5. 32 0. 02 0. 77 40. 84 38. 51 0. 00 0. 53	V 9-Mt-2 11. 06 2. 82 0. 02 0. 40 43. 57 39. 27 0. 01 0. 53	9-Mt-3 10. 84 3. 79 0. 24 0. 72 43. 45 38. 39 0. 00 0. 51	13-Mt-4 12.01 1.44 0.02 0.00 43.96 40.42 0.01 0.52	IV 13-Mt-2 12. 99 2. 63 0. 00 0. 31 40. 10 41. 72 0. 00 0. 60	13-Mt-3 6.31 1.03 0.02 0.28 53.70 38.86 0.00 0.32	中部带 18-Mt-1 11.91 3.01 0.01 0.23 42.99 38.77 0.00 0.45	IV 18-Mt-2 10. 64 3. 39 0. 02 0. 14 44. 70 38. 65 0. 00 0. 40	18-Mt-3 11. 89 3. 59 0. 02 0. 58 42. 06 39. 91 0. 00 0. 45	I 27-Mt-1 10. 80 0. 97 0. 02 0. 67 46. 37 37. 85 0. 02 0. 22	I 27-Mt-2 10.00 1.52 0.00 0.34 46.76 37.59 0.03 0.23	28-Mt-1 9.88 1.35 0.02 0.75 47.29 38.81 0.00 0.43	II 28-Mt-2 15. 14 3. 62 0. 07 0. 90 34. 10 42. 17 0. 00 0. 82		
样品点 TiO2 Al2O3 Cr2O3 V2O3 Fe2O3 FeO NiO MgO	9-Mt-1 11. 24 5. 32 0. 02 0. 77 40. 84 38. 51 0. 00 0. 53 2. 05	V 9-Mt-2 11. 06 2. 82 0. 02 0. 40 43. 57 39. 27 0. 01 0. 53 1. 05	9-Mt-3 10. 84 3. 79 0. 24 0. 72 43. 45 38. 39 0. 00 0. 51 1. 83	13-Mt-1 12.01 1.44 0.02 0.00 43.96 40.42 0.01 0.52 0.57	IV 13-Mt-2 12. 99 2. 63 0. 00 0. 31 40. 10 41. 72 0. 00 0. 60 0. 36	13-Mt-3 6. 31 1. 03 0. 02 0. 28 53. 70 38. 86 0. 00 0. 32 0. 11	中部帯 18-Mt-1 11.91 3.01 0.01 0.23 42.99 38.77 0.00 0.45 1.36	IV 18-Mt-2 10. 64 3. 39 0. 02 0. 14 44. 70 38. 65 0. 00 0. 40 1. 49	18-Mt-3 11. 89 3. 59 0. 02 0. 58 42. 06 39. 91 0. 00 0. 45 1. 55	I 27-Mt-1 10. 80 0. 97 0. 02 0. 67 46. 37 37. 85 0. 02 0. 22 1. 79	I 27-Mt-2 10.00 1.52 0.00 0.34 46.76 37.59 0.03 0.23 1.34	28-Mt-1 9.88 1.35 0.02 0.75 47.29 38.81 0.00 0.43 0.64	II 28-Mt-2 15. 14 3. 62 0. 07 0. 90 34. 10 42. 17 0. 00 0. 82 1. 46		
样品点 TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ V ₂ O ₃ Fe ₂ O ₃ FeO NiO MnO MgO Total	9-Mt-1 11. 24 5. 32 0. 02 0. 77 40. 84 38. 51 0. 00 0. 53 2. 05 99. 28	V 9-Mt-2 11.06 2.82 0.02 0.40 43.57 39.27 0.01 0.53 1.05 98.73	9-Mt-3 10. 84 3. 79 0. 24 0. 72 43. 45 38. 39 0. 00 0. 51 1. 83 99. 77	13-Mt-1 12.01 1.44 0.02 0.00 43.96 40.42 0.01 0.52 0.57 98.94	IV 13-Mt-2 12. 99 2. 63 0. 00 0. 31 40. 10 41. 72 0. 00 0. 60 0. 36 98. 70	13-Mt-3 6. 31 1. 03 0. 02 0. 28 53. 70 38. 86 0. 00 0. 32 0. 11 100. 63	中部帯 18-Mt-1 11.91 3.01 0.01 0.23 42.99 38.77 0.00 0.45 1.36 98.74	IV 18-Mt-2 10. 64 3. 39 0. 02 0. 14 44. 70 38. 65 0. 00 0. 40 1. 49 99. 44	18-Mt-3 11. 89 3. 59 0. 02 0. 58 42. 06 39. 91 0. 00 0. 45 1. 55 100. 03	I 27-Mt-1 10. 80 0. 97 0. 02 0. 67 46. 37 37. 85 0. 02 0. 22 1. 79 98. 72	I 27-Mt-2 10.00 1.52 0.00 0.34 46.76 37.59 0.03 0.23 1.34 97.81	28-Mt-1 9. 88 1. 35 0. 02 0. 75 47. 29 38. 81 0. 00 0. 43 0. 64 99. 17	II 28-Mt-2 15. 14 3. 62 0. 07 0. 90 34. 10 42. 17 0. 00 0. 82 1. 46 98. 29		
样品点 TiO2 Al2O3 Cr2O3 V2O3 Fe2O3 FeO NiO MnO MgO Total Ti ⁴ +	9-Mt-1 11. 24 5. 32 0. 02 0. 77 40. 84 38. 51 0. 00 0. 53 2. 05 99. 28 0. 31	V 9-Mt-2 11.06 2.82 0.02 0.40 43.57 39.27 0.01 0.53 1.05 98.73 0.31	9-Mt-3 10. 84 3. 79 0. 24 0. 72 43. 45 38. 39 0. 00 0. 51 1. 83 99. 77 0. 30	13-Mt-1 12.01 1.44 0.02 0.00 43.96 40.42 0.01 0.52 0.57 98.94 0.34	IV 13-Mt-2 12.99 2.63 0.00 0.31 40.10 41.72 0.00 0.60 0.36 98.70 0.37	13-Mt-3 6. 31 1. 03 0. 02 0. 28 53. 70 38. 86 0. 00 0. 32 0. 11 100. 63 0. 18	中部帯 18-Mt-1 11.91 3.01 0.01 0.23 42.99 38.77 0.00 0.45 1.36 98.74 0.34	IV 18-Mt-2 10. 64 3. 39 0. 02 0. 14 44. 70 38. 65 0. 00 0. 40 1. 49 99. 44 0. 30	18-Mt-3 11. 89 3. 59 0. 02 0. 58 42. 06 39. 91 0. 00 0. 45 1. 55 100. 03 0. 33	I 27-Mt-1 10. 80 0. 97 0. 02 0. 67 46. 37 37. 85 0. 02 0. 22 1. 79 98. 72 0. 31	I 27-Mt-2 10.00 1.52 0.00 0.34 46.76 37.59 0.03 0.23 1.34 97.81 0.29	28-Mt-1 9. 88 1. 35 0. 02 0. 75 47. 29 38. 81 0. 00 0. 43 0. 64 99. 17 0. 28	II 28-Mt-2 15.14 3.62 0.07 0.90 34.10 42.17 0.00 0.82 1.46 98.29 0.43		
样品点 TiO_2 Al_2O_3 Cr_2O_3 V_2O_3 Fe_2O_3 FeO NiO MnO MgO Total Ti^{4+} Al^{3+}	9-Mt-1 11. 24 5. 32 0. 02 0. 77 40. 84 38. 51 0. 00 0. 53 2. 05 99. 28 0. 31 0. 23	V 9-Mt-2 11. 06 2. 82 0. 02 0. 40 43. 57 39. 27 0. 01 0. 53 1. 05 98. 73 0. 31 0. 13	9-Mt-3 10. 84 3. 79 0. 24 0. 72 43. 45 38. 39 0. 00 0. 51 1. 83 99. 77 0. 30 0. 16	13-Mt-1 12.01 1.44 0.02 0.00 43.96 40.42 0.01 0.52 0.57 98.94 0.34 0.06	IV 13-Mt-2 12. 99 2. 63 0. 00 0. 31 40. 10 41. 72 0. 00 0. 60 0. 36 98. 70 0. 37 0. 12	13-Mt-3 6.31 1.03 0.02 0.28 53.70 38.86 0.00 0.32 0.11 100.63 0.18 0.05	中部帯 18-Mt-1 11.91 3.01 0.01 0.23 42.99 38.77 0.00 0.45 1.36 98.74 0.34 0.13	IV 18-Mt-2 10. 64 3. 39 0. 02 0. 14 44. 70 38. 65 0. 00 0. 40 1. 49 99. 44 0. 30 0. 15	18-Mt-3 11. 89 3. 59 0. 02 0. 58 42. 06 39. 91 0. 00 0. 45 1. 55 100. 03 0. 33 0. 16	I 27-Mt-1 10. 80 0. 97 0. 02 0. 67 46. 37 37. 85 0. 02 0. 22 1. 79 98. 72 0. 31 0. 04	I 27-Mt-2 10.00 1.52 0.00 0.34 46.76 37.59 0.03 0.23 1.34 97.81 0.29 0.07	28-Mt-1 9. 88 1. 35 0. 02 0. 75 47. 29 38. 81 0. 00 0. 43 0. 64 99. 17 0. 28 0. 06	II 28-Mt-2 15.14 3.62 0.07 0.90 34.10 42.17 0.00 0.82 1.46 98.29 0.43 0.16		
