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Abstract
As the depth migration of multi-component seismic data can obtain better images of the
subsurface structures with multi-wave information in seismic records, an effective
multi-component Gaussian beam migration method is presented in this paper. Firstly, a
detailed numerical analysis on the local slant stack is carried out, which demonstrates that the
Gaussian beam migration method has good directionality and computational efficiency
through decomposing seismic records into different outgoing directional local plane waves.
Then two different Gaussian beam prestack depth migration algorithms are presented,
corresponding to the PP- and PS-waves, after a wavefield separation is effected with an affine
coordinate system transform. Finally, tests of synthetic and field seismic data show that the
method introduced above would be an accurate and efficient prestack depth migration
alternative for multi-component seismic data.

Keywords: multi-component, Gaussian beam prestack depth migration, numerical analysis,
local slant stack, wavefield separation

1. Introduction

For multi-component seismic exploration both PP- and PS-
wave data can be obtained. Because these waves carry different
information about target regions (Xie and Wu 2005), they
may provide more petrophysical parameters and effectively
improve the accuracy of seismic exploration, compared
with P-wave data alone. Therefore, more effective multi-
component migration techniques are required to make full
use of multi-component information. There are two basic
families of prestack depth migrations of multi-component
seismic data: elastic migration and scalar migration (Hou
and Marfurt 2002). Kirchhoff elastic wave migration was
implemented by Kuo and Dai (1984) and by Dai and Kuo
(1986). Hokstad (2000) extended the practice to anisotropic
elastic and viscoelastic imaging of multi-component seismic

5 Author to whom any correspondence should be addressed.

data. Chang and McMechan (1987, 1994) conducted 2D and
3D elastic reverse time migrations using the finite-difference
method. Meanwhile, some authors proposed scalar migration
methods for multi-component seismic data by first separating
the wavefield into PP- and PS-waves (Wang and Nemeth
1997, Sun and McMechan 2001, Hou and Marfurt 2002).
For these migration methods, the ray-based Kirchhoff method
is more efficient and flexible, but it has multi-valued travel
times, which affect the migration result. The reverse time
migration based on the full wave finite-difference method is
more accurate. However, the method is very time consuming.
Gaussian beam migration, as a powerful imaging technique,
is an elegant and efficient depth migration method, with
an accuracy comparable to wave-equation migration and
a flexibility comparable to Kirchhoff migration (Gray and
Bleistein 2009).

In the field of seismology, the Gaussian beam method
for the computation of the wavefield (Červeny et al 1982,
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2007, Popov 1982,) was first used in seismic wavefield
forward modeling (Červeny 1985, Nowack 2003), and then
the Gaussian beam migration method was studied. Hill
(1990) proposed a Gaussian beam poststack migration method
and performed a detailed study of migration parameters.
Hale (1992a, 1992b) further introduced an algorithm and
implementation of Gaussian beam migration. Hill (2001)
presented a prestack Gaussian beam migration method
that operates on common-offset and common-azimuth data
volumes. Gray (2005) removed the narrow azimuth restriction
by presenting variations suitable for common-shot records
migration. In further publications, true-amplitude Gaussian
beam migration methods were developed by Gray and
Bleistein (2009) and Popov et al (2008, 2010). However, their
studies start with a definition of the acoustic wave migration
formula, without reference to elastic waves. It is not clear how
the Gaussian beam migration method should be applied for
multi-component seismic data recorded in elastic media.

Based on previous studies, a multi-component Gaussian
beam prestack depth migration method is presented. The
purpose of this paper is to provide a new effective method
for multi-component seismic data migration imaging. We
first introduce the distribution characteristics of wavefield
energy around the Gaussian beam, and describe the Green
function constructed by Gaussian beams. Next, a detailed
numerical analysis on the local slant stack of the Gaussian
beam migration is carried out. Then, the Gaussian beam
migration imaging conditions for pure PP- and PS-waves
obtained from wavefield separation in the affine coordinate
system are applied. Finally, to verify the feasibility of the new
multi-component Gaussian beam migration method, synthetic
examples and field seismic data are tested.

