Vol.23.No.1 Mar.,2003

文章编号:1000-4734(2003)01-0063-07

云南金宝山镁铁-超镁铁岩的 地球化学特征及成因

朱 丹^{1,2}, 陶 炎¹, 罗泰义¹, 高振敏¹, 朱成明³, 柏 坚⁴

(1. 中国科学院 地球化学研究所 矿床开放实验室,贵州 贵阳 550002; 2.中国科学院 研究生院,北京 100039;
3. 中国科学院 地球化学研究所 高温高压实验室,贵州 贵阳 550002; 4.云南省黄金公司,云南昆明 650000)

摘要:金宝山超镁铁侵入岩赋存有超大型硫化物铂族元素矿床。单辉橄榄岩是岩区最主要的含矿岩石类型。 根据单辉橄榄岩的矿物学、岩石学、岩石化学及微量元素地球化学特征,探讨岩浆的结晶分异演化过程,提出 岩体的形成与岩浆结晶分异有关,母岩浆成分为拉斑质玄武质岩浆。岩体高镁、高稀土总量,以及橄榄石与辉 石的结构特征显示岩体是橄榄石、铬尖晶石等矿物与残留岩浆混合形成。

关键词:金宝山;镁铁-超镁铁岩;单辉橄榄岩;橄榄石;单斜辉石

中图分类号:P581 文献标识码:A

作者简介:朱 丹,男,1970年生,在职博士研究生,主要从事矿物岩石学研究.

金宝山超镁铁侵入岩体属于小型超镁铁岩 侵入体,位于云南省弥渡县城南东方向 72 km 的礼社江两岸,地跨弥渡、南华县境,因赋存有 我国最大的铂族元素矿床金宝山铂钯矿床而著 名。前人对此开展了大量的基础性工作,并重 点进行了矿床学的研究^[1,2]。本文将着重对金 宝山镁铁超镁铁侵入岩体的岩相、矿物和岩石 化学进行研究,系统分析镁铁-超镁铁岩体各岩 相带微量元素和稀土元素特征,揭示云南金宝 山镁铁-超镁铁岩的成岩机制。

1 岩相学及矿物学

金宝山岩体由镁铁岩及超镁铁岩构成。镁 铁岩侵入在先,由辉绿岩、辉绿辉长岩及辉长岩 组成。超镁铁岩侵入在后,沿镁铁岩底部侵入。 单辉橄榄岩是组成岩体的最主要岩石类型,占 岩体的 92%以上,呈灰绿色或暗绿色,具变余不 等粒自形至半自形粒状结构和包含结构等。岩 体底部及边部可见一些小的橄辉岩及辉石岩异 离体,总体上划不出完整的岩相带。岩石普遍

收稿日期:2002-05-24 基金項目:中国科学院知识创新工程项目(KZCX2-101);国家自然 科学基金项目(批准号:40274027) 遭受自变质作用,橄榄石强烈蛇纹石化、透闪石 化及成岩后热液活动形成碳酸岩化、石英硫化 物脉等。

矿物以橄榄石为主,约占30%~75%。橄榄 石成分较为稳定,Fo为85~86左右,属贵橄榄石 (表 1),从形态看,一种是自形-半自形晶,粒径 0.3~4 mm,为岩浆侵位后的结晶产物;另一种具 有溶蚀特征,在岩浆上升过程中曾受到溶蚀,形态 浑圆,大小混杂,有时具有定向排列的特征,反映 出晶体曾随岩浆流动(图1)。多数橄榄石遭受蛇 纹石及透闪石化等蚀变。斜方辉石为古铜辉石, 含量非常少。单斜辉石含量 10%~40%,多者可 达60%,含量极不均匀,一般呈它形不规则状,粒 径3~8 mm,大颗粒单斜辉石晶体通常包含橄榄 石,具有包含结构,小颗粒具有填隙结构,是一种 晚结晶的残留液相特征,而且普遍含钙高,绝大多 数为普通辉石。岩石中含有少量角闪石、斜长石 和黑云母,副矿物有铬尖晶石、钛铁矿、磷辉石和 金属硫化物等。

a. 浑.	圆状(熔蚀)橄榄石(Ol)被	巨晶辉石(Cpx)包嵌	b.	蛇纹石化橄榄石(Sep)呈半定向排列
	图1 金宝山	」超镁铁岩显微照片(视	域宽均为 2.5mm)