样品点 TiO ₂ Al_2O_3 Cr_2O_3 V_2O_3 FeO NiO MnO MgO Total Ti ⁴⁺ Al^{3+} Cr^{3+}	9-Mt-1 11. 24 5. 32 0. 02 0. 77 40. 84 38. 51 0. 00 0. 53 2. 05 99. 28 0. 31 0. 23 0. 00	V 9-Mt-2 11. 06 2. 82 0. 02 0. 40 43. 57 39. 27 0. 01 0. 53 1. 05 98. 73 0. 31 0. 13 0. 00	9-Mt-3 10. 84 3. 79 0. 24 0. 72 43. 45 38. 39 0. 00 0. 51 1. 83 99. 77 0. 30 0. 16 0. 01	13-Mt-1 12.01 1.44 0.02 0.00 43.96 40.42 0.01 0.52 0.57 98.94 0.34 0.06 0.00	IV 13-Mt-2 12. 99 2. 63 0. 00 0. 31 40. 10 41. 72 0. 00 0. 60 0. 36 98. 70 0. 37 0. 12 0. 00	13-Mt-3 6. 31 1. 03 0. 02 0. 28 53. 70 38. 86 0. 00 0. 32 0. 11 100. 63 0. 18 0. 05 0. 00	中部帯 18-Mt-1 11.91 3.01 0.01 0.23 42.99 38.77 0.00 0.45 1.36 98.74 0.34 0.34 0.13 0.00	IV 18-Mt-2 10. 64 3. 39 0. 02 0. 14 44. 70 38. 65 0. 00 0. 40 1. 49 99. 44 0. 30 0. 15 0. 00	18-Mt-3 11. 89 3. 59 0. 02 0. 58 42. 06 39. 91 0. 00 0. 45 1. 55 100. 03 0. 33 0. 16 0. 00	I 27-Mt-1 10. 80 0. 97 0. 02 0. 67 46. 37 37. 85 0. 02 0. 22 1. 79 98. 72 0. 31 0. 04 0. 00	I 27-Mt-2 10.00 1.52 0.00 0.34 46.76 37.59 0.03 0.23 1.34 97.81 0.29 0.07 0.00	28-Mt-1 9.88 1.35 0.02 0.75 47.29 38.81 0.00 0.43 0.64 99.17 0.28 0.06 0.00	II 28-Mt-2 15. 14 3. 62 0. 07 0. 90 34. 10 42. 17 0. 00 0. 82 1. 46 98. 29 0. 43 0. 16 0. 00		
样品点 TiO ₂ Al_2O_3 Cr_2O_3 V_2O_3 FeO NiO MnO MgO Total Ti^{4+} Al^{3+} Cr^{3+} V^{5+}	9-Mt-1 11. 24 5. 32 0. 02 0. 77 40. 84 38. 51 0. 00 0. 53 2. 05 99. 28 0. 31 0. 23 0. 00 0. 02	V 9-Mt-2 11. 06 2. 82 0. 02 0. 40 43. 57 39. 27 0. 01 0. 53 1. 05 98. 73 0. 31 0. 13 0. 00 0. 01	9-Mt-3 10. 84 3. 79 0. 24 0. 72 43. 45 38. 39 0. 00 0. 51 1. 83 99. 77 0. 30 0. 16 0. 01 0. 02	13-Mt-1 12.01 1.44 0.02 0.00 43.96 40.42 0.01 0.52 0.57 98.94 0.34 0.06 0.00	IV 13-Mt-2 12. 99 2. 63 0. 00 0. 31 40. 10 41. 72 0. 00 0. 60 0. 36 98. 70 0. 37 0. 12 0. 00 0. 01	13-Mt-3 6. 31 1. 03 0. 02 0. 28 53. 70 38. 86 0. 00 0. 32 0. 11 100. 63 0. 18 0. 05 0. 00 0. 01	中部帯 18-Mt-1 11.91 3.01 0.01 0.23 42.99 38.77 0.00 0.45 1.36 98.74 0.34 0.13 0.00 0.01	IV 18-Mt-2 10. 64 3. 39 0. 02 0. 14 44. 70 38. 65 0. 00 0. 40 1. 49 99. 44 0. 30 0. 15 0. 00 0. 00 0. 00	18-Mt-3 11. 89 3. 59 0. 02 0. 58 42. 06 39. 91 0. 00 0. 45 1. 55 100. 03 0. 33 0. 16 0. 00 0. 02	I 27-Mt-1 10. 80 0. 97 0. 02 0. 67 46. 37 37. 85 0. 02 0. 22 1. 79 98. 72 0. 31 0. 04 0. 00 0. 02	I 27-Mt-2 10.00 1.52 0.00 0.34 46.76 37.59 0.03 0.23 1.34 97.81 0.29 0.07 0.00 0.01	28-Mt-1 9.88 1.35 0.02 0.75 47.29 38.81 0.00 0.43 0.64 99.17 0.28 0.06 0.00 0.02	II 28-Mt-2 15. 14 3. 62 0. 07 0. 90 34. 10 42. 17 0. 00 0. 82 1. 46 98. 29 0. 43 0. 16 0. 00 0. 03		
样品点 TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ Fe ₂ O ₃ FeO NiO MnO MgO Total Ti ⁴⁺ Al ³⁺ Cr ³⁺ V ⁵⁺ Fe ³⁺	9-Mt-1 11. 24 5. 32 0. 02 0. 77 40. 84 38. 51 0. 00 0. 53 2. 05 99. 28 0. 31 0. 23 0. 00 0. 02 1. 13	V 9-Mt-2 11.06 2.82 0.02 0.40 43.57 39.27 0.01 0.53 1.05 98.73 0.31 0.13 0.00 0.01 1.24	9-Mt-3 10. 84 3. 79 0. 24 0. 72 43. 45 38. 39 0. 00 0. 51 1. 83 99. 77 0. 30 0. 16 0. 01 0. 02 1. 21	13-Mt-1 12.01 1.44 0.02 0.00 43.96 40.42 0.01 0.52 0.57 98.94 0.34 0.06 0.00 1.26	IV 13-Mt-2 12. 99 2. 63 0. 00 0. 31 40. 10 41. 72 0. 00 0. 60 0. 36 98. 70 0. 37 0. 12 0. 00 0. 01 1. 14	13-Mt-3 6. 31 1. 03 0. 02 0. 28 53. 70 38. 86 0. 00 0. 32 0. 11 100. 63 0. 18 0. 05 0. 00 0. 01 1. 52	中部帯 18-Mt-1 11.91 3.01 0.01 0.23 42.99 38.77 0.00 0.45 1.36 98.74 0.34 0.34 0.13 0.00 0.01 1.21	IV 18-Mt-2 10. 64 3. 39 0. 02 0. 14 44. 70 38. 65 0. 00 0. 40 1. 49 99. 44 0. 30 0. 15 0. 00 0. 00 1. 25	18-Mt-3 11. 89 3. 59 0. 02 0. 58 42. 06 39. 91 0. 00 0. 45 1. 55 100. 03 0. 33 0. 16 0. 00 0. 02 1. 17	I 27-Mt-1 10. 80 0. 97 0. 02 0. 67 46. 37 37. 85 0. 02 0. 22 1. 79 98. 72 0. 31 0. 04 0. 00 0. 02 1. 32	I 27-Mt-2 10.00 1.52 0.00 0.34 46.76 37.59 0.03 0.23 1.34 97.81 0.29 0.07 0.00 0.135	28-Mt-1 9.88 1.35 0.02 0.75 47.29 38.81 0.00 0.43 0.64 99.17 0.28 0.06 0.00 0.02 1.35	II 28-Mt-2 15.14 3.62 0.07 0.90 34.10 42.17 0.00 0.82 1.46 98.29 0.43 0.16 0.00 0.33 0.96		
样品点 TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ Fe ₂ O ₃ FeO NiO MnO MgO Total Ti ⁴ + Al ³ + Cr ³ + V ⁵ + Fe ³ + Fe ² +	9-Mt-1 11. 24 5. 32 0. 02 0. 77 40. 84 38. 51 0. 00 0. 53 2. 05 99. 28 0. 31 0. 23 0. 00 0. 02 1. 13 1. 18	V 9-Mt-2 11.06 2.82 0.02 0.40 43.57 39.27 0.01 0.53 1.05 98.73 0.31 0.13 0.00 0.01 1.24 1.24	9-Mt-3 10. 84 3. 79 0. 24 0. 72 43. 45 38. 39 0. 00 0. 51 1. 83 99. 77 0. 30 0. 16 0. 01 0. 02 1. 21 1. 18	13-Mt-1 12.01 1.44 0.02 0.00 43.96 40.42 0.01 0.52 0.57 98.94 0.34 0.06 0.00 1.26 1.28	IV 13-Mt-2 12.99 2.63 0.00 0.31 40.10 41.72 0.00 0.60 0.36 98.70 0.37 0.12 0.00 0.01 1.14 1.32	13-Mt-3 6.31 1.03 0.02 0.28 53.70 38.86 0.00 0.32 0.11 100.63 0.18 0.05 0.00 1.52 1.23	中部帯 18-Mt-1 11.91 3.01 0.01 0.23 42.99 38.77 0.00 0.45 1.36 98.74 0.34 0.13 0.00 0.01 1.21 1.22	IV 18-Mt-2 10. 64 3. 39 0. 02 0. 14 44. 70 38. 65 0. 00 0. 40 1. 49 99. 44 0. 30 0. 15 0. 00 0. 00 1. 25 1. 20	18-Mt-3 11. 89 3. 59 0. 02 0. 58 42. 06 39. 91 0. 00 0. 45 1. 55 100. 03 0. 33 0. 16 0. 00 0. 02 1. 17 1. 23	I 27-Mt-1 10. 80 0. 97 0. 02 0. 67 46. 37 37. 85 0. 02 0. 22 1. 79 98. 72 0. 31 0. 04 0. 00 0. 02 1. 32 1. 20	I 27-Mt-2 10.00 1.52 0.00 0.34 46.76 37.59 0.03 0.23 1.34 97.81 0.29 0.07 0.00 0.01 1.35 1.20	28-Mt-1 9. 88 1. 35 0. 02 0. 75 47. 29 38. 81 0. 00 0. 43 0. 64 99. 17 0. 28 0. 06 0. 00 0. 02 1. 35 1. 23	II 28-Mt-2 15.14 3.62 0.07 0.90 34.10 42.17 0.00 0.82 1.46 98.29 0.43 0.16 0.003 0.96 1.32		
