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Abstract
Purpose The distribution and speciation of mercury in
surface water of East River, Guangdong province, China
were investigated.
Methods All told 63 water samples were collected during
a bi-weekly sampling campaign from July 15th to 26th,
2009.
Results Total mercury (THg) concentrations in water
samples ranged from 11 to 49 ng/L. Maximum levels of
THg were measured in the lower reaches of East River,
where it passes through a major industrial area adjacent to
Dongguang city. Higher ratios of dissolved mercury (THg
(aq)) in proportion to THg were restricted to the down-
stream section of East River. Concentrations of the minor
constituent methyl mercury varied in the range from 0.08 to
0.21 ng/L. On average, methyl mercury made up 0.8% and
0.56% of THg (aq) and THg, respectively. Dissolved species
dominated the speciation of methyl mercury in proportions up
to 81%, which may imply that methyl mercury is largely
produced in situ within the river water. Environmental factors
(such as water temperature, dissolved oxygen, etc.) are

regarded to play an important role in Hg methylation
processes were monitored and assessed.
Conclusions In an international perspective, East River
must be classified as a polluted river with considerably
sources within its industrial areas. The THg (aq) and particle
mercury fluxes to the Pearl River Estuary by East River run-
off were estimated to be 0.31±0.11 and 0.17±0.13 t/year,
respectively. Hence, in total nearly 0.5 t Hg is annually
released to the sea from the East River tributary.

Keywords Speciation .Mercury .Methyl mercury . Surface
water . Pearl River delta . East River

1 Introduction

Mercury (Hg) is regarded as a global pollutant because of
its high toxicity, persistency in the environment, and
capability to undergo long-range transport in the atmo-
sphere (Fitzgerald et al. 1998; Johansson et al. 2001;
Wiener et al. 2006). In aquatic systems, inorganic Hg can
be converted into organic Hg, especially methyl mercury
(MeHg), which is biomagnified and bioaccumulated in
aquatic food webs (Boudou and Ribeyre 1997; Goto and
Wallace 2009) and this creates potential health risks to
aquatic life and humans. Mercury methylation processes are
controlled by chemical, physical and biological parameters,
such as temperature, pH, redox potential, dissolved oxygen,
dissolved organic matter and availability of Hg (Ullrich et
al. 2001; Langer et al. 2001). Release of mercury to costal
zones and estuary systems by riverine systems has a
significant impact on the local biogeochemical cycling of
the metal (Paller et al. 2004; Molisani et al. 2007). A
number of studies have surveyed the Hg loading and
composition in major rivers of Europe and North America
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(Lawson et al. 2001; Domagalski et al. 2004; Faganeli et al.
2003; Schäfer et al. 2006), while the corresponding
parameters of major rivers in Asia are still largely unknown.
There is an urgent need to investigate Hg loading in major
rivers globally to better constrain the cycling of Hg in the
oceans (Mason et al. 1994).

East River (Chin. Dong Jiang) is one of three major
tributaries of the Pearl River system, which in turn
constitutes the largest river catchment of Southern China.
East River is of comparatively short length (562 km) but
includes a watershed area of about 27,040 km2 (Zhang et
al. 2009a), accounting for ~6% of the Pearl River system.
The average annual runoff of East River is in turn 24×
109 m3, accounting for 7.1% of the Pearl River system.
East River crosses from Jiangxi Province through the
eastern part of Guangdong province on its way to the
Pearl River Estuary and eventually into the proper South
China Sea, and serves as a major source of potable water
for 40 million inhabitants in Guangdong province,
Shenzhen special economic zone and Hong Kong special
administration area. Following the rapid economic devel-
opment in the Pearl River Delta (PRD) region, industrial
activities, and domestic sewage by an increasing popula-
tion have resulted in excessive discharge of pollutants
into tributaries of the PRD (Ho et al. 2003) including
mercury from metallurgical refinery as well as from
manufacturing of chemicals, paints, electroplating, enam-
elware and batteries. A few studies have carried out to
investigate the distribution of pollutants such as persistent
organic pollutants (Fu et al. 2003), heavy metals and
pathogenic micro biota (Ip et al. 2007) in the Pearl River
and East River (Ho and Hui 2001; Ho et al. 2003). The
status of Hg distribution in East River is to the best of our
knowledge unexamined by the scientific community, although
recently a study of the spatial distribution of this metal in
sediments of Pearl River estuary has been published (Shi et al.
2010). The aim of the present work was to study the
distribution and speciation of surface water Hg and MeHg
along the full extent of East River to pinpoint pollution
source regions and eventually to estimate its contribution to
the input flux of Hg into the Pearl River Estuary.