Fig. 1. Photomicrograms of augite-peridotite from the Jinbaoshan intrusion: (a) poikilitic texture showing olivine enclosed in big clinopyroxene; (b) serpentilized olivine ranking in semi-direction. The field of view is 2.5mm wide

表1 金宝山超镁铁岩矿物成分

Table 1. Mineral composition of the ultramafic rocks in the Jinbaoshan area												%
样品	Cr ₂ O ₃	MnO	FeO	Na ₂ O	K ₂ O	Al ₂ O ₃	CaO	MgO	TiO2	SiOz	总计	矿物名称
JB-5-1	0.01	0.23	13.92	0.30	0.00	0.00	0.12	45.75	0.01	39.58	99.93	贵橄榄石(Fo 85)
JB-5- 2	0.01	0.23	14.37	0.00	0.00	0.06	0.16	46.12	0.01	40.21	101.17	贵橄榄石(Fo 85)
JB-5-3	0.04	0.15	13.56	0.18	0.01	0.00	0.13	45.47	0.02	39.46	99.01	贵橄榄石(Fo 86)
JB- 5-4	0.02	0.14	14.01	0.00	0.01	0.00	0.22	44.61	0.02	40.69	99.72	贵橄榄石(Fo 85)
JB-5-5	0.00	0.21	14.19	0.21	0.01	0.00	0.13	45.42	0.04	41.55	101.77	贵橄榄石(Fo 85)
JB-6- 1	0.01	0.14	14.03	0.00	0.01	0.03	0.10	45.75	0.00	39.45	99.53	贵橄榄石(Fo 85)
JB-6-2	0.08	0.23	14.26	0.38	0.00	0.00	0.08	46.25	0.05	39.64	100.97	贵橄欖石(Fo 85)
JB-6-3	0.05	0.14	13.83	0.00	0.00	0.00	0.10	47.01	0.04	40.12	101.30	贵橄榄石(Fo86)
JB-6-4	0.02	0.16	14.01	0.00	0.04	0.09	0.11	44.88	0.05	39.24	98.60	贵橄榄石(Fo 85)
JB-6- 1	0.28	0.13	9.35	0.00	0.01	2.87	1.54	31.50	0.40	54.73	100.81	古铜辉石
JB-6-2	0.00	0.13	9.44	0.10	0.02	1.73	0.64	31.59	0.06	54.11	97.82	古铜辉石
JB-6-3	0.03	0.20	10.33	0.07	0.00	1.77	0.63	31.30	0.16	53.78	98.25	古铜辉石
JB-6- 1	0.63	0.06	4.89	0.00	0.00	2.38	17.42	18.57	0.50	52.98	97.43	普通辉石
JB-6-2	0.69	0.05	4.88	0.16	0.01	2.22	19.88	17.63	0.59	50.73	96.86	普通辉石
JB-6-3	0.55	0.20	4.50	0.07	0.00	2.92	18.78	16.89	0,87	49.48	94.26	普通辉石
JB-2-2	0.03	0.11	4.14	0.00	0.00	0.98	0.04	37.95	0.13	43.42	86.81	蛇纹石
JB-7-3	0.09	0.18	5.75	0.08	0.00	0.84	0,10	37.18	0.00	44.33	88.56	蛇纹石
JB-x	30.56	0.061	46.38			10.85		5.22	3.95	0.20	97.22	格尖晶石[2]

注: JB-x 数据引自文献[2],其余由中国科学院地球化学研究所电子探针分析室王明再分析,2001.