样品点 TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ Fe ₂ O ₃ FeO NiO MnO MgO Total Ti ⁴⁺ Al ³⁺ Cr ³⁺ V ⁵⁺ Fe ³⁺ Fe ²⁺ Ni ²⁺	9-Mt-1 11. 24 5. 32 0. 02 0. 77 40. 84 38. 51 0. 00 0. 53 2. 05 99. 28 0. 31 0. 23 0. 00 0. 02 1. 13 1. 18 0. 00	V 9-Mt-2 11.06 2.82 0.02 0.40 43.57 39.27 0.01 0.53 1.05 98.73 0.31 0.13 0.00 0.01 1.24 1.24 0.00	9-Mt-3 10. 84 3. 79 0. 24 0. 72 43. 45 38. 39 0. 00 0. 51 1. 83 99. 77 0. 30 0. 16 0. 01 0. 02 1. 21 1. 18 0. 00	13-Mt-1 12.01 1.44 0.02 0.00 43.96 40.42 0.01 0.52 0.57 98.94 0.34 0.06 0.00 1.26 1.28 0.00	IV 13-Mt-2 12.99 2.63 0.00 0.31 40.10 41.72 0.00 0.60 0.36 98.70 0.37 0.12 0.00 0.01 1.14 1.32 0.00	13-Mt-3 6.31 1.03 0.02 0.28 53.70 38.86 0.00 0.32 0.11 100.63 0.18 0.05 0.00 1.52 1.23 0.00	中部帯 18-Mt-1 11.91 3.01 0.01 0.23 42.99 38.77 0.00 0.45 1.36 98.74 0.34 0.13 0.00 0.01 1.21 1.22 0.00	IV 18-Mt-2 10. 64 3. 39 0. 02 0. 14 44. 70 38. 65 0. 00 0. 40 1. 49 99. 44 0. 30 0. 15 0. 00 0. 00 1. 25 1. 20 0. 00	18-Mt-3 11. 89 3. 59 0. 02 0. 58 42. 06 39. 91 0. 00 0. 45 1. 55 100. 03 0. 33 0. 16 0. 00 0. 02 1. 17 1. 23 0. 00	I 27-Mt-1 10. 80 0. 97 0. 02 0. 67 46. 37 37. 85 0. 02 0. 22 1. 79 98. 72 0. 31 0. 04 0. 00 0. 02 1. 32 1. 20 0. 00	I 27-Mt-2 10.00 1.52 0.00 0.34 46.76 37.59 0.03 0.23 1.34 97.81 0.29 0.07 0.00 0.11 35 1.20 0.00	28-Mt-1 9.88 1.35 0.02 0.75 47.29 38.81 0.00 0.43 0.64 99.17 0.28 0.06 0.00 0.35 1.23 0.00	II 28-Mt-2 15.14 3.62 0.07 0.90 34.10 42.17 0.00 0.82 1.46 98.29 0.43 0.16 0.00 0.03 0.96 1.32 0.00		
样品点 TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ V ₂ O ₃ FeO NiO MnO MgO Total Ti ⁴⁺ Al ³⁺ Cr ³⁺ V ⁵⁺ Fe ³⁺ Fe ²⁺ Ni ²⁺ Mn ²⁺	9-Mt-1 11. 24 5. 32 0. 02 0. 77 40. 84 38. 51 0. 00 0. 53 2. 05 99. 28 0. 31 0. 23 0. 00 0. 02 1. 13 1. 18 0. 00 0. 02	V 9-Mt-2 11. 06 2. 82 0. 02 0. 40 43. 57 39. 27 0. 01 0. 53 1. 05 98. 73 0. 31 0. 13 0. 00 0. 01 1. 24 1. 24 1. 24 0. 00 0. 02	9-Mt-3 10. 84 3. 79 0. 24 0. 72 43. 45 38. 39 0. 00 0. 51 1. 83 99. 77 0. 30 0. 16 0. 01 0. 02 1. 21 1. 18 0. 00 0. 02	13-Mt-1 12.01 1.44 0.02 0.00 43.96 40.42 0.01 0.52 0.57 98.94 0.34 0.06 0.00 1.26 1.28 0.00 0.02	IV 13-Mt-2 12. 99 2. 63 0. 00 0. 31 40. 10 41. 72 0. 00 0. 60 0. 36 98. 70 0. 37 0. 12 0. 00 0. 01 1. 14 1. 32 0. 00 0. 02	13-Mt-3 6. 31 1. 03 0. 02 0. 28 53. 70 38. 86 0. 00 0. 32 0. 11 100. 63 0. 18 0. 05 0. 00 0. 01 1. 52 1. 23 0. 00 0. 01	中部帯 18-Mt-1 11.91 3.01 0.01 0.23 42.99 38.77 0.00 0.45 1.36 98.74 0.34 0.13 0.00 0.01 1.21 1.22 0.00 0.01	IV 18-Mt-2 10. 64 3. 39 0. 02 0. 14 44. 70 38. 65 0. 00 0. 40 1. 49 99. 44 0. 30 0. 15 0. 00 0. 00 1. 25 1. 20 0. 00 0. 01	18-Mt-3 11. 89 3. 59 0. 02 0. 58 42. 06 39. 91 0. 00 0. 45 1. 55 100. 03 0. 33 0. 16 0. 00 0. 02 1. 17 1. 23 0. 00 0. 01	I 27-Mt-1 10. 80 0. 97 0. 02 0. 67 46. 37 37. 85 0. 02 0. 22 1. 79 98. 72 0. 31 0. 04 0. 00 0. 02 1. 32 1. 20 0. 00 0. 01	I 27-Mt-2 10.00 1.52 0.00 0.34 46.76 37.59 0.03 0.23 1.34 97.81 0.29 0.07 0.00 0.135 1.20 0.00 0.01	28-Mt-1 9.88 1.35 0.02 0.75 47.29 38.81 0.00 0.43 0.64 99.17 0.28 0.06 0.00 0.35 1.35 0.00 0.02	II 28-Mt-2 15.14 3.62 0.07 0.90 34.10 42.17 0.00 0.82 1.46 98.29 0.43 0.16 0.00 0.03 0.96 1.32 0.00 0.03		
样品点 TiO ₂ Al_2O_3 Cr_2O_3 V_2O_3 FeO NiO MnO MgO Total Ti ⁴⁺ Al^{3+} Cr^{3+} V^{5+} Fe ³⁺ Fe ²⁺ Ni ²⁺ Mn ²⁺ Mg ²⁺	9-Mt-1 11. 24 5. 32 0. 02 0. 77 40. 84 38. 51 0. 00 0. 53 2. 05 99. 28 0. 31 0. 23 0. 00 0. 02 1. 13 1. 18 0. 00 0. 02 0. 11	V 9-Mt-2 11. 06 2. 82 0. 02 0. 40 43. 57 39. 27 0. 01 0. 53 1. 05 98. 73 0. 31 0. 13 0. 00 0. 01 1. 24 1. 24 0. 00 0. 02 0. 06	9-Mt-3 10. 84 3. 79 0. 24 0. 72 43. 45 38. 39 0. 00 0. 51 1. 83 99. 77 0. 30 0. 16 0. 01 0. 02 1. 21 1. 18 0. 00 0. 02 0. 10	13-Mt-1 12.01 1.44 0.02 0.00 43.96 40.42 0.01 0.52 0.57 98.94 0.34 0.00 1.26 1.28 0.00 0.02 0.03	IV 13-Mt-2 12. 99 2. 63 0. 00 0. 31 40. 10 41. 72 0. 00 0. 60 0. 36 98. 70 0. 37 0. 12 0. 00 0. 01 1. 14 1. 32 0. 00 0. 02 0. 02 0. 02 0. 02	13-Mt-3 6. 31 1. 03 0. 02 0. 28 53. 70 38. 86 0. 00 0. 32 0. 11 100. 63 0. 18 0. 05 0. 00 0. 01 1. 52 1. 23 0. 00 0. 01 0. 01 0. 01	中部帯 18-Mt-1 191 3.01 0.01 0.23 42.99 38.77 0.00 0.45 1.36 98.74 0.34 0.13 0.00 0.01 1.21 1.22 0.00 0.01 0.01 0.01 0.08	IV 18-Mt-2 10. 64 3. 39 0. 02 0. 14 44. 70 38. 65 0. 00 0. 40 1. 49 99. 44 0. 30 0. 15 0. 00 0. 00 1. 25 1. 20 0. 00 0. 01 0. 08	18-Mt-3 11. 89 3. 59 0. 02 0. 58 42. 06 39. 91 0. 00 0. 45 1. 55 100. 03 0. 33 0. 16 0. 00 0. 02 1. 17 1. 23 0. 00 0. 01 0. 09	I 27-Mt-1 10. 80 0. 97 0. 02 0. 67 46. 37 37. 85 0. 02 0. 22 1. 79 98. 72 0. 31 0. 04 0. 00 0. 02 1. 32 1. 20 0. 00 0. 01 0. 10	I 27-Mt-2 10.00 1.52 0.00 0.34 46.76 37.59 0.03 0.23 1.34 97.81 0.29 0.07 0.00 0.135 1.20 0.00 0.01 0.03	28-Mt-1 9.88 1.35 0.02 0.75 47.29 38.81 0.00 0.43 0.64 99.17 0.28 0.06 0.00 0.21.35 1.23 0.00 0.01	II 28-Mt-2 15.14 3.62 0.07 0.90 34.10 42.17 0.00 0.82 1.46 98.29 0.43 0.16 0.00 0.33 0.96 1.32 0.00 0.33 0.96		

