兰坪盆地白秧坪 Cu-Pb-Zn-Ag 多金属矿集区元素 共生分异机制及物质来源^{*}

冯彩霞¹ 毕献武¹ 胡瑞忠¹ 刘燊¹ 武丽艳¹ 唐永永¹² 邹志超¹²

 $FENG\ CaiXia^1\ , BI\ XianWu^1\ , HU\ RuiZhong^1\ , LIU\ Shen^1\ , WU\ LiYan^1\ , TANG\ YongYong^{1\ 2}\ and\ ZOU\ ZhiChao^{1\ 2}$

1. 矿床地球化学国家重点实验室,中国科学院地球化学研究所,贵阳 550002

2. 中国科学院研究生院 北京 100049

1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550002, China

2. Graduate School of Chinese Academy of Sciences, Beijing 100049, China

2011-04-01 收稿, 2011-07-03 改回.

Feng CX, Bi XW, Hu RZ, Liu S, Wu LY, Tang YY and Zou ZC. 2011. Study on paragenesis-separation mechanism and source of ore-forming element in the Baiyangping Cu-Pb-Zn-Ag polylmetallic ore deposit, Lanping basin, southwestern China. Acta Petrologica Sinica, 27(9): 2609 – 2624

Abstract Baiyangping Cu-Ag polymetallic ore district is located in the northern part of the Lanping-Simao foreland fold belt between the Jinshajiang-Ailaoshan and Lancangjiang faults, and the deposit can be divided into eastern and western ore zones. Based on electron microprobe analysis of ore minerals, ore-forming element content and S isotope composition, we included that (1) The type of ore minerals combination and trace elements characteristics are significantly different in two ore zone, the feature in eastern part is simple, whereas in western part is complex (occurring Pb ,Zn and Cu independent mineral , in addition , having Co and Bi minerals); (2) In eastern ore zone, the enrichment of Ag ,As ,Cd ,Pb ,Sb and Zn is weakened , enrichment of Bi and Cu is enhanced from south to north , moreover , the depletion of Co ,Cr ,Ni and V are appear in this area. In western ore zone , the enrichment of Ag ,Pb and Zn are strong in Wudichang and Liziping. Cu is enriched in Xiaoyakou and Baiyangping. Otherwise ,Ba ,Co ,Cr ,Ni and V are depleted in different ore zones; (3) Co ,Ni and Cr contents are higher in western ore zone , on the contrary ,Sr ,Pb ,Zn and Ba contents are higher in eastern ore zone. These characteristics are consistent with their mineral assemblages ´ rules. There existed a certain relationship between the paragenesis-separation mechanism and tectonic zonation; (4) The volcanic rocks in Lanping basin have provided the main ore-forming source. The characteristics of Mo , Co and Ni indicated that the mineralization may have a close connection with mafic-ultramafic magma. S isotope features implied that the source of sulfur is mainly mantle source.

Key words Paragenesis-separation mechanism; Source; Ore-forming elements; Cu-Pb-Zn-Ag polymetallic ore deposit; Baiyangping; Lanping basin

摘要 兰坪白秧坪 Cu-Ag 多金属矿集区夹持于金沙江和澜沧江断裂之间,属兰坪-思茅中新生代坳陷带之兰坪盆地北部,可分东矿带和西矿带二部分。本文通过对白秧坪金属矿集区东西2个矿带的矿石矿物电子探针分析、成矿元素含量和组合分析及S 同位素的讨论得出:(1)东西2个矿带矿石矿物组合类型及微量元素组合特征具明显不同,前者矿石矿物组分较为简单,西带较为复杂,不仅有 Pb、Zn 和 Cu 的独立矿物,还存在 Co 和 Bi 的矿物;(2)东矿带 Ag、As、Cd、Pb、Sb 和 Zn 的富集从南到北依次减弱,Bi 的富集依次增强,Cu 的富集趋势越往北越富集,亏损元素为 Co、Cr、Ni 和 V; 西矿带 Ag、Pb、Zn 的富集属吴底厂和李子坪矿段最富集,而 Cu 则在小丫口和白秧坪矿段最富集。亏损元素为 Ba、Co、Cr、Ni 和 V,但各个矿段这些元素的亏损程度有所不同,有的矿段部分元素有稍富集趋势;(3) Co、Ni 和 Cr 等微量元素西带高于东带,而 Sr、Pb、Zn 和 Ba 元素则东带高于西带,与各自的矿物组合类型一致,且元素的共生分异机制与构造分带存在一定的耦合关系;(4) 兰坪盆地火山岩为白秧坪多金属矿集区提供了主要物源,Mo、Co 和 Ni 等元素显示其成矿可能与隐伏基性-超基性岩浆有关的深部来源有关;S 同位素特

^{*} 本文受国家重点基础研究发展计划项目(2009CB421005)和国家自然科学基金项目(40972071)联合资助. 第一作者简介: 冯彩霞, 女, 1976 生, 博士, 副研究员, 矿床地球化学专业, E-mail: fengcaixia@ vip. gyig. ac. cn

征表明东西矿带金属硫化物硫源均以幔源为主。 关键词 共生分异机制;来源;成矿元素;Cu-Pb-Zn-Ag 多金属矿集区;白秧坪;兰坪盆地 中图法分类号 P595; P612

元素的共生分异是矿床学研究的重要内容(袁见齐等, 1984) 其主要表现为在成矿过程中地球化学性质相近的元 素 或由于源区、迁移形式、析出条件等相近 在矿床中常表 现程度不同的共生关系。但是 由于不同元素地球化学性质 的固有差别、成矿环境的变化及其络合物稳定性的差异,常 呈共生关系的元素也可出现分异(朱赖民等 2001)。这一研 究理论在国内外找矿勘探和地球化学勘查中得到了广泛应 用:如微细侵染型金矿床的发现得益于一定条件下金可与 汞、锑和砷等元素共生的矿床地球化学理论(Albino, 1994; Arehart et al., 1997; 朱赖民等, 2001); 铁、REE 和铌的地球 化学的共生原理,使得白云鄂博矿床经济价值大增(Linda and Paul, 1997; Liu et al., 2008; 刘健等, 2009); 湘中锡矿山 式锑矿锑与砷和金的共生分异现象,可为寻找类似矿床类型 提供特征指示元素(陶琰和金景福,2001);下寒武统遵义地 区 Mo-Ni 多金属层中铂族元素、分散元素和 Mo-Ni 等元素共 生的发现和认识极大推动了国内外学者对黑色岩系的关注 (Steiner et al., 2001; Mao et al., 2002; Jiang et al., 2007; Orberger et al., 2007); 斑岩铜矿中金和银的共生, 对提高矿 床的经济价值有重大意义(宋会侠等,2007),等。此外,铅、 锌和银经常共生形成铅锌矿和铅锌银矿 根据赋矿围岩岩性 和成矿元素组合的不同,可将沉积岩型铅锌矿床分为砂岩型 (Sandstone-type SST)铅矿、砂岩型铅锌矿、密西西比河谷型 (Mississippi Valley type MVT) 铅锌矿、沉积岩容矿块状硫化 物型(Sedimentary exhalative ,SEDEX) 铅锌矿 4 类(Leach et al., 2005); 然而, 这 3 种元素又可成独立矿床存在, 如产于 我国西南川滇黔接壤地区的密西西比河谷型铅锌矿带中的 乐马厂独立银矿床,银含量高,但铅和锌却不够工业品位(周 云满 2001)。

兰坪盆地白秧坪 Cu-Pb-Zn-Ag 多金属矿集区是继金顶 Pb-Zn 矿床之后被发现的又一大型多金属成矿区,其形成于 大陆碰撞环境,发育在强烈变形的沉积盆地内,受逆冲推覆 构造控制(徐启东和李健威,2003;何龙清等,2005;Hou et al.,2007;侯增谦等,2008;He et al.,2009),与岩浆活动无 关且后生成矿,明显区别于以上提到的4种沉积岩型铅锌矿床(Xue et al.,2007;He et al.,2009;侯增谦等,2008)。根 据其产出的盆地环境、构造位置和物质来源等特征,有学者 将这类特殊的沉积岩容矿贱金属矿床定义为"Jingding Type (金顶式)"(Xue et al.,2007;He et al.,2009),本文将继续 沿用该种观点。前人对这种"金顶式"白秧坪多金属矿集区 进行了许多研究,并取得了一系列重要的成果(田洪亮,1997,1998;龚文君等,2002;薛春纪等,2002,2003;朱大岗等,2002;邵兆刚等,2003;王峰和何明友,2003a,b;徐启东和李 健威,2003;杨伟光等,2003;李志明,2003;李志明等,2004;陈

开旭等 2004;何明勤等 2004 2006;何龙清等 2005;张尔新, 2005;范世家等 2006;He *et al.*,2009;Wang *et al.*,2010;刘 家军等 2010;王晓虎等 2011)。

尽管如此,对白秧坪大型矿集区元素共生分异机制的探 讨仍相对缺乏,整个矿集区东西矿带共有近15个矿段,每个 矿段富集的元素不尽相同,元素富集趋势是什么?哪些元素 共生?其共生规律如何?其金属成矿元素与地层围岩关系 如何?这些都是目前尚未很好解决的问题。另外,前人就有 关东西矿带成矿元素从何而来展开了一系列有意义的工作, 但仍存在较大分歧(魏君奇,2001;王峰和何明友,2003b;李 志明,2003;何明勤等,2004;徐仕海等,2005;何龙清等,2005; He et al.,2009;王晓虎等,2011)。因此,本文将利用矿物 学、元素地球化学和S同位素等研究手段对东西矿带中不同 矿段元素的空间共生分异特征进行系统研究,并对成矿来源 做进一步探讨,以期对很好地认识该类型矿床的成矿富集机 理提供重要的理论依据。

1 矿床地质概况

三江构造带地处欧亚板块和印度板块的拼合地带,由于 该区经历了漫长的地壳变动过程,特别是华力西期造山旋回 以来的历次构造运动的强度递增,使本区的地壳结构复杂 化,并创造了良好的成矿条件(陈炳蔚等,1991;侯增谦等, 2008; Wang et al.,2010)。滇西兰坪中新生代盆地是三江构 造带的一个重要组成部分,位于三江构造带的中段(图1a), 介于澜沧江和金沙江断裂带之间,东侧与扬子板块相接,西 侧与藏滇板块毗邻(Xue et al. 2007)。由于澜沧江与金沙江 洋盆的相向俯冲和碰撞,使作为俯冲板块的兰坪-思茅陆块 迅速抬升,而缺失下三叠统地层。至中三叠世,在碰撞上隆 的背景下,本区发生裂陷,形成兰坪-思茅盆地(阙梅英等, 1998)。