2 镁铁-超镁铁岩岩石化学特征

金宝山镁铁-超镁铁岩的岩石化学成分见 表 2, 总体以富 MgO, 贫 K₂O 和 Na₂O 为特点, w(MgO) = 20.92% ~ 32.6%。单辉橄辉岩(样 品 JB-1 至 JB-7)的全岩烧失量很高,最低 7.9%,最高达到 16.92%,这与这些岩石遭受 了蚀变有关,是橄榄石蚀变为蛇纹石的结果。 图 2 是 MgO 与主量元素的相关图,大部分数据 引自文献[2]。为了避免 Fe 进入黄铁矿等单硫 化物带来的干扰,舍去 w(SO₃) > 1%的样品数 据。对于采用的数据,根据超镁铁岩中原生硫 化物集合体 $n(Fe + Ni + Co + Cu)/n(S) \approx 1$,碳 酸钙 $n(CO_2):n(CaO)$ 为 1:1,扣除相应的组分, 并以剩余组分总和为 100%进行校正。结果显 示:TiO₂、Al₂O₃、Na₂O 与 MgO 有很好的负相关关 系,反映这些组分在橄榄石中含量很少,而主要 赋存在填隙物中;SiO₂和 FeO 与 MgO 显示弱的 负相关关系,可能是因铬尖晶石、磁铁矿等含铁 矿物在橄榄石粒间分布不均;K₂O 和 CaO 与 MgO 没有表现出相关性,与这两种元素受后期 热液改造的强烈影响有关。 第1期

65

表 2	金宝山岩体镁铁超镁铁岩岩石化学成分

						Table 2	2. Major	elemen	t compo	sition of	the Jinb	aoshan	ultrumaf	ic rocks					%
	性	样	品	SiO ₂	Cr ₂ O ₃	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P205	SO3	CO2	烧失量	总量
(含黑云母、	角闪石)	JB	-1	34.57	0.22	0.47	4.48	3.71	5.09	0.12	27.40	5.80	0.12	0.11	0.15	1.05		16.92	100.21
单斜辉石	譀欖岩	JB	-2	39.63	0.31	0.40	1.41	6.25	4.35	0.11	31.20	0.80	0.11	0.09	0.13	1.85		13. 9 3	100.57
		JB	-3	35.30	0.31	0.41	4.25	8.82	4.28	0.10	31.60	0.60	0.09	0.06	0.30	4.47		11.65	102.24
		JB	-4	37.73	0.27	0.70	3.30	4.80	4.10	0.14	32.60	2.50	0.18	0.17	0.20	1.80		12.21	100.70
		JB	-5	39.07	0.18	0.55	4.01	7.40	4.30	0.16	31.10	2.00	0.21	0.18	0.20	1.50		9.59	100.45
		JB	-6	38.22	0.30	0.62	7.55	6.78	5.52	0.18	29.00	2.60	0.27	0.32	0.27	0.75		7.90	100.28
		JB	-7	38.70	0.31	0.47	5.90	6.90	5.50	0.13	28.60	1.80	0.18	0.15	0.17	0.52		10.53	99.86
辉绿岩		JB	-8	50.10	0.00	2.50	15.02	6.00	5.70	0.19	4.80	8.60	3.10	0.19	0.50	0.47	2.00	1.05	100.22
		JB	-9	51.30	0.05	1.80	13.93	2.82	7.18	0.12	8.10	4.30	2.43	0.30	0.46	0.55		6.65	99.99
闪长岩		JB	-10	62.29	0.01	0.15	11.57	3.57	2.33	0.08	2.50	3.70	3.03	2.92	0.13	6.59		4.92	103.79

注:中国科学院地球化学研究所李荪蓉测定.

图 2 主量元素相关图 Fig. 2. Major element v.s. MgO plot.