续表	1
ーディレ	

Continued Table 1

样品号		ST11-39			ST11-40			ST11-42		ST11-46				
深度(m)		756			765			804			871			
 岩性		块状矿石						橄榄辉长岩	<u> </u>					
岩相带														
旋回														
样品点	39-Mt-1	39-Mt-2	39-Mt-3	40-Mt-1	40-Mt-2	40-Mt-3	42-Mt-I	42-Mt-2	42-Mt-3	46-Mt-1	46-Mt-2	46-Mt-3		
TiO ₂	11.93	13.58	12.82	5.91	8.90	7.98	5.47	5.38	3.69	8.75	10.76	2.24		
Al_2O_3	0.07	0.83	1.00	1.78	2.53	2.78	2.49	0.81	1.85	0.73	2.49	0.64		
Cr_2O_3	0.03	0.01	0.04	0.02	0.04	0.04	0.09	0.08	0.04	0.29	0.35	0.43		
$V_{2}O_{3}$	0.46	0.89	1.05	0.95	0.92	0.96	1.06	1.19	1.07	0.50	0.89	1.12		
$\mathrm{Fe}_2\mathrm{O}_3$	45.33	40. 99	42.38	55.61	49.27	49.93	54.90	56.77	60.20	49.95	44.94	62.65		
FeO	41.78	43.59	43.05	35.90	39.40	38.35	35.41	35.06	33. 55	38.12	39.53	33.13		
NiO	0.00	0.03	0.00	0.07	0.06	0.04	0.03	0.08	0.07	0.03	0.01	0.02		
MnO	0.27	0.29	0.30	0.13	0.22	0.21	0.12	0.19	0.08	0.24	0.39	0.08		
MgO	0.05	0.00	0.02	0.71	0.41	0.38	0.72	0.60	1.05	0.40	1.12	0.10		
Total	99. 92	100.23	100.65	101.08	101.75	100.68	100.29	100.14	101.60	99.01	100.47	100.40		
Ti ⁴ +	0.34	0.39	0.36	0.17	0.25	0.22	0.15	0.15	0.10	0.25	0.30	0.06		
Al ³ +	0.00	0.04	0.04	0.08	0.11	0.12	0.11	0.04	0.08	0.03	0.11	0.03		
Cr ^{3 +}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01		
V ^{5 +}	0.01	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.03	0.02	0.03	0.03		
Fe ^{3 +}	1.30	1.16	1.20	1.56	1.37	1.40	1.55	1.62	1.68	1.44	1.25	1.80		
Fe ^{2 +}	1.33	1.38	1.35	1.12	1.22	1.19	1.11	1.11	1.04	1.22	1.23	1.06		
Ni ^{2 +}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Mn ^{2 +}	0.01	0.01	0.01	0.00	0.01	0.01	0.00	0.01	0.00	0.01	0.01	0.00		
Mg^{2} +	0.00	0.00	0.00	0.04	0.02	0.02	0.04	0.03	0.06	0.02	0.06	0.01		
Total	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00		

图 2 太和岩体地质简图

Fig. 2 Simplified geological map of the Taihe intrusion , SW China

(图 3c)。(磷灰石) 辉长岩主要含有 30% ~ 50% 斜长石、 30% ~ 40% 单斜辉石、5% ~ 10% 的 Fe-Ti 氧化物、小于 8% 的 磷灰石和角闪石。值得注意的是旋回 VI 的底部含有大量的 角闪石(约 20% 左右)。另外,中部岩相带样品中半自形的 橄榄石常包裹一些他形的 Fe-Ti 氧化物(图 3d)。上部岩相 带主要岩石类型为磷灰石辉长岩,主要组成为 50% ~ 70% 斜 长石、15% ~ 35% 单斜辉石、1% ~ 5% 的钛铁矿、2% ~ 5% 磁 铁矿、5% ~ 8% 的磷灰石和角闪石。不规则的晶间角闪石主 要分布在大颗粒的硅酸盐矿物和 Fe-Ti 氧化物边缘(图 3b)。

4 样品及其分析方法

本次研究的样品主要来自勘探钻孔 ZK1707。样品分析 之前,首先选取样品新鲜面制作成岩石切片,然后在偏光显 微镜下观察矿物的组成、结构、含量等特征,并选取具有代表 性的矿物颗粒进行电子探针分析。磁铁矿和钛铁矿以及橄 榄石中磁铁矿成分分析工作是在中国科学院地球化学研究 所矿床地球化学国家重点实验室的 EPMA-1600 型电子探针 实验室完成。分析条件为:加速电压 25kV,电流 10nA,分析 束斑直径为 10 μ m。分析精度为 0.01%,误差范围小于 2%。 磁铁矿与钛铁矿中 Fe₂O₃ 与 FeO 含量根据其分子式正负电 价平衡法则计算。磁铁矿和钛铁矿成分以及包裹在橄榄石 中的磁铁矿成分分别见表 1、表 2、表 3。

表 2 太和岩体钛铁矿主要氧化物组成(wt%)

Table 2 Analyses of ilmenite from the Taihe intrusion (wt%)

样品号	ST11-58 ST11-56					ST11	-51	S	Г11-48		ST11-06 323				
深度(m)		81 113				17	3		216						
 岩性	磷灰	石辉长岩	G	^粦 灰石辉长	 :岩	磷灰石》	辉石岩	磷灰		磷灰石磁铁辉石岩					
岩相带					上部有	带				·					
旋回						-						VI			
	58-Ilm-I	58-Ilm	-2 56-1	lm-1 56	-Ilm-2	51-Ilm-I	51-Ilm-2	48-Ilm-I	48-Iln	n-2 6-1	lm-I 6	-Ilm-2	6-Ilm-3		
 TiO ₂	48.93	48.63	3 48.	53 5	0. 04	49.35	49.89	49.41	49.3	4 50	. 07	51.19	50.29		
Al_2O_3	0.03	0.03	0.	04 (0.03	0.01	0.04	0.02	0. 02	2 0.	01	0.05	0.04		
$Cr_2 O_2$	0.00	0.00	0	00 0	01	0.00	0.00	0.04	0.0	3 0	00	0.02	0.01		
Fe ₂ O ₂	5 84	6.02	7	40 5	5 90	5 30	4 23	4 91	5 4	7 3	06	2 24	3 74		
F ₂ O ₃	42 05	41.80) 41	37 1	2 70	12 30	42.86	42 70	42.5	$\frac{7}{2}$ $\frac{3}{41}$	42	13 28	40.20		
NiO	42.05	41.00	, 41.	00 (2.70	42.37	42.00	42.77		2 + 1	. +2 ·	0.00	40.29		
MO	0.01	0.00	0.	00 (25 (). 05). 05	1.00	1.00	0.01	1.00	0.	02	0.00	0.00		
MnO	1.92	1.90	2.	25 2 01 (2. 25	1.99	1.90	1.01	1. 8.	2 2.	11	2.43	2.12		
MgO	0.02	0.02	0.	01 (0.02	0.00	0.03	0.02	0.02	2 0.	82	0.18	1.5/		
Total	98.79	98.39	99.	60 10	0.96	99.05	99.02	98.82	99.2	2 97	. 52	99.38	98.04		
Ti ⁴ ⁺	0.97	0.97	0.	96 (). 97	0.97	0. 98	0. 98	0.9	7 0.	98	0. 99	0.98		
Al ³ +	0.00	0.00	0.	00 0	0. 00	0.00	0.00	0.00	0.00) 0.	00	0.00	0.00		
Cr ³⁺	0.00	0.00	0.	00 0	0. 00	0.00	0.00	0.00	0.00) 0.	00	0.00	0.00		
Fe ³⁺	0.06	0.06	0.	07 0). 06	0.05	0.04	0.05	0.05	5 0.	03	0.02	0.04		
Fe ²⁺	0.93	0.93	0.	91 (). 92	0.93	0.93	0.94	0. 93	3 0.	91	0.93	0.87		
Ni ^{2 +}	0.00	0.00	0.	00 0). 00	0.00	0.00	0.00	0.00	0.	00	0.00	0.00		
Mn ^{2 +}	0.04	0.04	0.	05 0). 05	0.04	0.04	0.04	0.04	4 0.	05	0.05	0.05		
Mg ^{2 +}	0.00	0.00	0.	00 0	0. 00	0.00	0.00	0.00	0.00	0.	03	0.01	0.06		
Total	2.00	2.00	2.	00 2	2. 00	2.00	2.00	2.00	2.00) 2.	00	2.00	2.00		
样品号		ST11-09			ST11-13			ST11-18		STI	1-27	STI	1-28		
深度(m)		381			443	43		517		6	53	6	65		
 岩性	磷灰	石磁铁辉	 石岩	磷友	石磁铁橄	如辉岩	磷灰	石磁铁橄	辉岩	磷灰石磁		磷灰石磁			
岩相带							中部带								
旋回		V			IV			IV			II		II		
样品点	9-Ilm-I	9-Ilm-2	9-Ilm-3	13-Ilm-I	13-Ilm-2	13-Ilm-3	18-Ilm-I	18-Ilm-2	18-Ilm-3	27-Ilm-I	27-Ilm-2	28-Ilm-I	28-Ilm-2		
TiO ₂	52.76	50.76	51.21	50.74	50.50	51.07	52.22	51.72	52.14	53.18	52.87	51.30	50.33		
Al_2O_3	0.02	0.04	0.07	0.00	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.03	0.02		
Cr_2O_3	0.01	0.00	0.05	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.02	0.00		
Fe ₂ O ₃	1.53	4.59	3.11	3.00	4.96	4.05	3.08	4.39	2.97	1.95	2.01	4.63	4.12		
FeO	39.01	37.38	38.43	40.82	38.97	39.74	38.51	37.47	39.21	37.69	38.36	39,65	40.17		
NiO	0.00	0.00	0.00	0.01	0.01	0.00	0.02	0.00	0.01	0.00	0.01	0.00	0.00		
MnO	1.06	1.00	0.95	1,66	0, 98	1.09	1, 16	1.09	1.21	0, 81	0, 91	0, 91	1.09		
MgO	4 11	4.05	3 72	1.75	3.05	2.84	4.06	4.43	3.60	5.20	4 61	3 11	2.24		
Total	98 50	97.82	97 55	97 98	98 48	98 80	99.06	99 09	99 15	98 83	98 79	99 65	97 97		
T;4 +	0.00	0.98	0.98	0.00	0.98	0.98	0.00	0.98	0.00	0.00	0.00	0.98	0.98		
11 A 13 +	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
AI C ³⁺	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Ur E 3+	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
re" '	0.01	0.04	0.03	0.03	0.05	0.04	0.03	0.04	0.03	0.02	0.02	0.04	0.04		
re ²	0.82	0.80	0.82	0.88	0.84	0.85	0.81	0.79	0.82	0.78	0.80	0.84	0.87		
Ni ² ⁺	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Mn ² ⁺	0.02	0.02	0.02	0.04	0.02	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.02		
Mg ² +	0.15	0.16	0.14	0.07	0.12	0.11	0.15	0.17	0.14	0.19	0.17	0.12	0.09		
Total	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00		