兰坪盆地是3 大巨型板块(欧亚、印度和太平洋板块)相 互作用的交汇地区,这种极为复杂的地质构造环境,造成了 该区铜等多金属矿产资源的高度富集,形成了我国著名的 "三江"铜多金属成矿带,白秧坪 Cu-Pb-Zn-Ag 多金属矿集区 就位于兰坪盆地北部(图 1a)。受造山作用的控制,兰坪盆 地东西两侧分别发育与澜沧江-昌宁-孟连造山带和金沙江-哀牢山造山带有关的2个前陆逆冲推覆构造系统,控制着白 秧坪地区 Cu-Pb-Zn-Ag 多金属矿集区的成矿作用,由于2 套 逆冲推覆构造系统在形成机制上的差异,导致该区东部与西 部成矿作用上的不同,形成东西2 个分属不同体系的成矿带 (陈开旭等 2000;魏君奇 2001),即三山-河西银多金属矿带 (简称东矿带)和富隆厂-白秧坪铜多金属矿带(简称西矿带)。

图 1 兰坪盆地构造位置与地质简图(a)和白秧坪多金属矿集区地质图(b)(据云南省地质调查院第三地质矿产调查所, 2003^①; Xue *et al.*, 2007 略有修改)

Fig. 1 Tectonic location and geological sketch map of Lanping basin (a) and geological sketch map of Baiyangping Cu-Pb-Zn-Ag polylmetallic ore deposit, Lanping basin, southwestern China (b) (after Xue *et al.*, 2007)

东矿带由麦地坡、东至岩、下区五、新厂山、燕子洞、华昌山、灰山和黑山矿段组成,是以 Cu、Ag、Pb、Zn 和 Sr 为主的成 矿带,该成矿带沿着华昌山断裂带南北延伸达 30 多千米,水 平距离达 15km 以上(图 1b);矿体主要呈大脉状产于华昌山 断裂破碎带和与之平行的断裂系统及其上盘上三叠统三合 洞组层间破碎带碳酸盐岩中,少部分矿体产于断裂下盘第三 系古新统云龙组和始新统宝相寺组砂岩之中(图2),矿体产 状与华昌山断裂近一致;脉石矿物主要有方解石、白云石、石

① 云南省地质调查院第三地质调查所(云南三所).2003. 云南兰坪白秧坪铜银铅锌钴矿化集中区评价地质报告.1-266

ß	时代	组(厚度)	岩性	岩	性	描	j	述
新	N_2S	三营组 761m		底部晶屑溃 岩,上部列	そ 灰岩角 の の お よ 米	乐岩 夹 砂 岩 且 砂 岩 和 砑	、 凝灰	反砂
近纪	N ₂ j	剑川组 671m		砂砾岩、 岩,偶见和	尼岩、火L 且面岩	山碎屑岩,	火山角码	乐
	E,?	?485m		红色巨砾清	岩−沙泥岩	互层		
古近	E2b	宝相寺组 977m		河湖相粗碎 褐色长石石 砂岩夹砂砾	择屑沉积, 英砂岩含	底部砾岩 (砾砂岩,	, 中下部 上部紫幻	3黄 [色
纪	E2g	果郎组 607m	en en en en en el	浅湖滨湖相	目紫红色粉	}砂岩,泥:	岩夹少量	细砂岩
	E ₁ y	云龙组 719m	77777	盐湖相紫丝 泥岩 细石	工色杂色: 沙岩,粉石	含盐和石膏	的泥砾岩	ыл, ліп лі
6	K ₃ h	虎头寺组59m	22223	浅湖相灰色	、黄色长	石石英砂岩	-	
呈垩	K ₂ n	南新组592m		湖相紫红	色砂岩砌	少砾岩,氵	尼岩和粉	砂岩
纪	Кj	景星组 611m		紫红色、灰 互出现,局	白和灰绿(部灰绿色)	色石英砂岩 灰质砾岩	粉砂质泥	岩交
侏罗	J,b	坝注路组 1176m			紫红色	碎屑岩		
纪	J ₂ h	花开佐组 1134m		紫红色夹黄 下段为红色 段为杂色研	黄绿色砂岩 色碎屑岩浴 碎屑岩和硕	岩, 泥岩, 冗积, 见石 炭酸盐岩:	偶见灰岩 膏层: 」	
	$J_{1}y$	漾江组 523m	空空	1	紫红色砂	岩、泥岩利	口石膏	
	T,m	麦初箐组 1008m		海陆交 上部陆	互相碎屑 相为主	岩沉积,	下部海相	
Ξ	T,S	三合洞组 742m		上段页	页岩, 下自	殳页岩和灰	岩互层	
	T,w	歪古村组 803m			砾岩利	口砂质泥岩		
叠	T,c	崔依比组 5700m		上部以流线 岩、流纹 岩	文质熔岩角 质熔岩角砌	甬砾岩为主 乐岩细碧岩	, 下 部 玄 和 细 碧 角	〔武 自斑
纪	T,p	攀天阁组 1005m			流纹	岩		
	T ₂ s	上兰组 2573m		下部1 越 泥 友 岩 載	以 细 粒 碎 盾 具 滨海− 分砂 着 , 分 或 发 育 , 分	禹沉积为主 浅海 沉积* 田砂岩和友 記整的海进	:, 越向] 寺征: 上 岩, 越向 旋回:	下粒度 部页岩、 可上,
二叠纪	P ₁ l	拉竹河组 518m	1000) 1000)	浅海台地 灰岩夹火	。相碎屑岩 と山岩・科	言夹灰岩, 肖有变质	或碎屑岩	ł
石炭纪	Csh	石登组 1540m		中酸性火山 岩泥质, 和	山岩, 凝加 沙质, 硅质	灰岩夹大量 质条带灰岩	生物碎屑	 承
元古界	Pt		\$ } } } } } } } } } } } } } } } } } }	苍山群, 原岩为雪 岛弧沉和	崇山群 夏理石、 泉, 扬子林	角砾岩相变 基性火山岩 坂块西缘的	2质岩 5,活动 白一部分	

图 2 白秧坪多金属矿集区地层柱状图(据云南三所, 2003)

Fig. 2 Stratigraphic column of Baiyangping Cu-Pb-Zn-Ag polylmetallic ore deposit , Lanping basin , southwestern China

英、重晶石和天青石等(何民勤等,2004);东矿带的围岩蚀 变普遍且较强烈,主要有黄铁矿化、重晶石或天青石化、硅 化、方解石化和白云石化等(邵兆刚等,2003;何龙清等, 2005;Xue et al.,2007;He et al.,2009)。西矿带由白秧坪、 富隆厂、吴底厂、李子坪、核桃箐、小丫口和何梅沟等矿段组 成,是以Cu、Ag、Pb、Zn和Co为主的成矿带,矿体产出受四十 里箐-上下庄断裂和巴卓烟断裂控制(图1b),含矿地层主要 为白垩系景新组碎屑岩,侏罗系花开佐组砂岩和灰岩为次含 矿层位(图2);脉石矿物主要有石英、伊利石、铁白云石和绿 泥石等(张尔新,2005);该带围岩蚀变主要有硅化、碳酸盐 化、重晶石化和黄铁矿等,以充填和交代为主。东西矿带中 矿石矿物组合不尽相同,东矿带的矿石成分为一套中低温热 液成因的矿物组合,而西矿带不同矿段的矿物组合有明显差 异,如核桃箐-富隆厂为 Cu-Ag-Pb-Zn 异常带(尚有低值 Mn、 Ni、Co 和 Mo 等中高温元素)、白秧坪为 Pb-Zn-Cu-Ag 异常带 (其中 As 的富集浓度也较高,尚有低值 Co 和 Bi)、吴底厂为 低值 Pb、Zn,但伴生元素 Hg、As 和 Sb 十分强大,超过主成矿 元素等(云南三所 2003)。

2 样品处理流程及测试方法

本文采样工作包括白秧坪多金属矿集区东矿带(华昌山 矿段、下区五矿段和东至岩矿段)及西矿带(小丫口和白秧坪 矿段、吴底厂和李子坪矿段、何梅沟和核桃箐矿段)(图 1b)。

样品处理流程:选择具有代表性的样品磨制 0.1 ~ 0.3mm 厚的光薄片,对每个矿段中的特征矿物进行镜下观察 和电子探针分析。在野外和室内工作基础上,围岩和矿石样 品经过分选,用蒸馏水清洗干净,并在烘箱中烘干,然后磨至 200 目供主要成矿元素含量测试分析。在双目镜下手工挑出 东西矿带成矿期黝铜矿、黄铜矿、闪锌矿和方铅矿,纯度均达 到 99% 以上,在玛瑙钵中磨碎至 200 目以上供 S 同位素 分析。

电子探针分析在中国科学院地球化学研究所矿床地球 化学国家重点实验室 EPMA-1600 型电子探针仪上完成。先 在显微镜下仔细观察,确定做探针的矿物,做好标记并对光 片进行喷碳制样,抽真空至测试要求,利用能谱仪和波谱仪 进行单矿物成分测试(加速电压 25kV,电流4.5nA,电子束束 斑直径小于1μm)。

成矿元素含量分析在奥实分析检测集团-奥实矿物实验 室(广州)完成。主要采用微量水平多元素分析法(ME-ICP61:微量水平,33元素系列分析):首先对样品用四酸法 (氢氟酸、硝酸、高氯酸和盐酸)进行消解,然后用等离子体发 射光谱定量分析。对其中测试超出检出限的元素(即过量元 素)再用(+)-OC62(矿物单元素分析法:酸溶法消解,等离 子体发射光谱定量检测)分析 经过该方法检测,矿石和围岩 中大部分超出第一次检出限的元素均已测出,但仍有部分成 矿超高含量(如Pb和Zn等)超出该方法检出限。最后用超 高含量铅矿和锌矿分析法(Pb-VOL70和Zn-VOL50,四酸消 解,手工滴定容量法)进行检测。

硫同位素组成分析在中国科学院地球化学研究所环境 地球化学国家重点实验室采用 EA-IRMS 法在连续流质谱仪 上完成。称取硫化物单矿物 70μg(具体视单矿物中硫含量 确定具体称样量),用锡杯包裹紧密,置于 EA 中,样品落入 EA 反应炉,瞬间燃烧分解成 SO₂,反应过程加入氧气助燃, 用氦气吹扫 SO₂进入质谱,然后测定 δ³⁴S,分析过程中加入 内标控制数据准确度 样品至少2次平行测定以保证精度达

图 3 东西矿带矿石手标本和背散射电子图像

(a) -华昌山矿段闪锌矿 + 方铅矿,有后期热液方解石脉;(b) -华昌山矿段闪锌矿 + 方铅矿背散射电子图像;(c) -下区五矿段黄铁矿 + 黝铜 矿 + 孔雀石矿石;(d) -下区五矿段黝铜矿 + 黄铁矿背散射电子图像;(e) -小丫口矿段辉砷钴矿 + 黄铁矿石;(f) -小丫口矿段辉砷钴矿 + 黄 铁矿背散射电子图像;(g) -白秧坪矿段砷黝铜矿 + 黄铁矿石;(h) -白秧坪矿段砷黝铜矿 + 黄铁矿背散射电子图像;(i) -吴底厂矿段方铅矿 石,其间有铁白云石穿插;(j) -吴底厂矿段方铅矿石 + 铁白云石背散射电子图像;(k) -李子坪矿段方铅矿 + 闪锌矿石,有铁白云石穿插;(l) -李子坪矿段方铅矿 + 闪锌矿石 + 铁白云石背散射电子图像;(m) -何梅沟矿段方铅矿 + 闪锌矿石,有天青石脉穿插;(n) -何梅沟矿段方铅矿 + 闪锌矿背散射电子图像;(o) -核桃箐矿段砷黝铜矿 + 硫铋铜矿 + 黄铜矿矿石;(p) -核桃箐矿段砷黝铜矿 + 硫铋铜矿 + 黄铜矿背散射电子 图像. Gn-方铅矿; Sp-闪锌矿; Py-黄铁矿; Tet-黝铜矿; Ten-砷黝铜矿; Ccp-黄铜矿; Wit-硫铋铜矿; Ank-铁白云石; Cob-辉砷钴矿; Mal-孔雀石; Cal-方解石