2. Fundamental method

2.1. Gaussian beam theory

In the two-dimensional isotropic medium, the Gaussian beam
connected with a central ray � can be written in ray-
centered coordinate system (s, n) as (Červeny et al 1982,
Popov 1982)

u(s, n, ω) =
[

V (s)

q(s)

] 1
2

exp

[
iωτ (s) + iω

2

p(s)

q(s)
n2

]
, (1)

where u(s, n, ω) is the seismic wavefield, the coordinate s
measures the arc length along the ray � from an arbitrary
reference point, and n represents the length coordinates
perpendicular to the ray at s. ω is the frequency and V (s)
is the velocity along the central ray �. Function τ (s) is the
travel time along the central ray. p(s) and q(s) are complex
solutions to dynamic ray tracing equations (Červeny 2007),
which determine the energy distribution of Gaussian beam and
contain the dynamic characteristics of high-frequency seismic
wave propagation along the ray. Gaussian beam expressions
have the same form for P- and S-waves, and the only difference
is the corresponding P- and S-wave velocities required in the
calculation (Červeny 1983).

Compared with traditional ray theory, the Gaussian beam
method not only involves the wavefield energy along the

Figure 1. Gaussian beam wavefield energy distribution near a
central ray emitted from a point source O in a homogeneous and
isotropic medium.
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Figure 2. Sketch of Green’s function in terms of Gaussian beams.
The wavefield near each central ray can be calculated by Gaussian
beam method and the wavefield at a point x = (x, z) in the
subsurface is a weighted sum over the nearby beams.

central ray, but also utilizes wavefields near the ray. Figure 1
shows the wavefield near a central ray simulated by Gaussian
beam method. As the wave propagates along the ray direction,
the wavefield energy distributes in the vicinity of the ray and
gradually decays with increasing vertical distance from the
central ray.

2.2. Green’s function as an integral over Gaussian beams

In the Gaussian beam migration approach, the 2D Green’s
function G2D(x, x0, ω) is an integral over a fan of Gaussian
beams with different initial dip angles emitted from the source
x0 = (x0, 0), as shown in figure 2.

The Green’s function in terms of Gaussian beams can be
expressed as (Hill 2001, Gray and Bleistein 2009)

G2D(x, x0, ω) = i

2π

∫
uGB(x, x0, p, ω)

dpx

pz
, (2)

where p = (px, pz) is the ray parameter vector with px and pz

representing the horizontal and vertical component. x0 is the
source location and x is a subsurface point. As P- and S-waves
have the same Gaussian beam expression form, the Green’s
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Figure 3. Sketch of Gaussian beam prestack depth migration.

function in terms of Gaussian beams can be used to describe
both P- and S-wave components (Nowack et al 2006, 2007).

Equation (2) is an integral of individual Gaussian beams
uGB over horizontal slownesses px, and

uGB(x, x0, p, ω) = A exp(iωT ). (3)

The functions A and T represent complex amplitude and
complex travel time

A =
√

V (s)q(s0)

V (s0)q(s)
(4)

T = τ (s) + n2

2

p(s)

q(s)
. (5)

The Green’s function constructed from Gaussian beams
is the summation of the local wavefield of limited area near
the central rays, and it can solve the multi-valued travel times
with different beam superpositions. Using Hill’s (1990) initial
data to solve the dynamic ray tracing equations can guarantee
that the Gaussian beam is canonical, so the Green’s function
shows regular behavior at the caustics.

2.3. Multi-wave Gaussian beam prestack migration

In the multi-component seismic exploration, the Z- and
X-component records can receive part of the PS- and
PP-wave data, instead of the pure PP- and PS-waves. Directly
using the Z- and X-components to migrate will cause wavefield
crosstalk in the migration profiles. Therefore, we first separate
PP- and PS-waves from multi-component seismic data with
a wave vector rotation transformation method in the affine
coordinate system (Lu et al 2012), which can recover the true
amplitude of PP- and PS-waves and obtain real pure PP- and
PS-waves compared with traditional wave separation methods
in the Cartesian coordinate. And then the multi-component
Gaussian beam prestack depth migration imaging conditions
for PP- and PS-waves are presented.

A prestack migration image of Gaussian beam is formed
by cross-correlating the downward-continued wavefields from
source and beam centers. As shown in figure 3, the central
rays of the Gaussian beam are emitted from the source and a
beam center point with different ray parameters ps and pLr to
compute the wavefield. For the PP-wave image, the wavefields
from source and beam center points are extrapolated with
P-wave velocity. For the PS-wave image downward-continued
source wavefields are computed with the P-wave velocity and

the S-wave velocity is used to compute the wavefields from
beam center points.