续表 2

Continued Table 2

		ST1	1-39		ST11-40				ST11-42		ST11-46			
深度(m)		7:	56		765			804				871		
		块状	矿石											
							下部带							
旋回														
样品点	39-Ilm-I	39-Ilm-2	39-Ilm-3	39-Ilm-4	40-Ilm-I	40-Ilm-2	40-Ilm-3	42-Ilm-I	42-Ilm-2	42-Ilm-3	46-Ilm-I	46-Ilm-2	46-Ilm-3	
TiO ₂	50.80	49.57	52.50	51.93	51.77	51.33	51.43	50.56	50.06	51.21	51.00	51.35	50.88	
Al_2O_3	0.00	0.04	0.05	0.04	0.00	0.02	0.03	0.07	0.03	0.03	0.04	0.15	0.04	
Cr_2O_3	0.01	0.00	0.05	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.03	0.10	0.03	
Fe_2O_3	3.67	6.36	4.00	3.26	2.55	3.41	3.61	5.01	5.12	4.31	4.41	3. 98	4.35	
FeO	43.43	41.74	42.48	44.24	44.92	43.35	44.44	39.17	40.99	40.15	42.80	40.34	40.50	
NiO	0.02	0.00	0.00	0.02	0.02	0.01	0.00	0.03	0.03	0.00	0.00	0.03	0.01	
MnO	1.05	1.07	0.94	1.03	1.12	0.92	1.15	1.06	1.17	0.86	1.57	0.93	1.10	
MgO	0.67	0.99	2.12	0.79	0.29	1.05	0.38	2.91	1.58	2.82	0.84	2.72	2.32	
Total	99.66	99.77	102.14	101.31	100.67	100.11	101.05	98.82	98.98	99.39	100.69	99.61	99.21	
Ti ⁴ +	0.98	0.97	0.98	0.98	0.99	0.98	0.98	0.98	0.97	0.98	0.98	0.98	0.98	
Al ³ +	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Cr ^{3 +}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Fe ^{3 +}	0.04	0.06	0.04	0.03	0.02	0.03	0.03	0.05	0.05	0.04	0.04	0.04	0.04	
Fe ^{2 +}	0.93	0.91	0.88	0.93	0.95	0.92	0.94	0.84	0.89	0.85	0.91	0.85	0.87	
Ni ^{2 +}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mn ^{2 +}	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.03	0.02	0.02	
$Mg^{2 +}$	0.03	0.04	0.08	0.03	0.01	0.04	0.01	0.11	0.06	0.11	0.03	0.10	0.09	
Total	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	

表 3 太和岩体橄榄石中磁铁矿包裹体主要氧化物组成(wt%)

Table 3 $\,$ Analyses of magnetite inclusions in olivine from the Taihe intrusion (wt%)

样品号	ST11-08 ST11-		1-13	ST11-15		ST1	1-18	ST11-28			ST11-42		ST11-46					
深度(m)		363		44	43	4′	471 517		665			804		871				
岩性	磷灰石橄榄 辉长岩		磷灰 铁橄	石磁 辉岩	磷灰石磁 铁橄辉岩		磷灰石磁 铁橄辉岩		磷灰石磁 铁辉石岩			橄榄辉长岩		橄辉岩				
岩相带		中部带		中音	邬带			中部带					下言	部带	下部带			
旋回		V		1	/I	I	/Ι			II								
HH 다 노	8-Mt-	8-Mt-	8-Mt-	13-Mt-	13-Mt-	15-Mt-	15-Mt-	18-Mt-	18-Mt-	28-Mt-	- 28-Mt-	28-Mt-	42-Mt-	42-Mt-	46-Mt-	- 46-Mt-	46-Mt-	
作吅忌	Ol-I	0l-2	01 -3	01-1	0l-2	0l-1	01-2	0l-1	01-2	0l-1	01-2	01 -3	0l-1	0l-2	Ol-I	01-2	01 -3	
TiO_2	9.41	9.11	8.04	6.93	7.21	7.92	9.79	7.52	10.82	8.07	14.14	10.56	6.89	5.72	5.49	7.76	5.92	
Al_2O_3	3.52	1.90	4.20	2.75	2.55	1.45	3.27	1.02	3.11	1.15	3.35	2.95	0.44	1.06	1.60	3.10	1.57	
Cr_2O_3	0.02	0.03	0.03	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.00	0.01	0.07	0.08	0.21	0.16	0.16	
$V_2 O_3$	0.22	0.73	0.39	0.96	0.63	1.03	0.85	0.88	1.09	0.63	0.73	0.52	0.74	0.93	1.16	0.55	0.96	
$\operatorname{Fe}_2 \operatorname{O}_3$	47.3	49.5	49.9	51.8	50. 9	51.2	45.6	52.6	45.5	50.5	36.5	44.2	54.9	56.5	54.4	50.1	54.4	
FeO	37.8	38.5	36.9	36.9	36.6	37.0	38.4	37.1	39.7	37.0	42.0	39.1	36.7	36.0	34.7	36.7	35.5	
NiO	0.01	0.00	0.01	0.01	0.00	0.01	0.06	0.00	0.00	0.00	0.02	0.00	0.04	0.07	0.02	0.05	0.04	
MnO	0.35	0.38	0.35	0.27	0.45	0.30	0.63	0.28	0.39	0.31	0.62	0.43	0.30	0.24	0.20	0.21	0.22	
MgO	1.44	0.86	1.59	0.53	0.53	0.82	0.99	0.56	1.44	0.59	1.08	0.92	0.38	0.36	0.70	1.14	0.58	
Total	100.1	101.0	101.3	100. 2	98.9	99.7	99.6	99. 9	102.0	98.2	98.5	98.7	100.5	101.0	98.5	99.8	99.3	
Ti	0.26	0.25	0.22	0.20	0.21	0.22	0.28	0.21	0.30	0.23	0.40	0.30	0.20	0.16	0.16	0.22	0.17	
Al	0.15	0.08	0.18	0.12	0.11	0.06	0.14	0.05	0.13	0.05	0.15	0.13	0.02	0.05	0.07	0.14	0.07	
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	
V	0.01	0.02	0.01	0.03	0.02	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.03	0.04	0.02	0.03	
Fe	0.91	0.94	0.90	0.96	0.96	0.94	0.92	0.96	0.91	0.96	0.92	0.93	0.97	0.97	0.95	0.93	0.96	
Fe	1.58	1.64	1.59	1.65	1.66	1.68	1.56	1.71	1.54	1.69	1.43	1.55	1.76	1.76	1.73	1.62	1.73	
Ni	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mn	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	
Mg	0.08	0.05	0.09	0.03	0.03	0.05	0.06	0.03	0.08	0.03	0.06	0.05	0.02	0.02	0.04	0.06	0.03	
Total	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	

图 3 太和岩体矿物组合以及结构特征

(a) -下部岩相带的块状 Fe-Ti 氧化物矿石(单偏光);(b) -上部岩相带 Fe-Ti 氧化物和单斜辉石颗粒边缘的角闪石反应边(单偏光);(c) -中 部岩相带磷灰石磁铁辉石岩中大量的磁铁矿和钛铁矿与自形-半自形磷灰石堆积共存(背散射图像);(d) -磷灰石橄榄辉长岩中橄榄石包裹 他形的磁铁矿和钛铁矿颗粒(背散射图像).Ol-橄榄石; Cpx-单斜辉石; Pl-斜长石; Mt-磁铁矿; Ilm-钛铁矿; Ap-磷灰石; Hbl-角闪石 Fig. 3 Mineral compositions and textures in rocks of the Taihe intrusion

(a) -massive Fe-Ti oxide ore from the Lower Zone (plant-polarized light photo); (b) -hornblende almost exclusively occurs as reaction rims surrounding Fe-Ti oxides and clinopyroxene from the Upper Zone (plant-polarized light photo); (c) -abundant magnetite and ilmenite are coexisting to subhedral-euhedral apatite host in the apatite magnetite olivine clinopyroxenite from the Middle Zone (plant-polarized light photo); (d) -magnetite and ilmenite inclusions host in olivine from apatite olivine gabbro (Backscattered electron images). Ol-olivine; Cpx-clinopyroxene; Pl-plagioclase; Mtmagnetite; Ilm-ilmenite; Ap-apatite; Hbl-hornblende

5 分析结果

太和岩体不同岩相带磁铁矿成分变化较大,下部岩相带 磁铁矿的成分特征为: TiO_2 (2.24% ~ 13.58%)、FeO (33.13%~43.59%)、MnO(0.08%~0.39%)、MgO(0.00% ~1.12%)、 Fe_2O_3 (40.99%~62.65%)、 Al_2O_3 (0.07%~ 2.78%)。中部岩相带的磁铁矿含有高 TiO_2 (0.61%~ 15.14%)、FeO(30.96%~42.17%)、MnO(0.02%~ 0.82%)、MgO(0.02%~2.05%)、 Al_2O_3 (0.36%~5.32%), 而含有相对低 Fe_2O_3 (34.10%~66.29%)。而上部岩相带含 有最低 TiO_2 (0.10%~0.38%)、FeO(30.63%~31.84%)、 MnO(0.00%)、MgO(0.00%~0.07%)、 Al_2O_3 (0.02%~ 1.90%),但是却含有最高 Fe_2O_3 (65.92%~67.79%)。此 外 磁铁矿 TiO_2 分别与 FeO、MnO 和 MgO 都呈正相关关系, TiO₂ 与 Fe₂O₃ 呈负相关关系(图 4) 磁铁矿 MgO 与 Al₂O₃ 呈 正相关关系(图 5a)。钛铁矿成分在不同的岩相带中也变化 较大,下部岩相带钛铁矿含有相对高 TiO₂(49.57% ~ 52.50%)、FeO(39.17% ~ 44.92%)、MnO(0.86% ~ 1.57%)、MgO(0.29% ~2.91%)和相对低 Fe₂O₃(2.55% ~ 6.36%)。中部岩相带钛铁矿含有 TiO₂(50.07% ~ 53.18%)、FeO(37.38% ~ 43.28%)、MnO(0.81% ~ 2.43%)、MgO(0.18% ~5.20%)、Fe₂O₃(1.53% ~4.96%)。 上部岩相带钛铁矿显示低 TiO₂(48.53% ~ 50.04%)、FeO (41.37% ~ 42.86%)、MgO(0.00% ~ 0.03%),而含有高 MnO(1.61% ~2.25%)和 Fe₂O₃(4.23% ~7.40%)。钛铁矿 的 FeO 与 TiO₂ 和 MgO 呈负的相关关系,而 FeO 与 Fe₂O₃ 和 MnO 呈正的相关关系(图 6)。钛铁矿 MgO 与 MnO 显示负的 相关性(图 5b)。太和岩体橄榄石中磁铁矿 Cr₂O₃ 含量变化 范围较大,下部岩相带包裹在橄榄石中磁铁矿含有最高