2003年

3 微量元素地球化学特征

金宝山镁铁-超镁铁岩的微量元素和稀土元 素含量见表 3。总体上亏损大离子亲石元素,富 集亲铁元素。超镁铁岩的 $w(\Sigma REE)$ 为 16.8× 10⁻⁶~40×10⁻⁶,平均约为 30×10⁻⁶,比基性岩的 丰度低得多(样品 JB-9 为 199.9×10⁻⁶),但比一 般的超镁铁岩的平均值高出一倍左右^[7]。

表 3 金宝山岩**体微量**元素和稀土元素组成

	Table 3. Trace and rare - earth element composition of the Jinbaoshan rocks														10-6	
样	品	Sc	<u></u>	v	Cr	Co		Ni	Cu	Zn		Ga	Ge	А	s	RЬ
J	B-1	10.0	0 '	76.9	4 744.0	142.7		1 343.8	411.1	93.8		3.8	1.1	2.	6	4.9
J	B-2	10.3	8	86.7	6 182.6	228.9	4	4 570.1	943.7	95.7		4.6	1.2	3.	1	3.3
J	B-3	9.	7	80.8	5 659.8	269.1	4	4 554.6	5 046.2	119.7	,	4.1	1.0	4.	2	1.9
J	B-4	15.	0 1	09.3	5 831.7	133.8		1 544.9	64.3	84.2	!	5.4	1.6	6.	0	6.8
J	B-5	10.	9	83.4	5 262.0	195.8		1 331.8	9.4	75.1		4.8	1.0	2.	9	5.9
J	B-6	11.	71	19.5	7 058.5	189.9		1 295.2	41.1	115.5	5	6.6	1.2	1.	8	11.7
J	IB-7	13.	1 1	07.3	5 724.4	135.3		1 306.4	9.4	114.2	!	6.7	1.1	2.	.4	6.5
J	IB-8	21.	63	88.6	91.2	87.3		69.5	218.4	138.4	ł	25.3	1.7	2.	3	6.0
J	IB-9	29.	3 2	38.7	581.8	84.2		242.6	106.8	103.1		19.4	4.1	4.	.3	13.3
J	B-10_	4.	2	6.1	169.4	173.6		467.9	162.2	61.3	i	21.3	1.5	12.	4	49.8
样	品	Sr		Y	Zr	Nb		Cs	Ba	Hf		Ta	Pb	Т	h	U
J	IB-1	126.	.0	4.0	26.7	3.4		4.1	31.3	0.9		0.2	1.0	0.	8	0.2
J	IB-2	10.	.0	3.0	29.1	3.5		1.4	22.1	1.0		0.2	0.4	0.	8	0.2
J	IB-3	7.	.6	2.7	22.7	2.8		0.5	15.5	0.6		0.2	1.2	0.	.6	0.4
•	IB-4	41.	.4	7.5	45.6	6.7		2.2	47.5	1.4		0.4	0.7	1,	.1	0.3
-	IB-5	29	.5	5.8	38.3	5.1		0.7	87.9	1.2		0.3	1.4	1.	.0	0.2
•	IB-6	86.	.9	5.5	42.0	4.9		1.1	105.6	1.3		0.3	1.1	1.	.0	0.2
	IB-7	21.	.3	5.9	35.3	4.1		6.1	154.0	1.1		0.3	1.0	0.	.9	0.3
	JB-8	739	.6 3	30.9	180.9	43.6		1.9	183.8	5.8		2.5	15.0	4.	.9	1.3
	JB-9	312	.5 2	26.7	259.0	30.3		3.6	305.6	7.2		1.8	4.3	6.	.4	1.3
<u> </u>	<u>B-10</u>	183.	.4	75.6	172.8	54.5		1.1	1 399.8	8.4		3.8	4.5	21.	.5	5.7
_样	品	La	Ce	Pr	Nd	Sm	Eu	Gd	Ть	Dy	Ho	Er	Tm	Yb	ես	$\sum REE$
J	B-1	4.7	9.7	1.2	4.3	0.9	0.2	0.9	0.1	0.7	0.2	0.4	0.1	0.4	0.0	23.8
J	B-2	4.0	8.5	1.0	4.0	0.8	0.1	0.8	0.1	0.6	0.1	0.3	0.0	0.4	0.0	20.8
J	B-3	3.2	6.8	0.8	3.2	0.7	0.1	0.6	0.1	0.5	0.1	0.3	0.0	0.3	0.0	16.8
J	B-4	6.8	15.4	1.8	8.3	1.8	0.2	1.8	0.3	1.6	0.3	0.8	0.1	0.8	0.1	40.1
J	B-5	5.7	13.1	1.6	6.9	1.6	0.4	1.3	0.2	1.1	0.2	0.6	0.1	0.6	0.1	33.5
J	B-6	6.4	14.2	1.7	7.0	1.5	0.4	1.3	0.2	1.1	0.2	0.6	0.1	0.5	0.1	35.3
J	B-7	5.2	13.5	1.7	7.4	1.7	0.4	1.6	0.2	1.3	0.3	0.6	0.1	0.6	0.1	34.7
J	B-8	30.6	64.9	7.5	31.9	7.8	2.4	7.5	1.1	6.2	1.2	3.2	0.4	2.7	0.4	167.8
J	B-9	41.9	82.3	9.3	35.9	7.5	2.4	6.9	1.0	5.5	1.1	2.9	0.4	2.5	0.3	199.9
J	B-10	83.0	174.0	19.1	74.9	15.2	0.9	13.2	2.0	12.2	2.4	7.2	1.1	7.1	0.9	413.2