In the two-dimensional isotropic medium, assume that
xs = (xs, 0) and xr = (xr, 0) denote the source and receiver
locations. According to the Gaussian beam prestack migration
method that operates on common-offset gathers given by Hill
(2001), the PP- and PS-waves common shot gathers Gaussian
beam migration formula can be written as

IPP(x) = CPP
∫

dxs

∑
Lr

∫
dω

∫
dpP

sx

∫
dpP

rxDPP
(
Lr, pP

r , ω
)

×uP∗
GB

(
x, xs, pP

s , ω
)

uP∗
GB

(
x, Lr, pP

r , ω
)

(6)

IPS(x) = CPS
∫

dxs

∑
Lr

∫
dω

∫
dpP

sx

∫
dpS

rxDPS
(
Lr, pS

r , ω
)

×uP∗
GB

(
x, xs, pP

s , ω
)

uS∗
GB

(
x, Lr, pS

r , ω
)
, (7)

where IPP(x) and IPS(x) are PP- and PS-wave final images
at subsurface point x. uP∗

GB

(
x, xs, pP

s , ω
)

is the P-wave
Gaussian beam from the source, while uP∗

GB

(
x, Lr, pP

r , ω
)

and uS∗
GB

(
x, Lr, pS

r , ω
)

are the P- and S-wave Gaussian beam
wavefield formulae from the beam center point Lr = (Lr, 0).
CPP and CPS denote corresponding constants. DPP

(
Lr, pP

r , ω
)

and DPS
(
Lr, pS

r , ω
)

are the local plane wave components of
PP- and PS-waves, which are obtained from a local slant stack
of the common-shot traces, and the expression can be written
as

DPP
(
Lr, pP

r , ω
) = 1

4π2

∣∣∣∣ ω

ωr

∣∣∣∣
3 ∫

dxru
PP(xr, xs, ω)

× exp

[
−iωpP

rx(xr − Lr) − 1

2

∣∣∣∣ ω

ωr

∣∣∣∣ |xr − Lr|2
L2

0

]
(8)

DPS
(
Lr, pS

r , ω
) = 1

4π2

∣∣∣∣ ω

ωr

∣∣∣∣
3 ∫

dxru
PS(xr, xs, ω)

× exp

[
−iωpS

rx(xr − Lr) − 1

2

∣∣∣∣ ω

ωr

∣∣∣∣ |xr − Lr|2
L2

0

]
, (9)

where L0 is the initial beam width at a reference frequency ωr

(Hill 1990, Hale 1992a). uPP(xr, xs, ω) and uPS(xr, xs, ω) are
the recorded wavefields of PP- and PS-waves.

If P- and S-wave Gaussian beam expressions are inserted
into equations (6) and (7), respectively, equations (6) and (7)
can be rewritten as

IPP(x) = CPP
∫

dxs

∑
Lr

∫
dωDPP

(
Lr, pP

r , ω
)

×
∫

dpP
sx

∫
dpP

rxA
PP (

x, pP
s , pP

r

)
exp

[−iωT
PP(

x, pP
s , pP

r

)]
,

(10)

IPS(x) = CPS
∫

dxs

∑
Lr

∫
dωDPS (

Lr, pS
r , ω

)

×
∫

dpP
sx

∫
dpS

rxA
PS (

x, pP
s , pS

r

)
exp

[−iωT
PS(

x, pP
s , pS

r

)]
,

(11)

where functions A
PP (

x, pP
s , pP

r

)
and T

PP (
x, pP

s , pP
r

)
are the PP-

wave complex amplitude and complex travel time determined
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(a) (b)

(c) (d )

Figure 4. Local slant stack numerical analysis. (a) Velocity model, (b) single shot record, (c) Gaussian beam prestack depth migration of a
single near-offset trace, and (d) Gaussian beam prestack depth migration of a beam centre after local slant stack.

by the two beams from the source and beam center.
Similarly, A

PS (
x, pP

s , pS
r

)
and T

PS (
x, pP

s , pS
r

)
are the complex

amplitude and complex travel time of PS-wave, and

T
PP (

x, pP
s , pP

r

) = T P
xs

(
x, pP

s

) + T P
Lr

(
x, pP

r

)
(12)

T
PS (

x, pP
s , pS

r

) = T P
xs

(
x, pP

s

) + T S
Lr

(
x, pS

r

)
. (13)

Beams coming from both the source and beam center
use the P-wave velocity to compute complex travel times
T P

xs

(
x, pP

s

)
and T P

Lr

(
x, pP

r

)
for the PP-wave image, while

complex travel times T P
xs

(
x, pP

s

)
and T S

Lr

(
x, pS

r

)
are computed

with P- and S-wave velocities, respectively, for PS-wave
image. Compared with the PP-wave, it has polarity reversal
problem on the PS-wave seismic record, and direct migration
for the PS-wave will seriously affect the migration result.
Therefore, based on the polarity characteristics of the PS-
wave records, the polarity has been corrected in the process of
Gaussian beam prestack depth migration.