Fig. 3 The photos of sample and back scattered electron images of ore in western and eastern ore zones

(a) -Gn + Sp in Huachangshan ore block, inserted by calcite; (b) -BSE image of Gn + Sp in Huachangshan ore block; (c) -Py + Tet + Mal ore in Xiaquwu ore block; (d) -BSE image of Py + Tet in Xiaquwu ore block; (e) -Cob + Py ore in Xiaoyakou ore block; (f) -BSE image of Cob + Py in Xiaoyakou ore block; (g) -Py + Ten ore in Baiyangpin ore block; (h) -BSE image of Py + Ten in Baiyangpin ore block; (i) -Gn ore in Wudichang ore block, inserted by Ank; (j) -BSE image of Gn + Ank in Wudichang ore block; (k) -Gn + Sp ore in Liziping ore block, inserted by Ank; (l) -BSE image of Gn + Sp + Ank in Liziping ore block; (m) -Sp + Gn ore in Hemeigou ore block; (n) -BSE image of Gn + Sp in Hemeigou ore block; (o) -Ten + Wit + Ccp ore in Hetaoqing ore block; (p) -BSE image of Ten + Wit + Ccp in Hetaoqing ore block. Gn-galena; Sp-sphelerite; Py-pyrite; Tettetrahedrite; Ten-tennantite; Ccp-copper pyrites; Wit-wittichenite; Ank-ankerite; Cob-cobaltite; Mal-malachite; Cal-calcite 到指标。本方法用国标 GBW04415 和 GBW 04414 ,Ag₂S 做 内标 ,以 CDT 为标准 ,分析精度 ±0. 2‰(2σ)。

3 分析结果

3.1 主要矿物分布特征及电子探针分析

3.1.1 金属矿物

方铅矿 为半自形-他形粒状集合体,呈不均匀浸染状 和星散状分布于闪锌矿之中,与碳酸盐化和重晶石化关系密 切,常与闪锌矿和黄铁矿共生。该矿物在东西矿带均有分 布,但其中赋存的微量元素组合有所不同(图 3a, b, $i \sim n$)。 华昌山矿段方铅矿中 Pb = 69.30% ~ 76.80% S = 11.08% ~15.55%,其余元素为 Ag、Ba、Bi、Fe、Sr和 Zn。吴底厂和李子 坪矿段方铅矿中 Pb = 67.30% ~ 88.80% S = 11.23% ~12.10%,其余元素为 As、Cu、Bi、Fe、Sr和 Zn。何梅沟和核桃 箐矿段方铅矿中 Pb = 71.20% ~ 79.20%, S = 11.96% ~13.23%,其余元素为 Ag、As、Ba、Bi、Sb和 Zn(表 1)。

闪锌矿 为粒状集合体,呈半自形-他形粒状和碎裂粒状,呈不均匀脉状和浸染状与黄铁矿、方铅矿、铁白云石和方解石等矿物共生(图 3a, b, i ~ n)。华昌山矿段闪锌矿中 Zn = 63.10% ~ 63.60%、S = 32.13% ~ 32.17%和 Fe = 2.98% ~ 3.65%,其余元素为 Ag。吴底厂和李子坪矿段闪锌矿中 Zn = 53.70% ~ 51.20%和 S = 26.46% ~ 29.74%,其余元素为 Bi、Cu、Fe、Cr和 Pb。何梅沟和核桃箐矿段闪锌矿中 Zn = 68.70%和 S = 30.73%,其余元素为 Cu 和 Sr(表 1)。

黄铁矿 为致密粒状集合体,呈自形-他形或侵染状赋 存于矿石中,镜下呈亮白色,均质。呈不均匀脉状、浸染状与 黝铜矿和辉砷钴矿等共生(图 $3c \sim f$)。下区五和东至岩矿段 黄铁矿中 Fe = 42.50% ~51.50%和S = 28.06% ~53.16%, 其余微量元素为 Ag、Bi、Cu、Sr和 Zn。小丫口和白秧坪矿段 黄铁矿中 Fe = 40.50% ~44.30%和S = 22.07% ~48.04%, 其余元素为 As、Ni和 Pb(表1)。

黝铜矿 呈块状、条状或致密粒状集合体赋存于矿石 中 手标本为灰一黑色,镜下呈亮白色,均质。呈不均匀脉状 和浸染状与黄铁矿和铁白云石等矿物共生,或与砷黝铜矿呈 类质同像(图 3c, d)。下区五和东至岩矿段黝铜矿中 Cu =39.60%、Fe = 13.80%、S = 1.33%和 Sb = 39.9%,其余元素 为 Zn(表 1)。

砷黝铜矿 呈细脉状和网脉状集合体赋存于矿石中,手标本为深钢灰色。镜下呈亮白色,均质。呈不均匀脉状和浸染状与黄铁矿、硫铋铜矿、黄铜矿和铁白云石等矿物共生(图 3g,h,o,p)。小丫口和白秧坪矿段砷黝铜矿中As = 19.80%~21.10%、Cu = 42.80%~46.20%、Fe = 3.16%~3.56%和S = 26.66%~26.88%,其余元素为Bi、Sb、Sr和Zn。何梅沟和核桃箐矿段砷黝铜矿中As = 21.26%、Cu = 42.86%、Fe = 5.06%和S = 26.58%,其余元素为Sb和Sr(表 1)。

辉砷钴矿 以自形-半自形晶集合体为主,手标本上与 砷黝铜矿连生不易区分,呈侵染状与黄铁矿共生(图 3f)。该 矿物非常少见,仅发现于西矿带中。小丫口和白秧坪矿段辉 砷钴矿中 As = 31.40% ~43.60%、Co = 19.00% ~23.30% 和 S = 22.07% ~25.81%,其余元素为 Fe、Ni 和 Sr(表 1)。

黄铜矿 以侵染状和块状集合体为主,镜下呈亮白色, 均质。呈不均匀脉状和浸染状与砷黝铜矿、硫铋铜矿共生 (图 3o,p)。何梅沟和核桃箐矿段黄铜矿中 Cu = 70.1% 和 S = 23.35% 其余元素为 Fe 和 Ag(表 1)。

硫铋铜矿 该矿物非常少见,仅存于西矿带中。与砷黝 铜矿和黄铜矿等矿物紧密连生在一起,主要呈侵染状产出 (图 3p)。何梅沟和核桃箐矿段硫铋铜矿中 Bi = 62.85%、Cu = 15.25%和S = 18.18%,其余元素为 Fe、As和 Sr(表1)。 3.1.2 脉石矿物

方解石 产出形式有 2 种: 一是产于灰岩中呈泥晶或微 晶状,只有零星的砷黝铜矿和辉铜矿分布; 二是重结晶方解 石,灰岩受到后期热力作用产生局部重结晶,粒度较粗,一般 为 0.1~0.2mm,呈不规则团块状分布于第一类方解石中,与 东矿带铅锌矿化关系密切(图 3a, b)。

铁白云石 呈自形-他形粒状,为东西矿带的脉石矿物 之一,粒径0.1~0.3mm 左右,常呈网脉状分布于岩石中,和 砷黝铜矿、方铅矿和闪锌矿等矿物共生(图 3g~l)。

由上可见, 西矿带较东矿带成矿类型多且复杂, 矿物组 合复杂, 不同矿带成矿元素组合各不相同。

3.2 成矿元素组成

3.2.1 东矿带元素富集分异特征

东矿带成矿元素见表 2。东矿带华昌山矿段 19 个围岩 样品和 16 个矿石样品中富集 Ag、As、Bi、Cd、Pb、Sb 和 Zn ,亏 损 Ba、Co、Cr、Ni 和 V。Cu、Mo 和 Sr 3 种元素则显示出在围 岩较亏损和矿石富集的趋势;下区五矿段21个围岩样品和 16 个矿石样品中富集 Ag、As、Ba、Bi、Cd、Cu、Mo、Pb、Sb 和 Zn ,亏损 Co、Cr、Ni 和 V。Sr 显示出在围岩富集和矿石中较亏 损的特征。东至岩矿段11个围岩样品和5个矿石样品中则 富集 Ag、As、Bi、Cd、Cu、Mo、Pb、Sb 和 Zn ,亏损 Co、Cr、Ni 和 V。Ba和 Sr 分别显示出在围岩中亏损矿石中富集和在矿石 中亏损的趋势 其中 Ba 的富集程度较前 2 个矿段显著升高。 其中 Ag、As、Cd、Pb、Sb 和 Zn 的富集从南到北依次减弱,而 Bi的富集依次增强。Cu在华昌山矿段围岩中亏损,而在矿 石中富集,下区五和东至岩矿段的围岩和矿石中 Cu 均较富 集,且富集趋势越往北越强。3个矿段中共同亏损的元素有 Co、Cr、Ni 和 V,且相对于地壳元素丰度,其富集系数均小 于1。

3.2.2 西矿带元素富集分异特征

西矿带成矿元素见表 3。东矿带小丫口和白秧坪矿段 11 个围岩样品和 15 个矿石样品中富集 Ag、As、Bi、Cd、Cu、 Mo、Pb、Sb、Sr 和 Zn ,Ba ,Co、Cr、Ni 和 V 则显示出在围岩中较