注:样品岩性同表 2;中国科学院地球化学研究所 ICP - MS 测定.

由于超镁铁岩中单斜辉石是稀土元素的 主要载体矿物,金宝山超镁铁岩 Ca 主要存在 于单斜辉石中(表 1), ∑ REE 与全岩的 Ca 含量 呈明显的正相关关系(图 3), Ca 的含量可以反 映单斜辉石矿物在全岩中的比例, Ca 含量高全 岩稀土总量也高,我们可据此区分出高 Ca 超 镁铁岩和低 Ca 超镁铁岩。JB-1 比较特殊,单 斜辉石不多,很多橄榄石蚀变为透闪石,表明 有 Ca 的加入,未蚀变前应属于低 Ca 超镁铁 岩。

Fig. 3. \sum REE v.s. CeO plot.

67

w(La)/w(Yb)比值为8.50~12.80,平均 10.17,w(La)/w(Sm)为3.05~5.22,平均 4.21,w(Gd)/w(Yb)为2.00~2.67,平均2.28, 显示轻稀土元素富集且具有轻重稀土分离的特 征,但分离特征并不明显。图4是微量元素蜘蛛 网图,镁铁和超镁铁岩都表现出右斜率、Nb 弱亏损的特征,具有板块内部拉斑玄武岩的特征^[9,10]。同时也可看出,超镁铁岩样品普遍有Eu 亏损,而镁铁质岩(辉绿岩)JB-8和 JB-9 不显示 Eu 亏损。

图 4 金宝山岩石稀土元素分布模式及微量元素蜘蛛网图(球粒陨石和原始地幔数据引自文献[8]) Fig. 4. Chondrite-normalized REE distribution patterns and trace element spider diagram of the Jinbaoshan matic-ultramatic intrusions.

Sr、Ba、K 等低价态大离子亲石元素显示亏损 特征,尤其是 Sr 更为明显,可能是由于超镁铁岩 受后期的热液改造强烈, Sr、Ba、K 等离子迁出。 PGE、Ni、Cr、Co 等亲铁元素强烈富集,一般超镁铁 岩 w(Cr)为2600×10⁻⁶~3650×10^{-6[11]},金宝山 **超镁铁**岩为4744×10⁻⁶~7058×10⁻⁶,高了近一 倍。Cr 元素的超强富集,表明铬尖晶石与橄榄石 的共结特征,是岩浆最早期的晶出矿物,同时也说 明超镁铁岩的主量元素不完全由橄榄石控制。 Ni、Cu 具有亲硫性,当岩浆 S 不饱和时,Ni 倾向于 代替 Mg、Fe 进入橄榄石中,使 Ni 分散;当 S 饱和 时,Ni 优先与 S 结合。金宝山岩体中 S 含量普遍

or.