2.4. Local slant stack numerical analysis

The local slant stack is the key algorithm of the Gaussian
beam migration method. It not only reduces traces involved

in migration calculation and improves the computational
efficiency significantly, but also gives the Gaussian beam
migration method good directionality, which can make the
subsurface structure have better imaging through decomposing
a certain range of seismic records near a beam center into
different outgoing directional local plane waves for wavefield
extrapolation.

A six-layer model is given, as shown in figure 4(a), to
present the local slant stack of the Gaussian beam migration
method. The model contains some horizontal interfaces and
dipping interfaces with different dip angles. A single-shot
seismic record is generated using the ray tracing forward
modeling method (figure 4(b)), and the shot is located at the
center on the model surface. Figure 4(c) shows the Gaussian
beam migrated image of a single near-offset trace without the
local slant stack, where the energy is swung equally in all
directions, which is similar to the Kirchhoff migrated image
of a single trace. The local slant stack is performed on the
seismic record nearby the near-offset beam center, and then
data from this beam center are migrated with Gaussian beam
migration method, as shown in figure 4(d). It can be seen that

4
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(a)

(b) (c)

(d ) (e)

Figure 5. Migration test on dip layer model. (a) Velocity model, (b) Z-component single shot record, (c) X-component single shot record,
(d) pure PP-wave seismic record by wavefield separation, (e) pure PS-wave seismic record by wavefield separation, ( f ) PP-wave image of
Z-component shot record, (g) PS-wave image of X-component shot record, (h) separated pure PP-wave image and (i) separated pure
PS-wave image.
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(f ) (g)

(h) (i )

Figure 5. (Continued.)

the Gaussian beam migration has managed to discriminate
among image directions through local slant stack. And whether
flat or dipping reflectors, the image energy is only concentrated
in the vicinity of the reflectors.

3. Numerical examples

3.1. Dip layer model

In this section, a simple dip layer model is used to test the multi-
component Gaussian beam migration method (figure 5(a)).
The P-wave velocities of model are α1 = 3.0 km s−1,
α2 = 3.5 km s−1, α3 = 4.0 km s−1, and the S-wave velocities
are β1 = 1.7 km s−1, β2 = 2.0 km s−1, β3 = 2.3 km s−1,
respectively. A single shot is located at the center on the
surface. There are 301 receivers located on the surface
with offsets from 1500 to 1500 m. Synthetic seismograms
are generated using an elastic finite-difference algorithm.
Figures 5(b) and (c) show the Z- and X-component records of
the original seismic data, where the two components contain
both PP- and PS-waves and polarity reversal can clearly be
seen on the X-component. Figures 5(d) and (e) are pure PP-
and PS-wave seismic records after wavefield separation in the

affine coordinate system. The Z- and X-component seismic
data are directly used to migrate and the results are shown in
figures 5( f ) and (g), respectively, where the PS-wave crosstalk
on the Z-component and the PP-wave interference on the
X-component are obvious (shown by arrow). Figures 5(h) and
(i) show Gaussian beam migration images for the separated
pure PP- and PS-waves, respectively. It is very clear from
figures 5(h) and (i) that accurate PP- and PS-wave images
of the subsurface reflectors are obtained without wavefield
crosstalk. In the process of migration, the polarization of
PS-wave has been corrected and the direct wave has been
eliminated.

3.2. Relief model

To demonstrate the effectiveness of the new multi-component
migration algorithm for nonhorizontal reflectors, a relief
model is used. The model contains three interfaces, and the
middle reflector is curved, as shown in figure 6(a). Synthetic
seismograms are generated by the elastic finite-difference
method and the source wavelet is the Ricker wavelet with
a peak frequency of 25 Hz. There are 73 shots on the
surface with 201 receivers per shot. The shot spacing is

6
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(a)

(b) (c)

(d ) (e)

Figure 6. Gaussian beam migration test on relief model. (a) Velocity model, (b) pure PP-wave single shot record, (c) pure PS-wave single
shot record, (d) PP-wave image and (e) PS-wave image. The velocities are α1 = 3.0 km s−1, β1 = 1.7 km s−1, α2 = 3.5 km s−1,
β2 = 2.0 km s−1, α3 = 4.5 km s−1, β3 = 2.6 km s−1, and α4 = 5.0 km s−1, β4 = 2.9 km s−1, respectively.

