文章编号: 1000-4734(2009) 01-0109-04

高温高压下杂质离子对水晶电导率 影响的实验研究

单双明^{1,2},李和平¹,代立东¹,汪日平^{1,2}

(1. 中国科学院 地球化学研究所 地球深部物质与流体作用实验室, 贵州 贵阳 550002; 2. 中国科学院研究生院,北京 100039)

摘要:杂质离子往往是影响水晶电导率的主要因素。在 2.0GPa和 823~1123 K的条件下,借助交流阻抗谱法 在 $10^{\circ} \sim 10^{\circ}$ H z频率范围内, 就位测量了水晶 Z 轴方向的电导率, 并用 LA-ICP-M S测试了水晶中杂质 N a A l的 含量。通过 Arrhenius关系拟合,得出 2.0 GPa和 823~1123 K条件下水晶的活化焓和指前因子。发现水晶中 杂质 Na A 的含量彼此正相关,水晶电导率与晶体中 Na含量正相关,且指前因子亦与水晶中杂质 Na A l含量 正相关。

关键词: 高温高压; 水晶; 电导率; 杂质离子

中图分类号: 0738 P579 文献标识码: A

作者简介: 单双明. 男. 1978年生. 博士研究生. 主要从事高温高压下矿物电学性质的实验研究..

高温高压实验一直是人们了解各种物质及体 系的成分、结构、性状和过程的重要手段。因此、 开展各种物质及体系的高温高压实验研究具有重 要的理论和实际意义^[1-2]。石英是一种常见的矿 物,占地壳质量的 20%;此外,作为主要的造岩矿 物,其物理性质的研究可直接应用于热液矿床的 成因研究和矿床评价,具有极其重要的意义^[3]。 以往对水晶的研究主要集中在弹性、压电性等性 质上,虽然王多君等^[4]、代立东等^[5]、Bagdassarov 和 $Del pine^{[0]}$ 做过水晶电导率方面的研究, 但主 要是实验方法以及温压条件对电导率影响的研 究。高温高压条件下水晶中杂质离子含量对其电 导率影响的实验研究国内外鲜见报道。 然而 石 英或水晶的宏观物理性质、微观晶格扩散以及表 面物理化学特征无一不受其中的晶格杂质点缺陷 的制约。不同温度压力下水晶电导率与杂质含量 关系的实验研究既具有重要的地球科学意义,其 结果一方面可为野外大地电磁测深反演地球内部 物质结构及物质组成提供基本的电性参数,另一 方面可为地质地球化学家们深入研究含石英岩石

收稿日期: 2007-07-08

基金项目: 国家 863计划项目 (2006AA 09Z205); 国家自然科学基 金项目(批准号: 40573046)

各矿物间在高温高压下的互扩散过程提供基本的 热力学与动力学参数:与此同时,不同温度压力下 水晶电学性质的实验研究还将为水晶的改色、除 杂和掺杂等改性工艺的研究,以及水晶的光学、压 电和介电特性的科学利用提供重要的科学依据。 本工作在 2.0 GPa和 823~ 1123 K 下借助交流阻 抗谱法在 $10^{1} \sim 10^{6}$ H z 频率范围内就位测量了水 晶 Z轴方向的电导率,并使用激光剥蚀电感耦合 等离子质谱仪 (LA-ICP-MS)测试了水晶中杂质 NaAI的含量,计算了水晶的活化焓和指前因子。

1 实验方法

本实验所用样品为中国科学院地球化学研究 所水晶制备厂生产,并选用其中沿 Z 轴方向生长 的水晶讲行实验。

1.1 电导率的测量

高温高压电导率测量实验在中国科学院地球 化学研究所的 Y 1-3000吨紧装式六面顶高温高压 实验装置和 Solartron-1260 阻抗 /增益-相位阻抗 谱分析仪 (1260FPIA)上完成、装置的操作与使用 原理见文献^[7]。

实验前,沿晶体 Z 轴方向从水晶中连续切割 出 5个直径 6.0 mm, 高 4.0 mm 的圆柱体 (记为 © 1994-2012 China Academic Journal Electronic Pu

No.1 No.2 No.3 No.4 No.5), 并在无水乙醇中

用超声清洗 30min 取出后在 120 ℃烘箱中烘烤

Fig 1. Sample assemblage and data collection system.