不高^[2],未见块状硫化物矿石,富矿石中硫化物也 只是呈侵染状。岩浆晚期的蛇纹石化和透闪石化 游离出的 Fe 进一步消耗了岩浆中的 S 量,使得 Cu、Ni 进一步分散,造成矿床是贫 Cu、Ni 型的 PGE 矿床。金宝山是 w(Pd) / w(Pt) > 1型的 PGE 矿床,对比金川等很多铜镍硫化物型的铂族元素 矿床都是 w(Pd) / w(Pt) < 1型^[3,6],可能是由于 金宝山 PGE 有特殊的分异机制,这一点有待进一 步研究。

4 超镁铁岩的原始岩浆及成岩作用

根据镜下观察,金宝山超镁铁岩中橄榄石大 致定向排列,单斜辉石充填橄榄石矿物之间空隙。 这是典型的堆晶结构,橄榄石是堆晶矿物,残留 在橄榄石晶体之间的岩浆结晶形成单斜辉石。高 钙和低钙超镁铁岩的稀土元素配分模式具有相同 的形态(图 4),只是由于辉石含量不同(残留岩浆 数量不同)而稀土总量有区别。如果以辉绿岩 JB-9的稀土元素配分模式曲线作为参照,对高钙 和低钙超镁铁岩的稀土元素配分模式曲线进行平 移处理,即根据高钙和低钙超镁铁岩的稀土总量 的大小分别乘以不同的因数,得到图 5,可见除了 Eu、Tm 和 Lu 有差异(没有重合)以外,金宝山超镁 铁岩的稀土配分模式几乎与辉绿岩 JB-9 重合。 Tm 和 Lu 差别大可能与它们含量低,分析相对误 差大有关;Eu 的差别可能与斜长石的分离有关: 超镁铁岩原始岩浆最初结晶形成橄榄石、少量铬 尖晶石和斜方辉石,由于它们的密度比岩浆的密 度大,堆积在岩浆房底部,之后开始结晶斜长石, 由于斜长石密度小,悬浮在岩浆房中上部,斜长石 的结晶使得岩浆房底部 Eu 亏损,也使超镁铁岩普 遍有 Eu 亏损(图 4)。

Fig. 5. Chondrite-normalized REE distribution patterns of the ultra-mafic rocks in comparison with those of dolerite.

根据 JB-9 的主量元素特征,以及橄榄石 (Fo 85)与 JB-9 的 Fe-Mg 交换分配系数≈0.33, Fo 为 85 的橄榄石能够与基性岩 JB-9 的成分达到平 衡,辉绿岩 JB-9 加入约 13%的结晶分异出的橄榄 石和少量铬尖晶石后成分能与 Fo 86 的橄榄石平 衡。我们推测原始岩浆应具有与此相当的成分。 这也与陶炎^[13]通过微量元素反演计算的金宝山 原始岩浆成分接近。岩浆房上部分异出的玄武岩 浆代表成分 JB-9,经过斜方辉石结晶岩浆房分异 出的岩浆代表成分 JB-8(表 4)。

		Table 47	me compos	uon or prim	ary magna a		ater magna	ar junausu			70
样品	SiO ₂	Cr ₂ O ₃	TiO ₂	Al ₂ O ₃	FeOt	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅
原始岩浆-1[13]	48.64	1.17	13.12	11.7		12.92	8.22	1.01	0.33		
原始岩浆-2 ⁰	54.02	0.08	1.74	13.45	10.47	0.12	12.92	4.16	2.35	0.29	0.45
JB-9	55.59	0.05	1.95	15.09	9.99	0.13	8.78	4.66	2.63	0.32	0.5
JB-8	53.45	0	2.67	16.02	11.40	0.2	5.12	6.45	3.31	0.2	0.53
JB-8 [©]	55.81	0.00	2.27	17.16	10.13	0.13	5.12	5.32	3.06	0.37	0.58

表4 金宝山原始岩浆和分异岩浆成分

wition of primary magne and differentiated magnes.

注:FeQ,表示全铁,w(FeQ,) = w(FeQ) + 0.90w(Fe₂O₃);① JB-9 加人 13%的橄榄石和 1%的铬尖晶石;② JB-9 经过 14%的斜方辉石 和 0.25%的铬尖晶石结晶分异后的岩浆,成分与 JB-8 接近,结晶分异矿物成分见表 1.