2 Methods

2.1 Study area

The upper reach of East River constitutes essentially of a
single channel while in its lower reach, downstream
Dongguan city, the largest manufacturing base of electronic
products in PRD, a complex river drainage is formed
including a number of tributaries (see Fig. 1). In its upper
reach section, surface water of East River was sampled at

14 locations denominated Zi with highest three indices
within the upstream Huizhou (HZ) region and the rest
within Heyuan (HY) region. For the parallel channels of
East River within the Dongguan (DG) region and down-
stream, the withdrawal point of raw water for Hong Kong/
Shenzhen including all told 49 sampling sites, a classifica-
tion from north to south is used for indication: A (nine
sites), B (five sites), C (eight sites), D (eight sites) and E
(19 sites). Channel segment A is proximate to Xintang
municipality, which has numerous industries producing
textile and clothing, mechanical parts, plastic, paper,
printing and dyeing applications. Channel B flows through
Mayong, a heavy industry base in the DG region including
several industrial boilers and power plants. Adjacent to channel
C is numerous chemical plants, paper mills, and clothing and
toy factories. The major industrial activities surrounding
channel D consist of textile and clothing, paper mills, plastic,
medicine, glass, hardware, electronic, and mechanical facto-
ries. Segment E is most approximate to DG city area, which is
a base of high-tech industries oriented towards optical
electronics, medicine and information technology.

2.2 Sampling

Water samples were collected about 50 cm below surface
using Pyrex glass bottles in a consecutive order from
downstream to upstream of the river. The sampling was
conducted during one biweekly campaign in the end of
July (15th–26th) 2009. All sampling glass bottles were
cleaned rigorously by immersion in diluted oxidising
acid (10% HNO3) followed by rinses with Milli-Q water.
Subsequently, the bottles were heated in a muffle furnace
at 500°C to remove mercury, doubled bagged after
cooling and stored in the dark until employment. Initially
during the river sampling, the bottles were rinsed three
times with surface water before being filled. Both filtered
and unfiltered water samples were collected for analysis.
A filtered sample was obtained after passing through 0.45-μm
cellulose acetate membrane filter (Millipore, Germany). The
filtration was performed on site. All collected samples were
stabilised by addition of hydrochloric acid (ultra pure) to yield
a 0.4% solution. Subsequently, all samples were stored in a
portable cooler in the dark before being transported to the
laboratory and conserved in a refrigerator at 4°C.

2.3 Analysis

In each water sample, temperature, pH, conductivity,
salinity, dissolved oxygen content (DO), redox potential
(ORP) as well as chloride, chlorophyll a (Chl-a), nitrate
(NO3

−), and ammonium (NH4
+) concentrations were

monitored in situ by using a portable water quality analyser
(6600EDS, YSI company, USA).
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Fig. 1 Location of sampling stations in East River
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The water samples were analysed for the following
mercury species/fractions:

– Reactive Hg (RHg; Hg0(aq) and labile HgII (aq)
complexes reducable by SnCl2). The RHg fraction
includes labile species prone to undergo red-ox cycling
and methylation (Rolfhus and Fitzgerald 1995). The
RHg concentration (unfiltered samples) was deter-
mined by cold vapour atomic fluorescence spectrosco-
py (CVAFS, Tekran 2500 analyser, Tekran Instruments
Corp, USA) after reduction with SnCl2 and preconcen-
tration on a gold trap.

– Total Hg in unfiltered samples (THg) and in filtered
samples (THg (aq)) were determined by CVAFS
following the procedures of United States Environ-
mental Protection Agency (USEPA) Method 1630
(2001).

– Particulate Hg (PHg) was determined indirectly by
subtracting THg (aq) from THg. Methyl mercury in
unfiltered samples (MeHg) and in filtered samples
(MeHg (aq)) were analysed by CVAFS after distilla-
tion, ethylation and isothermal GC separation proce-
dures (Liang et al. 1994; USEPA Method 1631
(1999)).

– Quality assurance/quality control measures to assess
the analytical processes included field blanks, method
blanks, sample duplicates, spike recoveries, and the
application of certified reference materials. The average
± standard deviation of field blanks was 0.27±0.06 and
0.035±0.012 ng/L for THg and MeHg, respectively.
The relative standard deviation for duplicate sample
analysis was <10% for both THg and MeHg. The
recovery of standard spikes was within 85–120% for
MeHg and within 90–116% for THg, respectively. A
certified reference material (ORMS-4, National Re-
search Council Canada) was utilised during the THg
analysis. Statistical data treatment was executed by
using SPSS 16.0 for Windows software (SPSS Inc.,
Chigaco, IL, USA).