实验样品组装和数据采集系统如图 1 所示。 实验中的外传压介质为烧结叶蜡石,烧结温度 973 K,烧结时间 8 h,内传压介质为生烧可切削氧 化铝,同时起到绝缘的作用。温度测量由 P t h₁₀--P t 热电偶连接 H P 数字万用表 (图 1中 TC)完成。 实验采用恒压升温的方法进行,升压速率 0.5 GPa/h 升到 2.0 GPa后自动升温,升温速率 20 ℃/m in。温度升至预定值时稳定 15~20 m in 然 后用 1260FP A 在 $10^{1} ~ 10^{6}$ H z 频率范围内测量 系统的阻抗谱图,待多次测量重合后记录实验 数据。

1.2 微量元素 Na Al含量的测定

微量元素含量测量实验在西北大学大陆动力 学国家重点实验室的 LA-ICP-MS上完成, 仪器的 参数设置与操作见文献^[8]。

实验前, 沿晶体 Z 轴方向从水晶中切出宽 15.0mm, 厚 2.0mm 的薄片 (长度从晶面到籽 晶)。用 1^{µm}的金刚石粉对薄片进行双面打磨, 磨光后依次用低导去离子水清洗 3次, 5% 的稀硝 酸浸泡 12h, 5% 的稀硝酸超声清洗 30min, 去离 子水清洗 3次, 取出后用纯 Ar气吹干, 并用滤纸 包好待用。

实验中采用 H e作为剥蚀物质的载气。用美 国国家标准技术研究院研制的人工合成硅酸盐玻 璃标准参考物质 N IST 610对仪器进行校准, 使仪 器达到最佳性能。最佳化完成后即可进行含量测 量,测量时采样方式为点剥蚀,数据采集选用跳峰 方式 (peak jumping),剥蚀直径为 120 μ m。沿晶 体 Z 轴方向从晶面到籽晶每隔 1.5 mm 一个点进 行 LA-ICP-M S测定。元素含量计算以 Ca作为内 标,N ST610作为含量已知的标准物质。

2 实验结果与讨论

2.1 电导率结果与讨论

在压力为 2.0 GPa和温度为 823~1123 K的 条件下,每隔 50 K 一个温度点对各样品进行阻抗 谱测量。图 2为样品 N o 1的阻抗谱图,从图中可 知随着温度的升高,水晶的阻抗不断降低,这种趋 势与前人研究结果^[45]一致;但是在阻抗数值上 与前人研究结果^[46]有所差别(1~2个数量级), 这与样品的来源(主要为样品杂质含量)、几何参 数(即样品的厚度和横截面积)以及实验条件 (压力)的不同有关。

图 2 样品 No. 1的阻抗谱图 (p = 2.0 GPa Re[Z]为实部, m[Z]为虚部)

将阻抗谱图用 1260FPIA 自带的 Z-view 软件 进行等效电路拟合得到各样品不同温度下的电阻 R,将其代入公式: $\sigma = (LS) / R$, (其中 σ 为电导 率, L为水晶样品高度, S 为电极面积),即可得到 各样品不同温度下的电导率。

使仪 将 $\lg(\sigma T) = 1/T$ 作图 3,从图中可知,各点明 量测 Pub 最分成两组。 $\exists_1 N \circ_2 1$ 。 $N \circ_2 4$ 的电导案 明显低于 $i_1 n_2$ N o 2, N o. 3, N o. 5 的,这与样品中杂质的含量 有关。

图 3中 $g(\sigma T)$ 与 1/T有很好的线性关系,符 合 Arthenius关系^[9]:

 $\lg(\sigma T) = \lg 4 - 0.4343 E /(\kappa T)$

其中: σ 为电导率, A 为指前因子, κ 为 Boltzmann 常数, T为热力学温度 (Kelvin), E 为活化焓。表 1列出了各电导率样品的 Arrhenius关系拟合参 数, 从表中可以看出, 不同样品的拟合指前因子 A 有 2个数量级的变化。