分离结晶的橄榄石和铬尖晶石加上晶隙间 残留的少量岩浆结晶形成金宝山超镁铁岩。辉 绿岩 JB-8 是由 JB-9 经过 14%的斜方辉石和 0.25%的铬尖晶石结晶。金宝山闪长岩 JB-10 的低铝和 Eu 亏损特征,表明它是经过了斜长石 的分异。 用二辉石温度计计算成岩时的平衡温度为 1100 ℃(计算使用的单斜辉石和斜方辉石电子探 针分析结果总量不足,在这里仅作参考)。Kohler 等^[12]的橄榄石-单斜辉石 Ca 交换反应压力计是 目前公认比较好的结晶岩地质压力计,用此压力 计计算成岩时的平均压力为 0.73 GPa。

参考文献:

- [1] 战新志.金宝山铂矿床硫化物共生组合的演化及铜、钴、镍、铂族元素成矿阶段[J].地球化学,1992,(1):95~100.
- [2] 杨廷祥.云南省弥渡县金宝山铂钯矿典型矿床研究报告,云南地矿局第三地质大队[R]. 1989.
- [3] Chai G and Naldrett A J. The Jinchuan ultramafic intrusion: cumulate of a high-Mg basaltic magma[J]. Journal of Petrology, 1992, 33(2): 277 ~ 303.
- [4] Chai G and Naldrett A J. Characteristics of Ni-Cu-PGE mineralization and genesis of Jinchuang deposit, Northwest China [J]. Econ Geol., 1992, 87;1475~1495.
- [5] 解广袤, 汪云亮, 范彩云. 金川超镁铁岩侵入体及超大型硫化物矿床的成岩成矿机制[J]. 中国科学(D), 1998, 28:31~36.
- [6] 汤中立,李文渊.金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M].北京:地质出版社,1995.
- [7] 董显扬,李 行,叶良和,等.中国超镁铁岩[M].北京:地质出版社,1995.
- [8] McDonough W F and Sun S-S. The composition of the earth[J]. Chemical Geology, 1995, 120: 223 ~ 253.
- [9] Pearce J A and Cann J R. Tectonic setting of basic volcanic rocks investigated using trace element analyses [J]. Earth Planet. Sci. Lett., 1973, 19:290 ~ 300.
- [10] Pearce J A. Trace element characteristics of lavas from destructive plate boundaries [A]. Thorpe R S. Andesites [M]. New York: John Willey and Sons, 1982. 525 ~ 548.
- [11] 南京大学地质学系. 地球化学[M].北京:科学出版社, 1979. 232~235.
- [12] Kohler T B and Brey G. P. Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications[J]. Geochim. Cosmochim. Acta, 1990, 54:2375 ~ 2388.
- [13] 陶 炎.金宝山超镁铁质岩原始岩浆成分反演[J].岩石学报(In press),2002.

GEOCHEMICAL AND PETROLOGICAL CHARACTERISTICS OF MAFIC AND ULTRA-MAFIC INTRUSIONS IN JINBAOSHAN, YUNNAN

ZHU Dan^{1,2}, TAO Yan¹, LUO Tai-yi¹, GAO Zhen-min¹, ZHU Cheng-ming³

Open Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China;
 Graduate School of Chinese Academy of Sciences, Beijing 100039, China;

3. Laboratory of High Temperature and High Pressure, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China)

Abstract: There are larger-scale sulfide PGE deposits in mafic and ultra-mafic intrusions in the Jinbaoshan area of Yunnan. Clinopyroxene-bearing peridotites are the main rocks there. From the mineralogy and petrology data, it is proposed that the formation of the plutons is closely related to the fractionation-crystallization of tholeiite basalt magma in the Jinbaoshan area. High concentrations of MgO, much high \sum REE and structures of olivine and clinopyroxene in the intrusions, indicate that they resulted from mixing of olivine, chromite and magmatic residues.

Key words: Jinbaoshan; mafic-ultramafic rock; clinopyroxene-bearing peridotite; olivine; clinopyroxene