40 m and the receiver spacing is 10 m. The travel time is
2.5 s with 1 ms sampling. The PP- and PS-waves are first
separated from multi-component seismic data with the affine
coordinate system transform. Figures 6(b) and (c) are the first
shot seismic records of pure PP- and PS-waves and the PS-

wave has polarity reversal. The stacked PP- and PS-wave
Gaussian beam migration images are shown in figures 6(d)
and (e), respectively. The polarization has been corrected for
PS-wave image and the direct waves have been muted out.
Comparing figures 6(d) and (e) with the original velocity

7
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(a)

(b) (c)

Figure 7. Gaussian beam migration test on fault model. (a) Velocity model, (b) PP-wave image and (c) PS-wave image. The velocities are
α1 = 3.0 km s−1, β1 = 1.7 km s−1, α2 = 3.3 km s−1, β2 = 1.9 km s−1, α3 = 3.6 km s−1, β3 = 2.1 km s−1, α4 = 4.0 km s−1, β4 = 2.3 km s−1,
α5 = 4.3 km s−1, β5 = 2.5 km s−1, α6 = 4.6 km s−1, β6 = 2.65 km s−1, and α7 = 5.0 km s−1, β7 = 2.9 km s−1, respectively.

model (figure 6(a)), both PP- and PS-waves are accurately
imaged at the reflector without wavefield crosstalk.

3.3. Fault model

The multi-component Gaussian beam migration method is
further tested using a complex fault model, which contains
seven layers, including complex fault and sag structures, as
shown in figure 7(a). The elastic finite-difference method is
used to generate the synthetic seismograms. There are 116
shots on the surface and the shot spacing is 40 m. Each shot
has 341 receivers with offsets from 1700 to 1700 m. The
sampling time is 3.2 s and the sampling interval is 2 ms.
The PP- and PS-wave Gaussian beam migration images are
shown in figures 7(b) and (c), respectively. It can be seen
that the PP- and PS-wave layers match well in the migration
profile. The fault and sag structures are well imaged, and the
breakpoints are clear, which verifies the accuracy of the method
for complex geological structures.

4. Field data example

To demonstrate the applicability of the method, we applied it
to a multiwave seismic dataset acquired in the Songliao Basin
in North Eastern China. The data total is 15 809 traces and
the trace spacing is 25 m. The minimum offset for each shot
is 400 m, and the maximum is 2375 m. The sampling time is
5 s and the sampling interval is 1 ms. The data are sampled
to identify an igneous reservoir where a conventional P-wave
image is not adequate to describe it. Figures 8(a) and (b) show
three shot records of separated PP- and PS-wave seismic data.
The PP- and PS-wave Gaussian beam migration images are
shown in figures 8(c) and (d), respectively. It can be seen that
PP- and PS-wave layers match well in the migration profile.
For a subsurface hydrocarbon reservoir (between T4 and T5),
the PS-wave migration obtains a clearer image than a PP-
wave. A better image of subsurface reservoir structure may be
acquired by combining PP- and PS-wave migration results.

8
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(a) (b)

(c) (d )

Figure 8. Gaussian beam migration test on field data. (a) Separated PP-wave seismic record, (b) separated PS-wave seismic record,
(c) PP-wave image and (d) PS-wave image. In this figure, T4 represents reflections from the top of the igneous reservoir and T5 represents
reflections from the bottom.

5. Conclusions

The multi-component Gaussian beam prestack depth
migration method is an accurate and efficient migration
method for multi-component seismic data. As numerical
analysis has shown, the Gaussian beam migration method has
outstanding advantages and an accuracy that rivals that of
wave-equation migration and its efficiency and flexibility rival
those of Kirchhoff migration through decomposing seismic
records into different outgoing directional local plane waves
with a local slant stack. Pure PP- and PS-waves are first
separated from multi-component seismic data using the wave
vector rotation transformation method in the affine coordinate
system before wavefield extrapolation imaging. The accurate
migration images of PP- and PS-waves in the numerical
examples demonstrate the feasibility of the method. The field
data test indicates that the method can be applied effectively
to multi-component field seismic data, obtaining accurate
images. Based on the complementarity of the multi-component
seismic data for subsurface structural imaging, more accurate
image can be obtained by making full use of PP- and PS-wave
data.
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Červeny V 1985 Gaussian beam synthetic seismograms
J. Geophys. 58 44–72
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