图 4 太和岩体磁铁矿 TiO₂ 分别与 MgO、MnO、FeO、Fe₂O₃ 的相关图

攀枝花岩体磁铁矿数据源自 Song et al. (2013); 大庙 Fe-Ti-P 矿石磁铁矿数据源自 Chen et al. (2013). 图 5、图 6 的图例同此图 Fig. 4 Plots of TiO₂ versus MgO, MnO, FeO and Fe₂O₃ for magnetite in the Taihe intrusion, respectively The data of the Panzhihua intrusion are after Song et al. (2013); the data of the Damiao Fe-Ti-(P) ores are after Chen et al. (2013). Symbols in Fig. 5 and Fig. 6 are the same as in this figure

图 5 太和磁铁矿 MgO 和 Al_2O_3 的相关图(a) 和钛铁矿 MnO 与 MgO 的相关图(b)

Fig. 5 Plot of MgO versus Al₂O₃ for magnetite (a) and plot of MnO versus MgO for ilmenite (b) in the Taihe intrusion

 $Cr_2O_3(0.07\% \sim 0.21\%)$,然而中部岩相带包裹在橄榄石中的磁铁矿 $Cr_2O_3(0.00\% \sim 0.03\%)$ 显著降低。此外,这些包裹在橄榄石中的磁铁矿 Cr_2O_3 都与斜长石的 An 牌号与单斜辉石 Cr 含量呈正相关关系(图7)。

6 讨论

太和岩体最重要的特点是在中部岩相带厚层磁铁辉石 岩中出现大量的磷灰石(5%~12%)。这些磷灰石磁铁辉石 岩产于每个韵律旋回的底部,而旋回上部的磷灰石辉长岩中 Fe-Ti 氧化物的含量明显减少。由于大量的磷灰石和 Fe-Ti 氧化物出现 因此形成中部岩相带的母岩浆不仅富集 Fe 和 Ti ,也富集 P。然而 ,攀西地区同时期的几个 Fe-Ti 氧化物矿 床如攀枝花、白马、红格 ,其 Fe-Ti 氧化物矿石中却没有磷灰 石(攀西地质大队 ,1984)。此外 ,太和中部岩相带磷灰石磁 铁辉石岩的矿物组成与产于斜长岩套中的钛铁磷灰岩 (nelsonite)有相似之处。因此 ,下文主要是通过对比太和富 磷灰石 Fe-Ti 氧化物矿石与攀枝花不含磷灰石矿石及其大庙 钛铁磷灰岩中的磁铁矿和钛铁矿成分来探讨太和富磷灰石 矿层的成因约束。

6.1 太和中部岩相带磷灰石磁铁辉石岩成因 钛铁磷灰岩是一种由约 30% 磷灰石和约 60% Fe-Ti 氧

攀枝花岩体钛铁矿数据源自郑文勤等(2014);大庙 Fe-Ti-P 矿石钛铁矿数据源自 Chen et al. (2013)

Fig. 6 Plots of FeO versus MgO , MnO , TiO_2 and Fe_2O_3 for ilmenite in the Taihe intrusion , respectively

The data of the Panzhihua intrusion are after Zheng et al. (2014); the data of the Damiao are after Chen et al. (2013)

斜长石和单斜辉石数据源自于 She et al. (2014)

Fig. 7 Plots of Cr_2O_3 of magnetite inclusions hosted in olivine versus An of plagioclase and Cr content of clinopyroxene in the Taihe intrusion, respectively

The data of plagioclase and clinopyroxene compositions are after She $et \ al.$ (2014)

 部分异的结果(Chen et al., 2013)。宏观上看,这些Fe-Ti-P 矿石多呈脉状或者透镜状贯入斜长岩中,硅酸盐矿物被Fe-Ti氧化物和磷灰石切割和穿插,矿石普遍发育网状结构,矿 石的矿物组成和含量基本符合钛铁磷灰岩特征,这些特征强 烈暗示 Fe-Ti-P 矿石形成于不混溶的富 Fe-Ti-P 熔体 (Kolker, 1982)。然而,太和中部岩相带磷灰石磁铁辉石岩 含有 50% ~60% 硅酸盐矿物 5% ~12% 磷灰石 25% ~35% Fe-Ti 氧化物 这些磷灰石磁铁辉石岩在矿物含量上与典型 的钛铁磷灰岩存在明显的区别。此外,太和磷灰石磁铁辉石 岩中大量硅酸盐矿物与磷灰石和 Fe-Ti 氧化物颗粒都呈堆积 结构(图 3c) ,且矿层都位于每个旋回的下部,这暗示磷灰石 和 Fe-Ti 氧化物可能较早地从岩浆中饱和结晶并堆积下来。 太和磷灰石磁铁辉石岩中相对较高的斜长石 An(52~62) 牌 号和橄榄石 Fo(62~75) 牌号也表明磷灰石可以在相对较高 的温度下饱和结晶(She *et al.*, 2014)。

对比太和磷灰石磁铁辉石岩和大庙 Fe-Ti-P 矿石中磁铁 矿成分发现:大庙磁铁矿不仅显示较低的 TiO₂,而且 FeO、 MnO、MgO 也较低 而 Fe₂O₃ 较高(图 4),这可能是由于不混 溶的富 Fe-Ti-P 熔体形成于岩浆演化的晚期 岩浆中大量含 Fe^{2+} 和 Mg^{2+} 硅酸盐矿物分离结晶(如橄榄石和单斜辉石)导 致分离出的 Fe-Ti-P 熔体富集 Fe^{3+} 和亏损 Mg。大庙的斜长 石 An(34.3~51.3) 牌号和橄榄石 Fo(22.9~17.9) 牌号也暗 示着不混溶的 Fe-Ti-P 熔体可能是从高度演化的岩浆中分离 出来。这与 Chen et al. (2013) 估算的母岩浆相对亏损 MnO (0.13%)和 MgO(1.07%)也是一致的。然而,太和磷灰石 磁铁辉石岩的磁铁矿则显示相对较高的 TiO_2 、FeO、MnO、 MgO 而且这些元素的含量与攀枝花岩体变化趋势一致(图 4) 暗示太和磁铁矿饱和机制与攀枝花磁铁矿形成机制可能 是相似的。早期研究结果显示攀枝花的主要 Fe-Ti 氧化物矿 层位于岩体下部,Fe-Ti氧化物结晶早于硅酸盐矿物,说明 Fe-Ti 氧化物结晶发生于岩浆分离结晶的早期阶段(Pang et al., 2008a; 张晓琪等, 2011; Song et al., 2013)。攀枝花岩 体下部岩相带的橄榄石包裹大量 Fe-Ti 氧化物也暗示着磁铁 矿和钛铁矿是早期的结晶相(Pang et al., 2008b)。太和中 部岩相带和下部岩相带橄榄石中也发现大量 Fe-Ti 氧化物包 裹体(图 3d),这些现象与攀枝花岩体是相似的,暗示太和 Fe-Ti 氧化物在岩浆演化的早期阶段就开始成为液相线矿 物。此外,大庙磁铁矿Al₂O₃与 MgO 没有相关性,而太和磁 铁矿显示正的相关性(图 5a),这是由于 Al 和 Mg 都不相容 于磁铁矿,而大庙富 Fe-Ti-P 熔体中几乎没有硅酸盐矿物结 晶 因而对熔体中 Al 和 Mg 含量变化影响较小。而太和磁铁 矿伴随大量硅酸盐矿物从富 Fe-Ti-P 的玄武质岩浆中结晶出 来 导致岩浆中 Al 和 Mg 含量降低。

太和磷灰石磁铁辉石岩和大庙 Fe-Ti-P 矿石中的钛铁矿 成分也存在较大差异。大庙 Fe-Ti-P 矿石中钛铁矿 TiO₂ 与 FeO 显示正相关, Fe₂O₃ 与 FeO 显示负相关, 同时钛铁矿 MnO 与 FeO 较高和 MgO 较低(图 6),这些特征可能是由于 钛铁矿从成分变化较小的高度富 Fe-Ti-P 熔体中直接结晶导 致的。然而,太和磷灰石磁铁辉石岩的钛铁矿 FeO 分别与 TiO₂、MgO 显示负的相关性,而与 Fe₂O₃、MnO 则呈正相关, 而且太和钛铁矿成分在不同岩相带中变化较大(图 6),这些 特征暗示太和钛铁矿伴随硅酸盐矿物如橄榄石和单斜辉石 从玄武质岩浆中分离结晶。因此,磁铁矿和钛铁矿成分特征 暗示太和磷灰石磁铁辉石岩是从富 Fe-Ti-P 的玄武质岩浆中 结晶出来 然后通过重力分选和堆积形成富磷灰石 Fe-Ti 氧 化物矿层。

6.2 太和中部带富 Fe-Ti-P 母岩浆形成机制

太和中部岩相带厚层的磷灰石磁铁辉石岩全岩成分显 示高 P,O₅(1.5%~4.8%)和全 Fe₂O₃(24%~47%) 然而太 和下部岩相带的全岩 P₂O₅ 含量一般都低于 0.186% ,且在下 部岩相带的顶部形成不含磷灰石的 Fe-Ti 氧化物块状矿层 (She et al., 2014) 这些特征暗示形成中部岩相带和下部岩 相带的母岩浆存在显著差异。之前的研究暗示攀西地区赋 存 Fe-Ti 氧化物矿石的层状岩体的母岩浆可能是幔源的苦橄 质岩浆在深部岩浆房中经历橄榄石、单斜辉石、铬铁矿等矿 物分离结晶之后形成的富集 Fe 和 Ti 的残余岩浆。这些残余 岩浆再侵入到浅部岩浆房形成 Fe-Ti 氧化物矿床如攀枝花、 白马、红格岩体(Pang et al., 2008a; Song et al., 2013; Zhang et al., 2012; Bai et al., 2012)。She et al. (2014)提出太和 下部岩相带的母岩浆可能源自深部岩浆房富 Fe-Ti 岩浆 这 与攀西地区其他岩体的母岩浆来源是相似的。然而太和中 部岩相带富 Fe-Ti-P 母岩浆可能是由深部富 Fe-Ti 岩浆上升 侵入到中部岩浆房中混合了高度演化而富 P 的残余岩浆 ,最 后这种混合的富 Fe-Ti-P 岩浆再侵入到太和岩浆房中形成了 中部岩相带磷灰石磁铁辉石岩。在混合的过程中,中部岩浆 房中一些已结晶的低熔点矿物如磷灰石、磁铁矿、钛铁矿可 能被熔蚀吸收导致了混合岩浆更富集 Fe、Ti、P。