-
(wt%
数据
采针线
町上
广物日
臣国田
「帯」
年国
美区3
属矿
多金
要坪
Ē

表1

表 I - Table 1	目根坪多5 Fleetron	金属矿集⊠先 micronrobe a	E曲矿荒 malvsis	5金属矿物 F (wt%) of 1	电子搽针 minerals	数据(wi in the e	t%) astern an	d westerr	ore zon	e in the	Baivaner	ing not	metallic	ore denc	.te					
	矿段	特品号	点号	矿物	Ag	As	Ba	Bi	Cd	Co	Cr	Cu	Fe	Ni	Pb	s	Sb	Sr	Zn	成社
	华昌山	HCS10-3-2	1	方铅矿	9		0.35	0. 63							9.31 1	5.55		2.05	12. 12	100.01
			2	闪锌矿	1.07								3.65		61	13. 13			63. 12	99. 9 <i>7</i>
			3	方铅矿	0.36			2.00					4. 34		16.75	11.6	1.46	3.15	0.31	99.97
¥			4	闪锌矿									2.98		0	2.17			63. 63	98.78
不可			5	方铅矿	0.65			3.54					3.27	¢.	6.54 1	1.08		2.10	2.81	99.99
Ē	下区五	XQW10-9	1	黝铜矿								39.64	13. 76			1. 33 3	9.93		3. 63	98. 29
			3	黄铁矿				4.36				575.3	42.49		ι ΥΩ	3.16				100.01
	东至岩	XQW10-9-1	1	黄铁矿	1.17	2.43		3.48	0.18			5.50	51.46			5.49		0.28		99.99
			0	黄铁矿	12.89	2.40						5.36	45.47		CI	28.06		1.68	3. 63	99.49
	小丫口	BYH10-37-1	1	辉砷钴矿		31.42				18.95			8.46	1.58	6	24.72		11.9		<u>99.99</u>
			3	辉砷钴矿		38.33				22. 28			9.54	1.82	0	22.07				100.04
			4	黄铁矿		1.32							40.45		9.25 3	8.36				99.38
			5	辉砷钴矿		43.55				23.34			7.20		(1	5.81				99.90
			9	黄铁矿		7.31						5.1	44.32). 27	4	8.14				100.04
	白秧坪	BYH10-66	1	砷黝铜矿		21.95						47.46			61	8.48	2.12			100.01
			6	砷黝铜矿		19.83		2.92			7	42. 81	3. 16		0	26.33	1.48		3.76	100.29
			3	砷黝铜矿		21. 13						46.21	3.56		CI	26.88	1.04	0.16		98.98
用	吴底厂	BYH10-42	1	方铅矿										~	88.75 1	1.23				99.98
「「「」		BYH10-43	1	闪锌矿				3. 22				4.01	1.81		61	9.74			61. 23	100.01
₽			7	方铅矿		8.93						0.27			'3.56]	1.78		1.39	3.10	99. 03
	李子坪	BYH10-22	1	闪锌矿							8.76		1. 39		9.64 2	26.46			53.74	<u>99.99</u>
			2	方铅矿		9.20		0.96				0.64	2.93	Ū	57.33	12. 1		1.58	5.16	99.90
	何梅沟	BYH10-3-1	1	方铅矿	0.25	7.60		0.81							9.23 1	1.96				99.85
			2	闪锌矿								0.35			(1)	60.73		0.20	68.73	100.01
			3	方铅矿		3. 24	0.48	1. 31					3.52	t -	71.23 1	3.23	3. 63		2.53	99.17
	核桃箐	НТQ10-21	1	黄铜矿	0.23						·	70.13	6. 11		0	3.35				99.82
			3	砷黝铜矿		21.26					7	42.86	5.06		CI	0.58	3.24	0.16		99.16
			2	硫铋铜矿		0.26		62.82			1001	15.23	3.27		-	8.18		0.23		99.99

×10 ⁻⁶)
元素含量(
印矿石成矿
矿带围岩和
禹矿集区东
白秧坪多金』
表 2

Tab	le 2 The	contents of	ore-forming e	lements in	ore and w	all rocks of th	he eastern	ore zone i	n the Baiyang	gping polyr	netallic or	e deposit (>	< 10 ⁻⁶)			
矿段	类型	Ag	As	Ba	Bi	Cd	Co	Cr	Gu	Mo	Ni	Pb	$_{\mathrm{Sb}}$	Sr	Λ	Zn
	围岩(19)	0.5~51.6	7 ~ 69700	$10 \sim 640$	2~4	$0.5 \sim 108$	$1 \sim 22$	$1 \sim 87$	3 ~ 64	$1 \sim 2$	1~52	18~412100	5~7600	49~817	$1 \sim 121$	12 ~ 2860
	平均值	5.29	6955	205	2.21	11.3	6.16	27.1	24.9	14.5	14.1	30998.9	856.2	269.8	34.9	214
谷昌山	富集系数	66. 1	3426	0.44	1.16	63.9	0.02	0. 21	0.44	0. 17	0.17	2214	1689	0.71	0. 24	2.80
山矿段	砌石(16)	0.5~602	$100 \sim 128000$	$10 \sim 690$	$1 \sim 732$	$17.4 \sim 1000$	$1 \sim 424$	$1 \sim 12$	$1 \sim 28800$	1 ~ 322	1 ~ 22	20 ~ 54033	492 ~ 10000	123 ~ 2920	1~13	491 ~ 23300
	平均值	195	57119	229	48.9	437	76.7	2.5	1887	23.1	3.6	99850	4561	760	2.9	69230
	富集系数	2439	28137	0.5	25.8	2467	0.31	0.02	33.7	16.2	0.04	7132	8997	1.99	0.02	706
	围岩(21)	0.5~9.2	$8 \sim 10000$	$10 \sim 4130$	$2 \sim 10$	$0.5 \sim 29.6$	$1 \sim 24$	1 ~ 82	$2 \sim 2130$	1 ~36	2 ~43	$10 \sim 7480$	5 ~ 424	$84 \sim 10000$	2 ~ 128	27 ~ 6300
	平均值	2.68	1041	647	4.10	3.87	8.19	18.0	176	5.43	19.3	579	54.1	006	32.9	652
K−⊠}	富集系数	33.5	512.6	1.4	2.2	21.9	0.03	0.1	3.1	3.8	0.2	41.3	106.7	2.36	0. 23	8.5
五矿段	矿石(16)	$20 \sim 253$	225 ~ 10000	$10 \sim 8090$	2~270	1 ~ 54.9	$2 \sim 140$	$1 \sim 29$	$31 \sim 47600$	1 ~ 191	3 ~ 105	428 ~ 29400	33 ~ 2240	159 ~ 1045	4 ~ 42	235 ~ 19250
	平均值	163	4774	1838	46.6	13.0	27.5	6.06	3903	39.5	27.0	4696	477	374	16.3	3765
	富集系数	2032	2351	3.97	24.5	73.4	0. 1	0.05	69.7	27.6	0.33	335	940	0.98	0. 11	49.3
	围岩(11)	0.5~15.9	21 ~ 3730	$10 \sim 760$	2 ~ 88	0.5~12.3	$1 \sim 21$	$1 \sim 84$	2 ~ 1935	1 ~ 106	4 ~ 39	3 ~ 2540	5 ~ 141	$109 \sim 811$	3 ~ 147	13 ~4960
	平均值	5.9	521	181	10.3	3.17	6.91	12.3	315.4	11.0	10.3	465	48.2	341	23.6	863
东至3	富集系数	74.0	257	0. 39	5.41	17.9	0.03	0.10	5.63	7.69	0.13	33.2	95.0	0.89	0.17	11.3
石矿段	矿石(5)	19. 8 ~55. 1	$910 \sim 9310$	340 ~ 7860	37 ~ 850	3.4~23.8	$32 \sim 100$	1~2	1410 ~ 28900	5 ~ 14	9 ~ 53	93 ~ 1430	268 ~ 1610	333 ~ 548	9 ~ 22	$1010 \sim 6870$
	平均值	38.3	5084	4282	385	13.4	72. 8	1.20	12996	8.20	30.2	631	1102	412	14. 2	3838
	富集系数	478	2504	9.25	203	75.8	0.29	0.01	232	5.73	0.37	45.1	2173	1.08	0.10	50.3
	地壳丰度	0.08	2.03	463	1.90	0.18	247	127	56.0	1.43	81.3	14.0	0.51	382	143	76.3
(注:)	n)中为样品	引个数:富集)	系数=平均值	/地壳丰度:	元素地売4	丰度据黎彤(19	(26									

2616

-9
10
×
_
回田
会
憲
iE
1
Ř
in in
Ľ.
14
Ŧ
HF
粃
4
田
X
集
1
THE
4
8A
B
₩.
Ш
ш

表3

abl	e 3 The *	contents of a	re-forming e	lements in	ore and wa	ull rocks of t	he western	ore zone	in the Baiyang	ping poly	metallic or	e deposit () DL	×10 ⁻⁶) st.	å	Δ	r L
效	失型	Ag	As	Ба	ß	P	0	5	CE	Mo	IN	PD	qç	Sr	^	7u
	围岩(11)	$0.5 \sim 20.6$	69 ~ 3470	30 ~ 360	$2 \sim 30$	0.5~3.9	7~840	9 ~47	76 ~ 4540	$1 \sim 10$	6~273	12 ~ 424	18 ~ 312	99 ~ 940	26 ~ 529	22 ~ 1540
	平均值	5.88	1283	136	14.6	1.69	137	25.5	2040	2.82	59.0	131	239	996	98.1	517
-口本(富集系数	73.5	632	0. 29	7.70	9.55	0.56	0.20	36.4	1.97	0.73	9. 34	472	2. 53	0.69	6.78
日秩坪	矿石(15)	20.4 ~ 1500	908 ~ 20000	$10 \sim 400$	34 ~ 8280	1.5~119	47 ~4680	1~38 (5780 ~ 316000	1 ~ 162	31~2420	10 ~ 191000	253 ~ 10000	50 ~ 1965	6 ~ 2750	236 ~40100
创	平均值	69277	7323	0.001	285	1048	0.03	0.001	30.9	7.20	0.07	230	13312	0.003	0.01	1.73
	富集系数	5542	14865	0.39	542	185	6.66	0. 13	1728	10.3	6.06	3216	6749	1.22	1.50	132
	围岩(21)	0.5~23.4	9 ~ 20800	$10 \sim 280$	2~3	0.5 ~ 787	$1 \sim 19$	3 ~ 63	5 ~4200	1~3	2 ~ 52	9 ~ 37500	5 ~ 737	63 ~ 1295	5 ~ 152	51 ~216000
吴应	平均值	19.8	4989	103	2.14	75.2	8.62	31.3	251	1. 19	20.9	3567	73.0	421	50.8	21322
広戸和本	富集系数	248	2458	0.22	1. 13	425	0.03	0.25	4.48	0. 83	0.26	255	144	1.10	0.36	279
小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小	矿石(17)	95 ~ 3680 1	900 ~ 115000	$10 \sim 8180$	2 ~ 1455	0.9~1000	139 ~ 2990	1~50	47 ~ 361000	1 ~ 328	2 ~ 8580 7	84 ~ 592600	176 ~ 10000	17 ~ 717	2 ~ 75	164 ~ 360000
矿段	平均值	812	35506	579	373	428	720	7.76	50900	28.3	741.2	202738	5102	178	16.1	259256
	富集系数	10146	17491	1.25	196	2420	2.91	0.06	606	19.8	9.12	14481	10063	0.47	0. 11	3398
	围岩(30)	0.5~2.2	5 ~ 153	40 ~ 1380	2 ~ 82	0.5~2.2	3 ~ 361	$21 \sim 101$	2 ~ 14500	1~9	4 ~ 171	2 ~ 100	5 ~ 1230	19 ~ 223	15 ~ 163	6 ~ 288
何橋	平均值	0.57	82.7	237	5.93	0.58	73.7	50.2	842	1.57	27.8	16.8	64.7	49.8	65.0	32. 9
御 沟和	富集系数	7.08	40.7	0.51	3.12	3. 26	0.30	0.40	15.0	1. 10	0.34	1. 20	128	0.13	0.45	0.43
於桃 等	矿石(17)	0.5~83.9	310~9070	$10 \sim 930$	2~1120	0.5 ~112	71 ~ 923	2 ~ 76	$10 \sim 37200$	$1 \sim 21$	17 ~ 271	121 ~ 4570	$44 \sim 10000$	$10 \sim 135$	$14 \sim 104$	39 ~ 9030
创	平均值	23.1	4173	129	262	15.8	462	29.4	33124	5.41	117	1330	2990	31.8	45.2	1942
	富集系数	288	2056	0.28	138	89.2	1.87	0. 23	592	3.78	1.44	95.0	5897	0.08	0.32	25.4
	地壳丰度	0.08	2.03	463	1.90	0.18	247	127	56.0	1.43	81.3	14.0	0.51	382	143	76.3
Ť.(n)中为样品	引个数:富集3	ミ数 = 平均值	/ 地壳丰度:	元素地売丰	定据黎彤(1)	92)									