Fig 3. Conductivity pb ts $(g(\sigma T) vs 1/T)$

of different samples

表 1 各样品的 Arthenius关系^[9]拟合参数

Table 1. Sinulated parameters of Armenius relation

for	d	iffe rent	samp	\mathbf{es}
-----	---	-----------	------	---------------

样品	lg4	T /(K)	A /(SK /m)	E / (eV)	r^2
NO. 1	3 300	823~ 1123	1995. 262	0. 437	0. 9947
NO. 2	3 964	823~ 1123	9212. 977	0.479	0. 9971
NO. 3	4 194	823~ 1123	15620. 682	0. 501	0. 9974
NO. 4	3 290	823~ 1123	1949. 845	0.436	0. 9937
NO. 5	3 852	823~ 1123	7107.224	0.450	0. 9981

2.2 Na Al含量的结果及与电导率参数关系的讨论

由于样品杂质含量是每隔 1.5mm 一个点进 行 LA-ICP-M S测量的, 而阻抗谱测量所用样品在 从晶体上切下时厚度为 4mm, 因此, 各样品的杂 质含量不是直接使用 LA-ICP-M S数据, 而必须通 过计算求取。本工作采用的方法是:将电导率样 品所处位置范围内各剥蚀点的数据进行几何平 均, 视此平均值为各样品中 Na A I的含量, 结果列 于表 2.0 很明显, Na和, A I的含量变化趋势一致。

表 2 各样品的 Na Al含量

Table 2. The contents of N a and A l in various samples $% \left({{{\mathbf{A}}_{\mathbf{A}}}_{\mathbf{A}}} \right)$

样品	$w(Na) / 10^{-6}$	w (A)) /10 ⁶
No. 1	0. 6953	2.7450
No. 2	2. 2868	5. 1953
No. 3	5. 1089	7.4178
No. 4	0. 9823	3.7435
No. 5	3. 3152	6.6282

将表 2的 Na Al含量换算成原子数,结果表 明 n(Na):n(Al) < 1:1, 说明水晶中可能还含有其它一价阳离子杂质, 这有待于进一步的研究, 下面仅对 Al³⁺、Na⁺加以讨论。

对比图 3和表 2 相同温压条件下水晶电导 率和杂质 Na A l的含量呈正相关关系。图 4为各 样品 left 和 Na A l含量关系,从图可知:①水晶中 Na A l的含量变化趋势一致;② left 的变化趋势与 Na A l含量的变化趋势一致。

在水晶的水热生长中采用 $N \ge O_3$ 作为矿化 剂, 水晶中不可避免的引入了 Na^+ 离子。 Na^+ 离 子进入晶格后, 以填隙的形式进入晶格间隙, 由于 库仑力的作用, Na^+ 处在 A^{3^+} 的最邻近位置或次 邻近位置, 以形成 $[A^{3^+} - Na^+]$ 离子对^[10]。

水晶的离子电导主要由 $[A^{3^{+}} - N a^{+}]$ 离子对 分解后的 Na^{+} 离子引起, 且水晶电导率与 Na^{+} 离 子浓度存在如下关系^[11]:

 $\sigma = c N_0 e \mu$

其中: σ 为电导率, c为 N a^{+} 离子浓度, N_{0} 为单位 体积内硅原子数, e为电子电量, μ 为 N a^{+} 离子迁 移率。在相同温压条件下 N_{\odot} μ 为恒定值。此 外, 按照质量作用定律 [A I^{3+} -N a^{+}]分解后的 N a^{+}

于表 1394-2017 China Academic Journal Electronic Publishing House: All rights reserved. The provident the second state of the s

系^[10],因此,水晶电导率与晶体中 Na含量正 相关。

指前因子 A 由下式决定^[11]:

 $A = (q_{\rm M}/2)^{1/2} N_0 e^2 V_0' d^2 / K$

其中: q_a 为总碱含量, V_0 为振动频率, d 为跃迁距 离, 其他同上。此处, 总碱含量即为水晶中 N a的 含量, 在相同温压条件下 $V_{-x} (d, N_0)$ 等均为常数, 因此, A 与晶体中 N a的总含量呈正相关关系, 故 gA 的变化趋势与 N a A l含量的变化趋势一致。