3 Results

3.1 East River water quality evaluation

A basic statistical assessment of the water quality param-
eters is given in Table 1. As can be seen East River is
slightly alkaline (the mean pH value is 7.8±0.25) with a
low salinity level (the mean salinity is 0.09±0.03 mg/L).

Chl-a, widely used as a proxy of the plant biomass in
water (Hamilton and Schladow 1997), was present in a
concentration range from 0.33 to 17 μg/L. Along the whole
reach of East River, the NO3

− concentration was elevated

(mean concentration, 7.7 mg/L) which by far exceed the
USEPA drinking water standard of 1 mg/L (USEPA 1992).
Peak concentrations of nitrogen constituents NH4

+ and
NO3

− (maxima of 4.5 and 22 mg/L, respectively) of were
measured at points C2 and Z13, approximate to discharges
of untreated sewage.

3.2 The distribution and speciation of Hg

3.2.1 Hg in river system

Concentrations of RHg, THg (aq), PHg, THg in water
samples were as summarised in Table 2. THg (aq) was
highest elevated in channel C (16±3.7 ng/L), whereas
minimum concentrations (6.3±2.2 ng/L) were measured in
the HZ area section of East River (Table 2). The River
channel C is adjacent to chemical plants that use Hg as a
catalyst to produce acetic acid. A large amount of Hg was
consumed by those chemical plants and these plants may
also discharged wastewater contained elevated Hg con-
centrations to the environment (Jiang et al. 2006; Feng et
al. 2009). Hg-contaminated wastewater is also discharged
into East River section C resulting in Hg contamination.
On the whole, from upstream (HY and HZ area) to
downstream (DG area) of East River, THg (aq) exhibits
an increase trend, which mimics that of RHg. Consequent-
ly, a significant positive correlation (r=0.524, p<0.01, n=62)
could be established between RHg and THg (aq). THg also
shows a significant correlation (r=0.482, p<0.01, n=62)
with THg (aq) indicating a common origin (Faganeli et al.
2003).

The THg level measured (19±3.1 ng/L) never exceed
the international drinking water standard for total Hg
(6,000 ng/L; WHO 2008) as well as the maximum level
allowable for drinking water for total Hg (50 ng/L)
defined by Ministry of Environmental Protection of China
(CN-EPA 2002; Fig. 2). However, THg concentrations in
water at all sampling sites exceeded the 12 ng/L USEPA
standard for Hg to protect against chronic effects to
aquatic life (USEPA 1992) as indicated in Fig. 2.
Moreover, THg concentrations in East River significant-
ly exceeded levels that are considered uncontaminated
in rivers of North America and Europe (1–3 ng/L (Gill
and Bruland 1990); <5 ng/L (Ullrich et al. 2001)). In
terms of surface water Hg levels, the contaminated C
channel section of East River compares favourably with
Baihua reservoir in Guizhou province, which is contam-
inated by Hg containing discharges of an organic
chemical plant, with slightly lower mean THg concentra-
tion (24 vs. 36 ng/L) but with higher concentration of
RHg (8.4 vs. 5.7 ng/L; Yan et al. 2003). Hence, several
sections of East River exhibit Hg contamination, whereby
the deterioted water quality posing a hazard to adjacent
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ecosystems and populations using it as it posed a great
drinking water resource.

3.2.2 MeHg in river system

In all segments from East River, MeHg concentrations in
surface water were present in the range 0.08–0.21 ng/L
(mean, 0.14±0.05 ng/L; Table 2). None of the water
samples contained elevated levels of MeHg (≥1 ng/L);
however, MeHg is significantly bioavailable and therefore
accumulated in fish. Consequently, low MeHg in the bulk
water may be compatible with high MeHg levels in
predator fish in the same water mass (da Silva et al.
2005). The phase distribution of observed MeHg is in
favour of the dissolved species (MeHg (aq)) with a
proportion up to 81%. In addition, concentrations of MeHg
and MeHg (aq) are statistically significant (r=0.704, p<
0.01, n=63) linear correlated. Therefore, it may be
hypothesised that MeHg is produced in situ within East
River.

4 Discussion

4.1 Spatial patterns of mercury distribution along East
River

The proportion of THg (aq) relative to THg was slightly
lower in the HZ (~37%) compared to the HY area (42%) but
increased again downstream in the multi river channel delta
within DG area, where section E turned out to contain
lower ratios (~53%) than the rest of the parallel channels
(~65–70%). This may originate in a divergence in the Hg
source pattern along the river. Three zones could thus be
identified including a heavy industrialised zone of DG area
(A–D sites), a largely urbanised zone around Dongguan city
(E sites) and a less industrialised zone around the upper
reach of East River (Z sites).