表4 白秧坪多金属矿集区 S 同位素值(‰)

Table 4S isotope data in the Baiyangping polymetallic oredeposit (‰)

样品号	矿物	δ ³⁴ S (CDT) (‰)	样品号	矿物	δ ³⁴ S (CDT) (‰)
	东矿带		Ē	西矿带	
HCS10-21	方铅矿	-5.02	BYH10-24-1	黝铜矿	2.34
HCS10-6	方铅矿	-5.46	BYH10-84	黝铜矿	6.67
HCS10-14	方铅矿	-4.98	HTQ10-32-1	黄铜矿	3.26
HCS10-4	方铅矿	- 3. 50	HTQ10-14	黄铜矿	3.02
HCS10-23	方铅矿	-4.73	HTQ10-12	黝铜矿	0.18
HCS10-24	方铅矿	-4.73	HTQ10-33	黄铜矿	4.78
HCS10-7	闪锌矿	- 3. 35	HTQ10-39-1	黄铜矿	2.32
HCS10-14-1	闪锌矿	-6.25	HTQ10-16	黄铜矿	4.78

亏损和矿石中富集的趋势。吴底厂和李子坪矿段 21 个围岩 样品和 17 个矿石样品中富集 Ag、As、Bi、Cd、Cu、Pb、Sb 和 Zn, 亏损 Cr 和 V, Sr 在围岩中富集和在矿石中亏损,而 Ba、 Co、Mo 和 Ni 则显示出在围岩中亏损和矿石中富集的趋势。 何梅沟和核桃箐矿段 30 个围岩样品和 17 个矿石样品中则 富集 Ag、As、Bi、Cd、Cu、Mo、Pb 和 Sb, 亏损 Ba、Cr、Sr 和 V, Co、 Ni 和 Zn 显示出在围岩中亏损和在矿石中富集的趋势。其中 Ag、Pb 和 Zn 的富集属吴底厂和李子坪矿段最为富集,而 Cu 则在小丫口和白秧坪矿段最为富集。3 个矿段中亏损的元 素为 Ba、Cr、Ni 和 V, 但各个矿段这些元素的亏损程度有所不 同, 有的矿段部分元素有稍富集趋势。

由表1 至表3 可看出 ,Co、Ni 和 Cr 等微量元素西带高于 东带,而 Sr、Pb、Zn 和 Ba 含量则东带高于西带,与各自的矿 物组合类型一致。

3.3 S 同位素组成

白秧坪多金属矿集区东西矿带的 S 同位素值明显不同 (表4) 东矿带 δ^{34} S_{cor}值均为负值,变化范围从 – 6.25‰ ~ -3.35‰; δ^{34} S_{cor}值均为正值,变化范围从 0.18‰ ~ 6.67‰。

4 讨论

4.1 成矿元素共生分异机制

由于古新世以来的喜马拉雅运动,兰坪盆地内构造活动 强烈,使得断裂和推覆构造十分发育,在白秧坪多金属矿集 区形成了近南北走向的逆冲推覆断裂和与其派生的北东-南 西向压扭性断裂组成的断裂体系,这非常有利于矿液的充 填,是重要的容矿构造,控制着铅-锌-铜-银多金属矿床的分 布(罗君烈等,1994; 阕梅英等,1998; 薛春纪等,2000; 龚文君 等,2000; He *et al.*,2009)。东西2个成矿带是根据矿床所 处地质背景、控矿和容矿构造特征不同而划分的(陈开旭等, 2000; 魏君奇,2001; 何龙清等,2005; 张尔新,2005)。研究表 明, 白秧坪多金属富集区东西2矿带的地质背景特征、流体 包裹体特征及同位素特征系统在控矿因素、成矿条件、矿物 组合、成矿流体和成矿物质来源等方面存在明显的差异, 矿 床成因虽同属与逆冲及逆冲-推覆构造有关的中低温热卤水 多金属矿床,但它们分属2个不同的成矿系统(田洪亮, 1997,1998; 龚文君等,2000; 薛春纪等,2003; 邵兆刚等, 2003; 杨伟光等 2003; 何明勤等 2004; He *et al.*,2009; Wang *et al.*,2010; 刘家军等 2010)。

东矿带矿床受控于华昌山逆冲-推覆断裂,该断裂既是 东矿带的控矿构造又是容矿构造 断裂带旁侧次级构造中褐 铁矿化、铜矿化、铅锌矿化强烈(何龙清等 2005)。从表 2 看 出、Ag、As、Cd、Pb、Sb 和 Zn 的富集从南到北依次减弱,这种 特点可能反映了同一成矿流体演化系统在不同构造部位分 异的结果。华昌山矿段成矿元素 R 型聚类分析(图 4a) 显 示 在距离系数大于 0.608 时 ,分为 Cu-Bi、Ag-Co、As-Sb、Zn-Cd和Cr-V-Ni等4个元素组合,前3组代表了矿化组合,说 明东矿带华昌山矿段 Cu 和 Ag 的富集与 Bi、Co、As 和 Sb 密 切相关 Zn 的富集与 Cd 密切相关 ,第4 组则反映了铁族元 素组合。当距离大于 0. 235 时 Sr 与 Ag、Co、As 和 Sb 聚为一 类 形成了 Sr + ((Ag-Co) + (Cu-Bi) + (As-Sb))的矿物组 合。当距离系数大于 0.090 时 Pb 与 Bi、Cu、Ag、Co、As、Sb 和 Sr 聚为一类,说明 Pb 成矿与这些元素关系密切。下区五和 东至岩矿段成矿元素 R 型聚类分析(图 4b)显示,在距离系 数大于 0.573 时 分为 Cr-V、As-Pb-Ni、Co-Sb、Cu-Zn、Co-Cu 和 As-Ni 6 个元素组合 ,Cr-V 反映了铁族元素组合 ,而其余几组 则为矿化组合。当距离系数大于 0.300 时,显示(As + Pb + Ni) + (Co + Sb + Cu + Zn + Cd + Bi + Ba)的元素组合。

西矿带分布于四十里箐一上、下庄断裂以西,受控于瞎 眼山和四十里箐-上、下庄2大逆冲断裂,矿体产于两断裂所 夹持的断块中的次级冲断层和横断层破碎带内(张尔新, 2005)。由表 3 看出, Ag、Pb 和 Zn 的富集属吴底厂和李子坪 矿段最为富集 而 Cu 则在小丫口和白秧坪矿段最为富集 这 也反映出同一成矿流体演化系统在不同构造部位分异的特 征。西矿带小丫口和白秧坪矿段成矿元素 R 型聚类分析(图 5a) 显示 在距离系数大于 0.652 时,分为 Cu-Cd、Ni-Co、As-Sb-Cd、Ag-Pb-Co和Zn-V4个元素组合 其中 Ni-Co为铁族元 素组合,其余3组为矿化组合,说明该矿段Cu、Ag、Pb和Zn 的富集与 Cd、As、Sb、Co 和 V 密切相关。吴底厂和李子坪矿 段成矿元素 R 型聚类分析(图 5b)显示,在距离系数大于 0.811 时 分为 Mo-Ni、Cr-V、Bi-Cu-Co、Ag-Bi 和 Pb-Sb 5 个元 素组合 .Cr-V 反映了铁组元素组合 .而其余几组则为矿化组 合,说明该矿段中Ag、Cu和Pb的富集与Mo、Ni、Bi、Co和Sb 密切相关。当距离系数大于 0.474 时,显示(Zn + Cd) + (Ag + Cu + Pb + Mo + Ni + Bi + Co + Sb)的元素组合。何梅沟和 核桃箐矿段成矿元素 R 型聚类分析(图 5c)显示,在距离系 数大于 0.751 时 分为 Cd-Zn、Ag-Bi-As、Cu-Sb、Cd-Mo 和 Cr-V 5 个元素组合 ,Cr-V 反映了铁组元素组合 ,而其余几组则为

图 4 东矿带岩石和矿石部分成矿元素 R 型谱系图

(a)-华昌山矿段; (b)-下区五和东至岩矿段

Fig. 4 R-cluster analysis of ore-forming elements of the ore and wall rock in the eastern ore zone

(a) -Huangchangshan ore block; (b) -Xiaquwu and Dongzhiyan ore block

矿化组合,说明该矿段 Ag、Cu 和 Zn 的富集与 Cd、Mo、Bi、As 和 Sb 成矿关系密切。当距离系数大于 0.494 时,显示 Co-Ni 和 Pb + (Mo + Zn + Cd)的元素组合。

从上述元素共生分异组合规律与矿床(体)对应关系可 看出矿集区内化探异常元素主要受南北向的华昌山、四十里 箐-瞎眼山断裂带控制,在多组断裂交切部位及有利岩性地 层(东矿带为 T₃s 灰岩与红层 E₁y、E₂b) 接触带,西矿带则受 孔隙度高的景星组(K₁j) 灰白色石英砂岩及易溶蚀的花开左 组(J₂h) 灰岩)中成矿,呈现出浓集的元素愈多,规模愈大,对 应的矿床规模也愈大的地化特征,且元素的共生分异机制与 构造分带存在着一定的耦合关系。

4.2 成矿物质来源

成矿是一种复杂的地质作用,区域构造与地球化学是控制成矿的基本要素(翟裕生 2003)。兰坪-思茅断裂呈近南北向舒缓弧形分布在盆地中央,断裂面在兰坪一带西倾,在思茅一带东倾。沿断裂带,中新生界受到挤压破碎,且形成1条由中生代红层组成的线状动力热流变质带,分别有元古界变质岩系、上二叠世中基性-酸性火山岩、中三叠世基-酸性火山岩及喜马拉雅期小型侵入体和第四纪玄武岩分布(薛春纪等 2002;云南三所 2003;马东等 2007);该断裂对三叠纪和侏罗纪沉积有一定的控制作用,说明它从印支-燕山期开始活动,到喜马拉雅期达到高峰(罗君烈等,1994;阕梅英等,1998)。对兰坪-思茅盆地演化深部控制因素研究表明:兰坪盆地存在近 EW 向深部隐伏构造及环形构造,其有幔-壳复合成矿作用特征(尹汉辉等,1990;薛春纪等,2000);盆地内的线状动力热流变质带与兰坪-思茅盆地的边缘断裂一起长期控制盆地的形成和演化;同时该热流变质带又是深源熔