3 结 论

通过在 2.0 GPa和 823~1123 K 下借助交流 阻抗谱法在 $10^1 ~ 10^6$ H z频率范围内对水晶 Z 轴 方向的电导率就位测量,以及水晶中杂质 Na A l 的含量的 IA-ICP-M S测量,我们发现高温高压下 水晶电导率受其杂质 Na A l含量的影响很大,且 呈正相关关系;此外,指前因子变化趋势与 Na A l 含量的变化趋势一致。

参考文献:

- [1] 谢鸿森.地球深部物质科学导论[M].北京:科学出版社, 1997. 42-45.
- [2] 谢鸿森,周文戈,刘永刚,等.地球深部物质的某些物性测量方法研究[J].地学前缘,2003,10(2):357-365.
- [3] 潘兆橹.结晶学与矿物学[M]. 武汉:中国地质大学出版社, 1993: 67-76.
- [4] Wang D J LiH P, LIU C Q, et al Electrical conductivity of synthetic quartz crystals at high temperature and high pressure from complex in pedance m easurem ents[J]. Chin Phys Lett, 2002, 19 1211–1213
- [5] 代立东,李和平,单双明,等 高温高压下 Z轴水晶的电导率实验研究 [J]. 人工晶体学报, 2005, 34:403-407.
- [6] Bagdassarov N S, D el p ine N. α - β inversion in quartz from low frequency electrical in pedance spectroscopy [J]. Journal of Physics and Chamistry of Solids 2004, 65(8-9): 1517-1526
- [7] Xu JA, Zhang YM, Hou W, et al. M essurements of ultrasonic wave velocities at high temperature and high pressure for window glass, pyrophylite and kimberlite up to 1400 °C and 5. 5 GPa[J]. High Temperature-High Pressure, 1994, 26: 375-384
- [8] 柳小明,高山,袁洪林,等. 193 m LA-ICPMS对国际地质标准参考物质中 42种主量和微量元素的分析 [J]. 岩石学报, 2002, 18 408-418.
- [9] N istan U. Stability field of olivine with respect to oxidation and reduction [J]. Journal Geophysical Research, 1974, 79(5): 706-711
- [10] Nowick A S. Stanley M W. Dielectric relaxation due to the A+Na defect in a quartz[J]. JApp lPhys, 1969, 40 4995-4997.
- [11] Jain H, Nowidk A S. Electrical conductivity of synthetic and natural quartz crystals J]. J Appl Phys 1982, 53: 477-484

INFLUENCE OF IONIC IMPURITIES ON THE ELECTRICAL CONDUCTIVITY OF SYNTHETIC QUARTZ CRYSTALS AT HIGH TEMPERATURE AND HIGH PRESSURE

SHAN Shuang-ming^{1, 2}, LIH e-ping¹, DAILi-dong¹, WANG Ri-ping^{1, 2}

(1 Laboratory for Study of the Earth's Interior and Geofluids, Institute of Geochenistry, Chinese Academy of Sciences, Guiyang 550002, China;

2 Graduate School of the Chinese Academy of Sciences, Beijing 100039, China)

Abstract Ionic inpurity is the most important factor affecting the electrical conductivity of synthetic quartz crystals. We measured the electrical conductivity of synthetic quartz crystals using the AC $(10^{1} - 10^{6} \text{ Hz})$ complex impedance method in the temperature range between 823 and 1123 K at the pressure of 2.0 GPa. Using the method of LA-ICP-MS, the contents of N a and A l in the study quartz crystals were measured. By fitting the pbts of lg^oT vs 1/T, we got the pre-exponential factor and activation energy at 2.0 GPa and 823 – 1123 K. It was found that the contents of N a increased with increasing contents of A l and in advance, with increasing contents of N a both the electrical conductivity and pre-exponential factor tended to increase

Keywords high temperature and high pressure, quartz crystal, electrical conductivity, ion ic inpurity.

112