太和中部岩相带磁铁矿 MnO 比攀枝花高,但 MgO 却比 攀枝花低(图 4c, d),这可能是由于中部岩浆房的混合岩浆 熔融并重吸收了部分 Fe-Ti 氧化物 ,太和磁铁矿中低 MgO 暗 示这种混合岩浆比攀枝花母岩浆更演化。相似地,太和钛铁 矿比攀枝花含有更高 MnO 与更低 MgO 含量(图 6c, d)。由 于 Cr 强烈相容于磁铁矿和钛铁矿($D_{Mt/lig}^{Cr}$ = 50 ~ 230, $D_{Ilm/lig}^{Cr}$ =11~43; Klemme et al., 2006; Namur et al., 2010) 岩浆 中的 Cr₂O₃ 含量容易受到大量磁铁矿和钛铁矿分离结晶的 影响。然而,包裹在早期结晶的橄榄石中的磁铁矿成分能更 好地反映母岩浆中初始 Cr₂O₃ 含量。如图 7 所示,橄榄石中 的磁铁矿 Cr.O. 含量分别与斜长石的 An 牌号和单斜辉石的 Cr 含量都成正相关关系。下部岩相带的橄榄辉长岩和橄辉 岩中显示相对较高的斜长石 An 牌号(79~80) 和单斜辉石 Cr 含量(76×10⁻⁶~263×10⁻⁶)(She et al., 2014),同时橄 榄石中磁铁矿含有相对较高的 Cr₂O₃(0.07%~0.21%),这 暗示形成下部岩相带岩石的母岩浆演化程度相对较低。然 而,中部岩相带斜长石 An(52~62) 牌号和单斜辉石 Cr(1.3 ×10⁻⁶~10.5×10⁻⁶) 含量以及橄榄石中磁铁矿 Cr₂O₃(0% ~0.03%)含量相比下部岩相带都突然显著降低,这种明显 的成分间断可能是由于后期补充了演化程度更高的富 Fe-Ti-P岩浆导致的。这些特征印证了 She et al. (2014) 提出的中 部岩相带的母岩浆是由富 Fe-Ti 岩浆和富 P 残余岩浆混合而

图 8 太和岩体磁铁矿的 Ni/(Cr + Mn) 比值与 Ti + V 的 相关图

不同矿床类型范围根据 Dupuis and Beaudoin(2011). BIF = 条带 状铁建造; IOCG = 铁、铜、金矿床; Fe-Ti-V = 岩浆 Fe-Ti-V 氧化物 矿床. 攀枝花数据源自 Song *et al.* (2013)

Fig. 8 Plots of Ni/(Cu + Mn) ratios versus Ti + V for magnetite from the Taihe intrusion

These deposit types are after Dupuis and Beaudoin (2011). BIF = banded iron formation; IOCG = iron oxide-copper-gold deposits; Fe-Ti-V = magmatic Fe-Ti-V oxide deposits. The data of the Panzhihua intrusion is after Song *et al.* (2013)

形成。

6.3 太和上部岩相带磁铁矿成分的影响因素

太和岩体上部岩相带磷灰石辉长岩中的磁铁矿显示较低的 TiO₂、FeO、MnO、MgO、Al₂O₃ 含量(图 4、图 5),而钛铁 矿显示较低的 TiO₂、MgO 含量和较高的 MnO、Fe₂O₃ 含量(图 6),这些特征都显著区别于太和中部岩相带和下部岩相带样 品 暗示上部岩相带 Fe-Ti 氧化物的成分可能受到其它因素 的影响。

磁铁矿可以形成于多种地质过程,基于不同成因的磁铁 矿具有不同的成分特点。Dupuis and Beaudoin (2011)提出 磁铁矿 Ni/(Cr + Mn)与 Ti + V 判别图解来判定磁铁矿的成 因类型。一般地,岩浆磁铁矿含有相对较高 Ti + V 和变化 Ni/(Cr + Mn)而热液磁铁矿(如斑岩和砂卡岩)含有较低 Ti + V。如图 8 所示,虽然太和下部岩相带和中部岩相带大多 数磁铁矿与攀枝花磁铁矿一起投影在岩浆型磁铁矿区域,但 是太和中部岩相带磁铁矿 Ni/(Cr + Mn)比值明显低于下部 岩相带,这是因为中部岩相带的母岩浆是由源自深部的富 Fe-Ti 岩浆与中部岩浆房中富P残余岩浆混合而形成,这种 演化的混合岩浆相对亏损 Ni和 Cr(She et al., 2014)。太和 岩体上部岩相带和中部岩相带少数磁铁矿具有较低的 Ti + V,它们投影在斑岩型和 Kiruna 型磁铁矿区域。而 Kiruna 型 矿床中铁的氧化物主要是磁铁矿和赤铁矿,而缺失钛铁矿。 这种矿床一般与钙碱性-碱性火成岩和热液蚀变有关(Foose and McLelland , 1995; Barton and Johnson , 1996)。因此 太和 岩体上部岩相带磁铁矿和中部岩相带顶部的少量磁铁矿显 示热液特征可能与热液蚀变有关。值得注意的是太和岩体 上部岩相带和中部岩相带顶部旋回 VI 存在大量岩浆角闪石 (She et al., 2014) 这暗示母岩浆含有较高的水含量。另一 方面 Sr-Nd 同位素地球化学显示太和岩体地壳混染程度较 低 暗示这些水可能并不是来源于地壳混染(She et al., 2014)。因此 我们推断在岩浆演化后期 随着无水矿物分离 结晶程度增加 太和岩体上部富集大量岩浆热液 这些岩浆 水可能与早期结晶的矿物如硅酸盐矿物和 Fe-Ti 氧化物反 应 这与上部岩相带常见角闪石反应边是一致的(图 3b)。 这些累积的岩浆热液可能使得 Ti 从磁铁矿中扩散-迁移出来 形成钛铁矿。太和岩体上部岩相带和中部岩相带顶部的磁 铁矿较低 Ti+V 含量可能代表了早期结晶的磁铁矿颗粒受 到岩浆演化晚期累积岩浆热液改造。另一种可能的因素是 上部岩相带是中部岩相带残余岩浆结晶的产物,由于中部岩 相带 Fe-Ti 氧化物的大量结晶导致了残余岩浆中 Ti 含量降 低 同时也使得岩浆的氧逸度降低 因此 人名岩相带的磁铁 矿结晶可能比钛铁矿稍晚,使得磁铁矿的Ti含量较低。

7 结论

太和岩体中部岩相带磷灰石磁铁辉石岩的成因是 Fe-Ti 氧化物和磷灰石伴随单斜辉石较早地从富 Fe-Ti-P 玄武质岩 浆中结晶并通过重力分选和堆积而形成。而这种富 Fe-Ti-P 母岩浆的形成是由于源自深部岩浆房的富 Fe-Ti 岩浆上升侵 入到中部岩浆房中混合了高度演化富 P 残余岩浆 同时熔蚀 了部分低熔点的矿物 最后这种混合岩浆侵入太和岩浆房形 成了中部岩相带。太和上部岩相带磁铁矿和中部岩相带的 顶部少量磁铁矿可能被岩浆演化晚期累积的岩浆热液所 改造。

致谢 电子探针分析得到了中国科学院地球化学研究所 矿床地球化学国家重点实验室周国富研究员和刘世荣副研 究员的帮助和指导 在此表示感谢。

References

- Ali JR , Thompson GM , Zhou MF and Song XY. 2005. Emeishan large igneous province , SW China. Lithos , 79(3-4): 475-489
- Bai ZJ , Zhong H , Naldrett AJ , Zhu WG and Xu GW. 2012. Whole-rock and mineral composition constraints on the genesis of the giant Hongge Fe-Ti-V oxide deposit in the Emeishan large igneous province , Southwest China. Economic Geology , 107(3):507-524
- Barton MD and Johnson DA. 1996. An evaporitic-source model for igneous related Fe-oxide (-REE-Cu-Au-U) mineralization. Geology, 24(3): 259 – 262
- Charlier B , Duchesne JC and Vander Auwera J. 2006. Magma chamber processes in the Tellnes ilmenite deposit (Rogaland Anorthosite Province, SW Norway) and the formation of Fe-Ti ores in massif-