体、流体及部分成矿物质向浅部地壳运移的通道,为盆地内成岩和成矿作用提供了有利条件(尹汉辉等,1990)。

就 Cu、Pb 和 Zn 3 种主成矿元素而言,兰坪盆地上二叠 世中基性-酸性火山岩含量背景值分别为 Cu(65 × 10⁻⁶)、Pb (24×10⁻⁶)和 Zn(121×10⁻⁶);中三叠世基性-酸性火山岩 含量背景值分别为 Cu(66×10⁻⁶)、Pb(113×10⁻⁶)和 Zn(93 ×10⁻⁶~104×10⁻⁶)(云南三所 2003)。盆地东部的新生代 火山岩也有较高的 Pb 和 Zn 含量,如粗面岩中 Pb(62 × 10⁻⁶) Zn(110×10⁻⁶),正长岩中 Pb(119×10⁻⁶)(王彦斌 等 2004) 这些都明显高于相应岩石的地壳克拉克值,也高 于兰坪盆地出露的地层中 Cu(13.1×10⁻⁶~-59×10⁻⁶)、 Pb(8. 60 × 10⁻⁶ ~ 52 × 10⁻⁶) 和 Zn(65 × 10⁻⁶ ~ 112 × 10⁻⁶) (罗君烈等,1994;李志明,2003;云南三所,2003)。从表2和 3 也可看出 "Cu、Pb、Zn 和 Ag 的含量围岩中也是非常高 跟地 壳元素丰度值相比富集系数最高能达到上百倍。可见,兰坪 盆地内发育巨厚的火山岩、富含生物碎屑的碳酸盐岩、碎屑 岩及含膏盐碎屑岩建造及出露的地层为多金属矿床(体)的 形成提供了丰富的物源,其中火山岩提供了主要成矿物源, 这使盆地在形成和演化过程中,主成矿元素 Cu、Pb 和 Zn 等 在围岩中得到了初步富集。

另外,Cr-Co-Ni-Cu-Zn反映了地幔岩石组合(王峰和何 明友 2003b),由图4(a,b)看出,东矿带华昌山矿段该组合 不很明显,但东至岩和下区五矿段有较明显的地幔岩石组 合,说明东矿带从南至北成矿元素组合壳幔混合特征逐渐增 强。西矿带也存在这样的趋势,即从南至北地幔岩石组合特 征增强。另外,Mo在基性岩中分布最高,又以碱性玄武岩中 丰度更高,其应为深源元素(牟保磊,1999)。从表2、表3可 看出,白秧坪矿集区东西矿带 Mo元素的含量大部分高出碱 距离 1.0

As

SI

в

Co Ni

Ag

Pt

V

Zn

Ba

Cr

距离 1.0

Mo

Ni Pb

Sb

Bi Cu

Co

Ag

As

Cd Zn

Cr

V

Ba Sr

图 5 西矿带岩石和矿石部分成矿元素 R 型谱系图 (a) -小丫口和白秧坪矿段;(b)-吴底厂和李子坪矿段;(c)-何梅沟 和核桃箐矿段

Fig. 5 $\,$ R-cluster analysis of ore-forming elements of the ore and wall rock in the western ore zone

(a) -Xiaoyakou and Baiyangping ore block; (b) -Wudichang and Liziping ore block; (c) -Hemeigou and Hetaoqing block

性玄武岩的丰度值(3×10⁻⁶~4×10⁻⁶),表明 Mo 的来源与 基性岩有关,且从元素聚类分析图(图4、图5)看出,无论东 矿带还是西矿带,Mo 与 Cu、Pb、Zn 和 Ag 等主成矿元素均显 正相关,说明 Mo 与白秧坪多金属矿集区成矿关系密切,有深 源物质参与成矿。东西矿带 As-Co-Ni 元素组合比较普遍(图 4、图5),而该类组合中辉砷钴矿的 Co/Ni 比值一般小于 10 (薛步高,1995,1996) 与基性-超基性岩浆有关,研究区辉砷 钴矿的 Co/Ni 比值均小于 10(表1),说明其可能与隐伏基 性-超基性岩浆有关的深部来源有关。

地球上硫同位素主要有 3 个储存库: (1) 幔源硫(δ^{34} S_{CDT} =0 ± 3‰) (Chaussidon and Lorand, 1990); (2) 海水硫 $(\delta^{34}S_{CDT} = 20\%$ 左右) 和(3) 沉积物中还原硫 ,主要以较大的 负值为特征(Rollinson, 1993)。前人就该区东西矿带的金属 矿物 S 同位素做了分析(尤其是对西矿带) 积累了大量同位 素数据。对硫同位素数据的地质解释存在较大分歧:(1)硫 的来源为深部地幔(王江海等,1998;魏君奇,2001;王峰和何 明友 2003b; 何龙清等 2005); (2) 硫的来源以深部为主, 但 有部分地层中硫酸盐还原硫的混入(阙梅英等,1998;李志 明 2003);(3) 硫不但具有多来源性质 ,而且与成矿时溶液的 物理化学条件有关(刘家军等 2000 2004);(4) 白秧坪多金 属矿集区硫为深源硫/地幔硫和地层膏盐硫的混合(何明勤 等 2004);(5) 白秧坪-富隆厂一带热液脉型 Cu-Ag-Pb-Zn 多 金属矿床中,硫主要来源于细菌还原的海水硫酸盐(徐仕海 等 2005);(6) 兰坪盆地多金属矿集区包括金顶铅锌矿在内 其δ³⁴S 变化范围较大 主要是由于盆地内分布在不同矿床中 的岩石类型造成的(He et al., 2009); (7) 富隆厂一带铅锌多 金属矿床中的硫可能来自盆地中膏盐的有机质热化学还原 或含硫有机物的分解 ,金属可能源自区域沉积地层(王晓虎 等 2011)。

本文在前人工作的基础上,对白秧坪多金属矿集区东西 矿带不同矿段中的硫化物做了进一步系统的 S 同位素分析 (表4)。由表4和图6可知,白秧坪多金属矿集区东矿带硫 化物 δ^{34} S = -6.25% ~ -3.35%,均值 -4.75%,相对富亲 硫;而西矿带硫化物 δ^{34} S = 0.18% ~ 6.67%,均值 3.42% 相 对富重硫;2个矿带 δ^{34} S 变化范围窄,同位素绝对值小,表明 金属硫化物来源比较单一,为深源硫或地幔硫的特征。这与 上文提到兰坪盆地内发育巨厚的火山岩,其为多金属矿床 (体)的形成提供了丰富的物源及元素组合分析得出的结论 相一致。

5 结论

通过对白秧坪多金属矿集区东西2个矿带的矿石矿物 电子探针分析、成矿元素含量和组合分析及S同位素值的讨 论,得出以下结论性认识:

(1)东西2个矿带在矿石矿物组合类型及微量元素组合 特征具明显不同,前者矿石矿物组分较为简单,西带较为复

图 6 东西矿带硫化物 S 同位素组成分布图

Fig. 6 Sulfur isotope distribution pattern of sulfides from the eastern and western ore zones

杂 不仅有 Pb、Zn 和 Cu 的独立矿物,还存在 Co 和 Bi 的 矿物;

(2) 成矿元素东矿带 Ag、As、Cd、Pb、Sb 和 Zn 的富集从 南到北依次减弱 ,Bi 的富集则依次增强 ,Cu 的富集趋势越往 北越富。3 个矿段中共同亏损的元素为 Co、Cr、Ni 和 V; 成矿 元素西矿带 Ag、Pb 和 Zn 的富集以吴底厂和李子坪矿段最为 富集 ,而 Cu 则在小丫口和白秧坪矿段最为富集。3 个矿段 中亏损的元素为 Ba、Co、Cr、Ni 和 V ,但各个矿段这些元素的 亏损程度有所不同 ,有的矿段部分元素有稍富集趋势;

(3) Co、Ni和Cr等微量元素西带高于东带,而Sr、Pb、Zn 和Ba含量则东带高于西带,与各自的矿物组合类型一致;元 素的共生分异机制与构造分带存在一定的耦合关系;

(4) 兰坪盆地火山岩为白秧坪多金属矿集区提供了主要物源, Mo、Co和Ni等特征显示其成矿可能与隐伏基性-超基性岩浆有关的深部来源有关; S同位素特征表明,东西矿带金属硫化物的硫源主要以幔源为主。

References

- Albino GV. 1994. Geology and litho-geochemistry of the Ren gold prospect, Elko County, Nevada-the role of rock sampling in exploration for deep carlin-type deposits. Journal of Geochemical Exploration, 51: 37 – 58
- Arehart GB , Chryssoulis SL and Kesler SE. 1997. Gold and arsenic in iron sulfides from sediment-hosted disseminated gold deposit: Implications for depositional processes. Economic Geology , 92(3): 269 – 288
- Chaussidon M and Lorand JP. 1990. Sulfur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): An Ion microprobe study. Geochimica et Cosmochimica Acta, 54: 2835 – 2846
- Chen BW, Li YS and Qu JC. 1991. The Relationship between the Main Tectonic and Metallogenic Relations in Sanjiang Region. Beijing: Geological Publishing House, 30 – 40(in Chinese)
- Chen KX , He LQ , Yang ZQ , Wei JQ and Yang AP. 2000. Oxygen and carbon isotope geochemistry in Sanshan-Baiyangping copper-silver polymetallogenic enrichment district , Lanping , Yunnan. Geology and Mineral Resources of South China , 16(4): 1-8 (in Chinese)

Chen KX , Yao SZ , He LQ , Wei JQ , Yang AP and Huang HL. 2004.

Ore-forming fluid in Baiyangping silver-polymetallic mineralization concentration field in Lanping , Yunnan Province. Geological Science and Technology Information , 23 (2): 45 – 50 (in Chinese with English abstract)

- Fan SJ, Wang AJ, Liu HB, Xiu QY, Cao DH, Li RP, Cao H and Chen QS. 2006. A discussion on the helium and argon isotopic evidences for genesis of the Baiyangping copper-cobalt deposit in the Lanping basin. Geological Review, 52 (2): 628 – 635 (in Chinese with English abstract)
- Gong WJ, Tan KX, Li XM and Gong GL. 2000. Geochemical characteristics of fluid and mechanism for ore formation in the Baiyangping copper-silver deposit, Yunnan. Geotectonica et Metallogenia, 24(2): 175 – 181 (in Chinese with English abstract)
- He LQ, Chen KX, Wei JQ and Yu FM. 2005. Geological and geochemical characteristics and genesis of ore deposits in eastern ore belt of Baiyangping area, Yunnan Province. Mineral Deposits, 24 (1): 61-70 (in Chinese with English abstract)
- He LQ, Song YC, Chen KX, Hou ZQ, Yu FM, Yang ZS, Wei JQ, Li Z and Liu YC. 2009. Thrust-controlled, sediment-hosted, Himalayan Zn-Pb-Cu-Ag deposits in the Lanping foreland fold belt, eastern margin of Tibetan plateau. Ore Geology Review, 36: 106 – 132
- He MQ, Liu JJ, Li CY, Li ZM and Liu YP. 2004. Mechanism of Ore– Forming Fluids of the Lanping Pb-Zn-Cu Polymetallic Mineralized Concentration Area: An Example Study on the Baiyangping Ore District. Beijing: Geological Publishing House, 1 – 117 (in Chinese)
- He MQ, Liu JJ, Li CY, Li ZM, Liu YP, Yang AP and Sang HQ. 2006. ⁴⁰ Ar-³⁹ Ar dating of ore quartz from the Baiyangping Cu-Co polymetallic mineralized concentration area, Lanping basin. Chinese Journal of Geology, 41 (4): 688 – 693 (in Chinese with English abstract)
- Hou ZQ, Khin Z, Pan GT, Mo XX, Xu Q, Hu YZ and Li XZ. 2007. Sanjiang Tethyan metallogenesis in SW China: Tectonic setting, metallogenic epochs and deposit types. Ore Geology Reviews, 31: 48-87
- Hou ZQ, Song YC, Li Z, Wang ZL, Yang ZM, Yang ZS, Liu YC, Tian SH, He LQ, Chen KX, Wang FC, Zhao CX, Xue WW and Lu HF. 2008. Trust-controlled, sediments-hosts Pb-Zn-Cu-Ag deposits in eastern and northern margins of Tibetan orogenic belt: Geological feature and tectonic model. Mineral Deposits, 27(2): 123 – 143 (in Chinese with English abstract)
- Jiang SY, Yang JH, Ling HF, Chen YQ, Feng HZ, Zhao KD and Ni P. 2007. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in lower Cambrian black shales of South China: An Os isotope and PGE geochemical investigation. Paleogeography, Paleoclimatology, Paleoeeology, 254: 217 – 228
- Leach DL , Sangster DF , Kelley KD , Large RR , Garven G , Allen CR , Gatzmer J and Walkers S. 2005. Sediment-hosted lead-zinc deposit: A global perspective. Economic Geology 100th Anniversary Volume: 561 – 607
- Li T. 1992. Some statistical characteristics of the abundance of chemical elements in the earth's crust. Geology and Prospecting , 28(10): 1 -7(in Chinese with English abstract)
- Li ZM. 2003. Lanping basin and formation of large ore-assembly district of polymetallic deposits, in western Yunnan. Ph. D. Dissertation. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences, 1 – 102 (in Chinese with English summary)
- Li ZM, Liu, JJ, Qin JZ, Liao ZT and Zhang CJ. 2004. C, O and H isotopic compositions of polymetallic deposits in Lanping basin, western Yunnan Province and their geological significance. Journal of Jilin University (Earth Science Edition), 34(3): 360 – 366 (in Chinese with English abstract)
- Linda SC and Paul H. 1997. Apatite paragenesis in the Bayan Obo REE– Nb–Fe ore deposit, Inner Mongolia, China. Lithos, 42(1-2): 89

- 103

- Liu J , Ling MX , Li Y and Sun WD. 2009. REE ore forming models of Giant Bayan Obo REE-Nb-Fe ore deposit: A review. Geotectonica et Metallogenia 33(2):270 – 282(in Chinese with English abstract)
- Liu JJ, Li CY, Pan JY, Liu XF, Zhang Q and Liu YP. 2000. Ore-forming material sources of the copper deposits from sandstone and shale in Lanping-Simao basin, western Yunnan and their genetic implications. Geology and Prospecting, 36(4): 16–18 (in Chinese with English abstract)
- Liu JJ, He MQ, Li ZM, Liu YP, Li CY, Zhang Q, Yang WG and Yang AP. 2004. Oxygen and carbon isotopic geochemistry of Baiyangping silver-copper polymetallic ore concentration area in Lanping basin of Yunnan province and its significance. Mineral Deposits, 23(1): 1 - 10 (in Chinese with English abstract)
- Liu JJ, Zhai DG, Li ZM, He MQ, Liu YP and Li CY. 2010. Occurrence of Ag, Co, Bi and Ni elements and its genetic significance in the baiyangping silver-copper polymetallic metallogenic concentration area, Lanping basin, southwestern China. Acta Petrologica Sinica, 26(6): 1646 – 1660(in Chinese with English abstract)
- Liu Y, Williams IS, Chen J, Wan Y and Sun W. 2008. The significance of Paleo–Proterozoic zircon in carbonatite dykes associated with the Bayan Obo REE–Nb–Fe deposit. American Journal of Science, 308 (3): 379 – 397
- Luo JL, Yang YH, Zhao Z, Chen JT and Yang JZ. 1994. Evolution of the Tethys in Western Yunnan and Mineralization for Main Metal Deposits. Beijing: Geological Publishing House, 1 – 340 (in Chinese)
- Ma D , He MY , Mao SD , Wang YT , Yu LS and Que W. 2007. Study on transport forms of Cu and Ag in ore-forming solution of Baiyangping ore deposit. Earth and Environment , 35(2): 142 – 146(in Chinese with English abstract)
- Mao JW, Lehmann B, Du DA, Ma DS, Wang YT, Zeng MG and Robert K. 2002. Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralisation in Lower Cambrian black shales of South China and its geological significance. Economic Geology, 97:1051 – 1061
- Mou BL. 1999. Element Geochemistry. Beijing: Peking University Press , 1 – 227(in Chinese)
- Orberger B , Vymazalova A , Wagner C , Fialia M , Gallien JP , Wirth R , Pasava J and Montagnac G. 2007. Biogenic origin of intergrown Mosulphide- and carbonaceous matter in Lower Cambrian black shales (Zunyi Formation , southern China). Chemical Geology ,238:213 – 231
- Que MY, Chen DM and Zhang LS. 1998. The Copper Deposits in Lanping-Simao Basin. Beijing: Geological Publishing House ,1 27 (in Chinese)
- Rollinson HR. 1993. Using Geochemical Data: Evalution , Presentation , Interpretation. Harlow , England: Longman Scientific and Technical Press , 306 – 308
- Shao ZG, Meng XG, Feng XY and Zhu DG. 2003. Tectonic characteristics of the Baiyangping-Huachangshan ore belt, Yunnan Province and its ore-controlling effect. Journal of Geomechanics, 9 (3): 246 – 253(in Chinese with English abstract)
- Song HX, Guo GL, Jiao XJ and Liu YL. 2007. A preliminary study of the modes of occurrence of associated Au and Ag in the Baogutu porphyry copper deposit, Xinjiang Autonomous Region, China. Acta Petrologica et Minerologica, 26 (4): 329 – 334 (in Chinese with English abstract)
- Steiner M , Wallis E , Erdtmann BD , Zhao Y and Yang R. 2001. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils: Insights into a Lower Cambrian facies and bio-evolution. Palaeogeography Palaeoclimatology Palaeoecology , 169: 165 – 191
- Tao Y and Jing JF. 2001. Paragenesis and differention of As , Au with Sb in Xikuangshan-type antimony deposits , central Hunan. Acta

Minerologica Sinica , 26(4): 329 – 334(in Chinese with English abstract)

- Tian HL. 1997. The geological features of Baiyangping Cu–Ag polymetallic deposit, Lanping. Yunnan Geology, 16(1): 105 – 108 (in Chinese with English abstract)
- Tian HL. 1998. The geological features of Sanshan polymetallic deposit , Lanping. Yunnan Geology , 17 (2): 199 – 206 (in Chinese with English abstract)
- Wang CM, Deng J, Zhang ST, Xue CJ, Yang LQ, Wang QF and Sun X. 2010. Sediment-hosted Pb-Zn deposits in southwest Sanjiang Tethys and Kangdian area on the western margin of Yangtze craton. Acta Geologica Sinica, 84(6): 1428 – 1438
- Wang F and He MY. 2003a. Geochemistry of the trace elements from the Baiyangping silver polymetallic deposit in Lanping, Yunnan. Sedimentary Geology and Tethyan Geology, 23 (4): 103 – 107 (in Chinese with English abstract)
- Wang F and He MY. 2003b. Lead and sulfur isotopic tracing of the oreforming material from the Baiyangping coppr-silver polymetallic deposit in Lanping, Yunnan. Sedimentary Geology and Tethyan Geology, 23(2): 82 - 85 (in Chinese with English abstract)
- Wang JH, Yan W, Chang XY, Xie GH, Qiu HN, Zhang LY and Dong JQ. 1998. Continental Hydrothermal Sedimentation: A Case Study of the Yunnan Area, China. Beijing: Geological Publishing House, 132 (in Chinese)
- Wang XH, Song YC, Hou ZQ, Zhang HR, Liu YC, Yang ZS, Yang TN, Pan XF, Wang SX and Xue CD. 2011. Characteristics of trace elements and S-Pb isotopes in sphalerites from lead-zinc polymetallic deposits in Fulongchang area, Lanping basin, western Yunnan Province, and their implications. Acta Petrologica Et Mineralogica, 30(1): 45 – 59 (in Chinese with English abstract)
- Wang YB, Zeng PS, Li YH and Tian SH. 2004. He-Ar isotope composition of Jinding and Baiyangping mineral deposit and its significance. Journal of Mineralogy and Petrology, 24(4): 76 – 80 (in Chinese with English abstract)
- Wei JQ. 2001. S-Pb Isotopic geochemistry of copper multi-metal deposits in Hexi , Yunnan Province. Geology and Mineral Resources of South China , 67(3): 36 – 39 (in Chinese with English abstract)
- Xu QD and Li JW. 2003. Migration of ore-forming fluids and its relation to zoning of mineralization in northern Lanping Cu-polymetallic area, Yunnan Province: Evidence from fluid inclusions and stable isotopes. Mineral Deposits, 22 (4): 366 – 376 (in Chinese with English abstract)
- Xu SH, Gu XX, Tang JX, Chen JP and Dong SY. 2005. Stable isotopic geochemistry of three major types of Cu–Ag polymetallic deposits in the Lanping basin, Yunnan. Bulletin of Mineralogy, Petrology and Geochemistry, 24 (4): 309 – 316 (in Chinese with English abstract)
- Xue BG. 1995. Geological features of associated components in Dongchuan type Cu deposit. Geology and Prospecting ,31(3): 31 – 37 (in Chinese with English abstract)
- Xue BG. 1996. Geological characteristics of superimposed cobalt mineralization in the Yimen copper district. Mineral Resource and Geology, 10(6): 388 – 394 (in Chinese with English abstract)
- Xue CJ, Yang JM and Chen YC. 2000. Ore-forming characteristics of Baiyangping Cu-Co deposit, Lanping. In: Cheng YC (ed.). A Research on the Endogenetic Mineralization of Himalayan Era. Beijing: Seismological Publishing House, 69 – 83(in Chinese)
- Xue CJ, Chen YC, Wang DH, Yang JM, Yang WG and Yang QB. 2002. Analysis of ore-forming background and tectonic system of Lanping basin, western Yunnan Province. Mineral Deposits, 21 (1): 36 – 44 (in Chinese with English abstract)
- Xue CJ , Chen YC , Yang JM , Wang DH , Yang WG and Zeng R. 2003. Geology and isotopic composition of helium , neon , xenon and metallogenic age of the Jinding and Baiyangping ore deposits ,

northwest Yunnan , China. Science in China (Series D) , 33(4): 315 – 322(in Chinese)