type anorthosites. Chemical Geology, 234(3): 264-290

- Charlier B and Grove TL. 2012. Experiments on liquid immiscibility along tholeiitic liquid lines of descent. Contributions to Mineralogy and Petrology, 164(1): 27-44
- Chen W, Zhao TP, Wei QG and Xu YH. 2008. Genesis of nelsonite from the Damiao Fe-Ti-P deposit, Hebei Province, China: Evidence from apatite. Acta Petrologica Sinica, 24(10): 2301–2312 (in Chinese with English abstract)
- Chen WT , Zhou MF and Zhao TP. 2013. Differentiation of nelsonitic magmas in the formation of the $\sim 1.~74\,\mathrm{Ga}$ Damiao Fe-Ti-P ore deposit , North China. Contributions to Mineralogy and Petrology , 165(6): 1341–1362
- Chung SL and Jahn BM. 1995. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology , 23(10): 889 – 892
- Duchesne JC. 1999. Fe-Ti deposits in Rogaland anorthosites (South Norway): Geochemical characteristics and problems of interpretation. Mineralium Deposita, 34(2): 182 – 198
- Dupuis C and Beaudoin G. 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineralium Deposita ,46(4): 319 – 335
- Dymek RF and Owens BE. 2001. Petrogenesis of apatite-rich rocks (nelsonites and oxide-apatite gabbronorites) associated with massif anorthosites. Economic Geology ,96(4): 797-815
- Fan WM, Zhang CH, Wang YJ, Guo F and Peng TP. 2008. Geochronology and geochemistry of Permian basalts in western Guangxi Province, Southwest China: Evidence for plume-lithosphere interaction. Lithos, 102(1-2): 218-236
- Foose MP and McIelland JM. 1995. Proterozoic low-Ti iron-oxide deposits in New York and New Jersey: Relation to Fe-oxide (Cu-U-Au-rare earth element) deposits and tectonic implications. Geology ,23(7): 665 - 668
- Hou T , Zhang ZC , Encarnacion J and Santosh M. 2012. Petrogenesis and metallogenesis of the Taihe gabbroic intrusion associated with Fe-Ti oxide ores in the Panxi district , Emeishan Large Igneous Province , Southwest China. Ore Geology Reviews ,49: 109 – 127
- Jakobsen JK, Veksler IV, Tegner C and Brooks CK. 2005. Immiscible iron-and silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion. Geology, 33(11): 885 – 888
- Klemme S , Günther D , Hametner K , Prowatke S and Zack T. 2006. The partitioning of trace elements between ilmenite , ulvospinel , armalcolite and silicate melts with implications for the early differentiation of the moon. Chemical Geology , 234 (3 – 4): 251 – 263
- Kolker A. 1982. Mineralogy and geochemistry of Fe-Ti oxide and apatite (nelsonite) deposits and evaluation of the liquid immiscibility hypothesis. Economic Geology ,77(5): 1146 – 1158
- McBirney A. 1996. The Skaergaard intrusion. Developments in Petrology , $15\colon\,147-180$
- Namur O, Charlier B, Toplis MJ, Higgins MD, Liégeois JP and Vander Auwera J. 2010. Crystallization sequence and magma chamber processes in the ferrobasaltic Sept Iles layered intrusion, Canada. Journal of Petrology , 51(6): 1203 – 1236
- Pang KN, Li C, Zhou MF and Ripley EM. 2008a. Abundant Fe-Ti oxide inclusions in olivine from the Panzhihua and Hongge layered intrusions, SW China: Evidence for early saturation of Fe-Ti oxides in ferrobasaltic magma. Contributions to Mineralogy and Petrology, 156(3): 307 – 321
- Pang KN , Zhou MF , Lindsley D , Zhao D and Malpas J. 2008b. Origin of Fe-Ti oxide ores in mafic intrusions: Evidence from the Panzhihua Intrusion , SW China. Journal of Petrology , 49(2): 295 – 313
- Philpotts AR. 1967. Origin of certain iron-titanium oxide and apatite rocks. Economic Geology ,62(3): 303 315
- She YW, Yu SY, Song XY, Chen LM, Zheng WQ and Luan Y. 2014. The formation of P-rich Fe-Ti oxide ore layers in the Taihe layered intrusion, SW China: Implications for magma-plumbing system process. Ore Geology Reviews, 57: 539 – 559
- Song XY , Zhou MF , Hou ZQ , Cao ZM , Wang YL and Li Y. 2001.

Geochemical constraints on the mantle source of the Upper Permian Emeishan continental flood basalts, southwestern China. International Geology Review, 43(3): 213-225

- Song XY, Zhou MF, Cao ZM and Robinson PT. 2004. Late Permian rifting of the South China Craton caused by the Emeishan mantle plume? Journal of the Geological Society of London, 161(5): 773 – 781
- Song XY, Qi HW, Hu RZ, Chen LM, Yu SY and Zhang JF. 2013. Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: Evidence from the Panzhihua intrusion, SW China. Geochemistry Geophysics Geosystems, 14(3): 712-732
- Tegner C , Cawthorn RG and Kruger FJ. 2006. Cyclicity in the Main and Upper Zones of the Bushveld Complex , South Africa: Crystallization from a zoned magma sheet. Journal of Petrology , 47 (11): 2257 - 2279
- Tollari N , Barnes SJ , Cox RA and Nabil H. 2008. Trace element concentrations in apatites from the Sept-Îles Intrusive Suite , Canada: Implications for the genesis of nelsonites. Chemical Geology , 252(3 -4) : 180 190
- Vantongeren JA and Mathez EA. 2012. Large-scale liquid immiscibility at the top of the Bushveld Complex , South Africa. Geology , 40(6): 491 – 494
- Wei Y , Bai WL , Li SJ , Guo YW , Xia SP , Chen GH , Lü D , Liu W , Li ZH and Zhang XM. 2012. The geology and exploration prospect of the Taihe V-Ti magnetite deposit from Xichang City , Sichuan Province. Acta Geologica Sichuan , 32(S2): 44 – 50 (in Chinese)
- Xiao L , Xu YG , Mei HJ , Zheng YF , He B and Pirajno F. 2004. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province , SW China: Implications for plume-lithosphere interaction. Earth and Planetary Science Letters , 228(3-4): 525 - 546
- Xu YG, Chung SL, Jahn BM and Wu G. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos , 58(3-4): 145-168
- Xu YG , He B , Chung SL , Menzies MA and Frey FA. 2004. Geologic , geochemical , and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology , 32(10): 917 – 920
- Zhang XQ, Zhang JF, Song XY, Deng YF, Guan JX and Zheng WQ. 2011. Implications of compositions of plagioclase and olivine on the formation of the Panzhihua V-Ti magnetite deposit, Sichuan Province. Acta Petrologica Sinica, 27 (12): 3675 – 3688 (in Chinese with English abstract)
- Zhang XQ, Song XY, Chen LM, Xie W, Yu SY, Zheng WQ, Deng YF, Zhang JF and Gui SG. 2012. Fractional crystallization and the formation of thick Fe-Ti-V oxide layers in the Baima layered intrusion, SW China. Ore Geology Reviews, 49: 96 – 108
- Zhang ZC, Mahoney JJ, Mao JW and Wang FH. 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. Journal of Petrology, 47(10): 1997 – 2019
- Zhang ZC , Zhi XC , Chen L , Saunders AD and Reichow MK. 2008. Re-Os isotopic compositions of picrites from the Emeishan flood basalt province , China. Earth and Planetary Science Letters , 276(1-2): 30-39
- Zhang ZC, Mao JW, Saunders AD, Ai Y, Li Y and Zhao L. 2009. Petrogenetic modeling of three mafic-ultramafic layered intrusions in the Emeishan large igneous province, SW China, based on isotopic and bulk chemical constraints. Lithos, 113(3-4): 369-392
- Zhang ZC , Hou T , Santosh M , Li HM , Li JW , Zhang ZH , Song XY and Wang M. 2014. Spatio-temporal distribution and tectonic settings of the major iron deposits in China: An overview. Ore Geology Reviews , 57: 247 – 263
- Zhang ZC, Hou T, Li HM, Li JW, Zhang ZH and Song XY. 2014. Enrichment mechanism of iron in magmatic-hydrothermal system. Acta Petrologica Sinica, 30 (5): 1189 – 1204 (in Chinese with English abstract)
- Zhao TP, Chen W and Zhou MF. 2009. Geochemical and Nd-Hf isotopic

constraints on the origin of the $\sim 1.~74\,{\rm Ga}$ Damiao anorthosite complex , North China Craton. Lithos , 113: 673 – 690

- Zheng WQ, Deng YF, Song XY, Chen LM, Yu SY, Zhou GF, Liu SR and Xiang JX. 2014. Composition and genetic significance of the ilmenite of the Panzhihua intrusion. Acta Petrologica Sinica, 30 (5): 1432 – 1442 (in Chinese with English abstract)
- Zhong H , Zhou XH , Zhou MF , Sun M and Liu BG. 2002. Platinum– group element geochemistry of the Hongge Fe-V-Ti deposit in the Pan-Xi area , southwestern China. Mineralium Deposita , 37 (2): 226 - 239
- Zhong H and Zhu WG. 2006. Geochronology of layered mafic intrusions from the Pan-Xi area in the Emeishan large igneous province , SW China. Mineralium Deposita , 41(6): 599 606
- Zhong H , Xu GW , Zhu WG , Hu RZ and He DF. 2009. Petrogenesis of the Taihe granites in the Emeishan large igneous province and its tectonic implications. Bulletin of Mineralogy , Petrology and Geochemistry , 28(2): 99 – 110 (in Chinese with English abstract)
- Zhong H , Campbell IH , Zhu WG , Allen CM , Hu RZ , Xie LW and He DF. 2011. Timing and source constraints on the relationship between mafic and felsic intrusions in the Emeishan large igneous province. Geochimica et Cosmochimica Acta ,75(5): 1374 – 1395
- Zhou MF, Yan DP, Kennedy AK, Li Y and Ding J. 2002. SHRIMP U– Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1-2): 51-67
- Zhou MF, Robinson PT, Lesher CM, Keays RR, Zhang CJ and Malpas J. 2005. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits, Sichuan Province, SW China. Journal of Petrology, 46 (11): 2253 – 2280

Zhou MF , Arndt NT , Malpas J , Wang CY and Kennedy AK. 2008. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province , SW China. Lithos , 103(3-4): 352 – 368

附中文参考文献

- 陈伟,赵太平,魏庆国,徐勇航. 2008. 河北大庙 Fe-Ti-P 矿床中钛 铁磷灰岩的成因: 来自磷灰石的证据. 岩石学报 24(10): 2301 - 2312
- 魏宇,柏万灵,李松键,郭耀文,夏世平,陈赓户,吕杜,柳维,李作 华,张旭明. 2012. 四川省西昌市太和钒钛磁铁矿区地质特征 及找矿远景. 四川地质学报,32(S2):44-50
- 张晓琪,张加飞,宋谢炎,邓宇峰,官建祥,郑文勤.2011. 斜长石 和橄榄石成分对四川攀枝花钒钛磁铁矿矿床成因的指示意义. 岩石学报,27(12): 3675 – 3688
- 张招崇,侯通,李厚民,李建威,张作衡,宋谢炎. 2014. 岩浆-热液 系统中铁的富集机制探讨. 岩石学报,30(5): 1189-1204
- 郑文勤,邓宇峰,宋谢炎,陈列锰,于宋月,周国富,刘世荣,向建新.
 2014.攀枝花岩体钛铁矿成分特征及其成因意义.岩石学报,30(5):1432-1442
- 钟宏,徐桂文,朱维光,胡瑞忠,何德锋.2009. 峨眉山大火成岩省
 太和花岗岩的成因及构造意义. 矿物岩石地球化学通报,28
 (2):99-110