- Xue CJ, Zeng R, Liu SW, Chi GX, Qing HR, Chen YC, Yang JM and Wang DH. 2007. A review of the geologic, fluid inclusion and isotopic characteristics of the Jinding Zn-Pb Deposit, western Yunnan, China. Ore Geology Reviews, 31: 337 – 359
- Yang WG, Yu XH, Li WC, Dong FL and Mo XX. 2003. The characteristics of metallogenic fluids and metallogenic mechanism in Baiyangping silver and polymetallic mineralization concentration area in Yunnan Province. Geoscience, 17(1): 27-33 (in Chinese with English abstract)
- Yin HH, Fang WM and Lin G. 1990. Deep factors on the Lanping-Simao basin evolution and mantle-crust complex mineralizations. Geotectonic et Metallogenia, 4 (2): 113 – 124 (in Chinese with English abstract)
- Yuan JQ, Zhu SQ and Zhai YS. 1984. Study of Mineral Deposit. Beijing: Geological Publishing House, 1-322 (in Chinese)
- Zhai YS. 2003. Research on metallogenic system. Geological Survey and Research , 26(3): 129 – 135(in Chinese with English abstract)
- Zhang EX. 2005. On the genesis of ore deposits in west metallogetic zone of Baiyangping Cu-Ag polymetallic deposit concentration area, Lanping. Yunnan Geology, 24 (3): 282 – 289 (in Chinese with English abstract)
- Zhou YM. 2001. Characteristics and ore controlling role of the thrusting nappe structure in the Lemachang silver deposit. Mineral Deposits , 20(3): 271-278(in Chinese with English abstract)
- Zhu DG, Meng XG, Feng XY, Yang WG, Shao ZG, Yang AP, Zhou WG, Yang ML and Wang JP. 2002. Characteristics of tectonic structures at Baiyangping, Yunnan and their control over the minerogenesis of polymetal deposits in the mining area. Geology– Geochemistry, 30(1): 28 – 33 (in Chinese with English abstract)
- Zhu LM, Hui RZ and Duan QB. 2001. Actuality and trend in study mechanism of paragenesis and separation as exemplified by finedisseminated gold deposits in Southwest Guizhou Province. Bulletin of Mineralogy, Petrology and Geochemistry, 20(2): 19 – 25 (in Chinese with English abstract)

附中文参考文献

- 陈炳蔚,李永森,曲景川.1991. 三江地区主要大地构造问题及其与 成矿的关系.北京:地质出版社,30-40
- 陈开旭,何龙清,杨振强,魏君奇,杨爱平.2000. 云南兰坪三山-白秧 坪银多金属成矿富集区的碳氧同位素地球化学. 华南地质与矿 产,16(4):1-8
- 陈开旭 姚书振 何龙清 ,魏君奇 ,杨爱平 ,黄惠兰. 2004. 云南兰坪白 秧坪银多金属矿集区成矿流体研究. 地质科技情报 ,23(2):45 -50
- 范世家,王安建,刘汉斌,修群业,曹殿华,李瑞萍,高辉,陈其慎. 2006. 论兰坪盆地白秧坪铜(钴)矿床成因的氦氩同位素证据. 地质论评,52(2):628-635
- 龚文君,谭凯旋,李小明,龚革联.2000. 兰坪白秧坪铜银多金属矿床 流体地球化学特征及成矿机制探讨.大地构造与成矿学 24(2): 175-181
- 何龙清,陈开旭,魏君奇,余凤鸣.2005.南白秧坪地区东矿带矿床地 质地球化学特征及成因分析.矿床地质,24(1):61-70
- 何明勤,刘家军,李朝阳.2004. 兰坪盆地铅锌铜大型矿集区的流体成 矿作用机制——以白秧坪铜钴多金属地区为例.北京:地质出 版社,1-117

何明勤,刘家军,李朝阳,李志明,刘玉平,杨爱平,桑海清.2006.云南

兰坪白秧坪铜钴多金属矿集区矿石中石英的⁴⁰ Ar-³⁹ Ar 年龄. 地 质科学 *A*1(4): 688 - 693

- 侯增谦,宋玉财,李政,王召林,杨志明,杨竹森,刘英超,田世洪,何龙 清,陈开旭,王富春,赵呈祥,薛万文,鲁海峰.2008. 青藏高原碰 撞造山带 Pb-Zn-Ag-Cu 矿床新类型:成矿基本特征与构造控矿 模型.矿床地质 27(2):123-143
- 黎形.1992.地壳元素丰度的若干统计特征.地质与勘探,28(10):1 -7
- 李志明. 2003. 兰坪盆地演化与多金属大型矿集区形成耦合关系研究. 博士学位论文. 贵阳: 中国科学院地球化学研究所 1 102
- 李志明,刘家军,秦建中,廖宗廷,张长江.2004. 滇西兰坪盆地多金属 矿床碳、氧、氢同位素组成及其地质意义. 吉林大学学报(地球科 学版) 34(3): 360-366
- 刘家军 李朝阳 潘家永,刘显凡,张乾,刘玉平.2000. 兰坪-思茅盆地 砂页岩中铜矿床成矿物质来源研究. 地质与勘探 36(4):16-18
- 刘家军,何明勤,李志明,刘玉平,李朝阳,张乾,杨伟光,杨爱平. 2004.云南白秧坪银铜大型多金属矿集区碳氧同位素组成及其 意义.矿床地质23(1):1-10
- 刘家军,濯德高,李志明,何明勤,刘玉平,李朝阳.2010. 兰坪盆地白 秧坪银铜多金属矿集区中银、钴、铋、镍的赋存状态与成因意义. 岩石学报 26(6):1646-1660
- 刘健 ,凌明星 ,李印 ,孙卫东. 2009. 白云鄂博超大型 REE-Nb-Fe 矿床 的稀土成矿模式综述. 大地构造与成矿学 33(2):270-282
- 罗君烈,杨友华,赵准,陈吉琛,杨荆舟. 1994. 滇西特提斯的演化及 主要金属矿床成矿作用. 北京: 地质出版社,1-340
- 马东,何明友,毛世德,王玉婷,于林松,阙薇. 2007. 云南自秧坪铜银 矿床 Cu、Ag 迁移形式探讨. 地球与环境 35(2):142-146
- 牟保磊. 1999. 元素地球化学. 北京: 北京大学出版社, 1-227
- 阙梅英 程敦模 张立生. 1998. 兰坪-思茅盆地铜矿床. 北京: 地质出版社,1-27
- 邵兆刚,孟宪刚,冯向阳,朱大岗.2003.云南白秧坪-华昌山矿带构造 特征及其控矿作用.地质力学学报 9(3):246-253
- 宋会侠,郭国林,焦学军,刘玉琳.2007.新疆包古图斑岩铜矿伴生元素金和银赋存状态初步研究.岩石矿物学杂志,26(4):329
 334
- 陶琰 金景福.2001. 湘中锡矿山式锑矿锑与砷、金的共生分异现象. 矿物学报 21(1):67-72
- 田洪亮. 1997. 兰坪白秧坪铜银多金属矿床地质特征. 云南地质,16 (1): 105-108
- 田洪亮. 1998. 兰坪三山多金属矿床地质特征. 云南地质,17(2): 199 - 206
- 王峰,何明友,2003a. 云南白秧坪银多金属矿床微量元素地球化学特征. 沉积与特提斯地质 23(4):103-107
- 王峰,何明友.2003b. 兰坪白秧坪铜银多金属矿床成矿物质来源的铅 和硫同位素示踪. 沉积于特提斯地质 23(2):82-85
- 王江海,颜文,常向阳,解广轰,邱华宁,张丽彦,董金泉.1998. 陆相 热水沉积作用.北京:地质出版社,132
- 王晓虎 宋玉财 侯增谦 张洪瑞 刘英超 杨竹森 杨天南 潘小菲 ,王 淑贤 薛传东. 2011. 滇西兰坪盆地富隆厂一带铅锌多金属矿床 中闪锌矿的微量元素、S-Pb 同位素特征及意义. 岩石矿物学杂 志 30(1):45-59

- 王彦斌,曾普胜,李延河,田世洪.2004. 云南金顶和白秧坪矿床 He、 Ar 同位素组成及其意义. 矿物岩石 24(4):76-80
- 魏君奇. 2001. 云南河西铜多金属矿 S-Pb 同位素地球化学. 华南地质 与矿产, 67(3): 36-39
- 徐启东,李建威.2003. 云南兰坪北部铜多金属矿化区成矿流体流动 与矿化分带-流体包裹体和稳定同位素依据. 矿床地质 22(4): 265-276
- 徐仕海,顾雪祥,唐菊兴,陈建平,董树义. 2005. 兰坪盆地三类主要 铜银多金属矿床的稳定同位素地球化学. 矿物岩石地球化学通 报 24(4):309-316
- 薛步高. 1995. 东川式铜矿伴生组分地质特征. 地质与勘探 31(3):31 - 37
- 薛步高. 1996. 论易门铜矿区叠加钴矿化地质特征. 矿产与地质,10 (6): 388-394
- 薛春纪,杨建民,陈毓川. 2000. 兰坪白秧坪 Cu-Ag-Co 多金属成矿学 特征.见:陈毓川主编.喜马拉雅期内生成矿作用研究.北京:地 震出版社 69-83
- 薛春纪 陈毓川 杨建民,王登红 杨伟光,杨清标.2002. 滇西兰坪盆 地构造体制和成矿背景分析. 矿床地质 21(1):38-43
- 薛春纪,陈毓川,王登红.2003. 滇西北金顶和白秧坪矿床: 地质和

He, Ne, Xe 同位素组成及成矿时代.中国科学(D辑) 33(4): 315-322

- 杨伟光 喻学惠 李文昌 ,董方浏 莫宣学. 2003. 云南白秧坪银多金属 矿集区成矿流体特征及成矿机制. 现代地质 ,17(1):27-33
- 尹汉辉,范蔚茗,林舸.1990. 云南兰坪-思茅洼盆地演化的深部因素 及幔-壳复合成矿作用. 大地构造与成矿学 4(2):113-124
- 袁见齐 朱上庆 濯裕生. 1984. 矿床学. 北京: 地质出版社 1-322
- 翟裕生. 2003. 成矿系统研究与找矿. 地质调查与研究, 26(3):129 - 135
- 张尔新.2005. 兰坪白秧坪铜银多金属矿集区西矿带矿床成因. 云南 地质 24(3):282-289
- 周云满. 2001. 乐马厂银矿逆冲推覆构造特征及控矿作用. 矿床地 质 20(3):271-278
- 朱大岗 孟宪刚 冯向阳 杨伟光 邵兆刚 杨爱平 周文戈 杨美玲 ,王 建平.2002. 云南白秧坪多金属成矿区构造特征及其控矿作用. 地质地球化学 30(1):8-33
- 朱赖民,胡瑞忠,段启彬. 2001. 元素共生分异机制的研究现状和趋势——以黔西南微细浸染型金矿区为例. 矿物岩石地球化学通报 20(2):19-25