Using one-way analysis of variance, it was concluded
that THg (aq) data lumped into the three zone categories
showed larger variation between groups (F=22.967, p<
0.001).The THg(aq) concentration (9.0±1.7 ng/L) in

Table 1 Interval and mean values ± standard deviation of the studied parameters in water samples from East River

Area DG HZ HY

River channel ID A B C D E
Sampling sites A1–A9 B1–B5 C1–C8 D1–D8 E1–E19 Z1–Z11 Z12–Z14

Temperature (°C) 30±0.28 31±0.31 31±0.56 32±0.17 31±0.44 30±0.42 30±0.77

Conductivity (mS/cm) 0.29±0.06 0.28±0.09 0.24±0.04 0.28±0.03 0.20±0.04 0.12±0.03 0.10±0.003

Salinity (mg/L) 0.12±0.03 0.12±0.04 0.10±0.02 0.12±0.01 0.08±0.02 0.05±0.01 0.04±0

Dissolved oxygen (mg/L) 3.7±0.06 3.7±0.02 2.5±1.7 2.8±1.2 2.1±1.4 6.0±1.5 7.5±0.55

pH 7.85±0.07 7.83±0.11 7.72±0.19 7.99±0.11 7.66±0.16 7.90±0.33 8.13±0.46

Redox potential (mV) −273±5.28 −261±15 −250±22 −232±28 −264±22 −267±14 −268±7.5
Cl− (mg/L) 100±24 90±31 72±22 92±33 65±31 29±15 18±2.93

NH4
+ (mg/L) 4.1±0.28 3.9±0.33 3.6±0.61 3.8±0.33 3.1±0.49 3.3±0.40 3.6±0.40

NO3− (mg/L) 7.6±0.18 5.5±2.15 4.3±2.7 2.6±0.60 7.0±1.9 12.4±2.7 18.1±3.1

Chlorophyll-a (μg/L) 4.1±0.39 5.5±1.73 5.4±3.0 14.6±1.8 4.9±3.7 1.2±1.0 1.3±1.4

Table 2 The statistical summary of different Hg species in surface water samples collected from East River (ng/L)

Area River Section RHg THg (aq) PHg THg MeHg MeHg (aq)

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Dongguan (DG) A1–A9 (A) 8.4 2.2 12 2.2 5.9 4.4 17 3.4 0.095 0.028 0.050 0.044

B1–B5 (B) 6.3 1.3 15 6.1 8.2 2.6 24 4.4 0.14 0.028 0.079 0.061

C1–C5 (C) 6.9 2.6 16 3.7 8.0 7.3 24 10 0.19 0.085 0.16 0.072

D1–D8 (D) 8.3 2.6 13 3.9 5.5 5.2 18 3.6 0.21 0.054 0.12 0.068

Total (A–D) 7.5 2.4 14 4.5 6.9 5.1 21 6.7 0.16 0.071 0.10 0.080

E1–E19 (E) 4.9 0.88 9.0 1.7 8.0 4.8 17 3.8 0.21 0.12 0.14 0.070

Huizhou(HZ) Z1–Z11 4.0 2.4 6.3 2.2 11 5.5 17 5.7 0.10 0.050 0.046 0.025

Heyuan(HY) Z12–Z14 2.3 1.6 7.9 5.9 11 10 19 5.0 0.077 0.017 0.043 0.021

East River overall 5.8 2.5 11 4.6 8.3 5.4 19 5.8 0.06 0.093 0.095 0.070
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sections A–D (Table 2) is within the range of levels
reported in other heavily impacted and industrialised
areas, such as in the Sepetiba Bay tributaries, SE Brazil
(Paraquetti et al. 2004) and in the Narragansett Bay
tributaries, USA (Vandal and Fitzgerald 1995). River
channel segment E lacks obvious industrial sources of
Hg contamination. In this zone, the source of Hg
discharges to the river may be mainly domestic sewage,
coal combustion and also possibly automobile emissions.
The upper reaches of East River are dominated by input
from agricultural activities, whereby exhibiting maximum
concentration level of NO3

− as an indicator of watershed
runoff (Table 1). Moreover, the PHg level observed in East
River of the HY and HZ region (HY, 11±10 ng/L; HZ, 11±
5.5 ng/L) were significantly higher than that in DG area
(6.9±5.1 ng/L) possibly indicating the effect of soil
erosion (Table 1).

Fig. 3 The correlation between MeHg and MeHg/THg in water in
East River

Fig. 2 THg and THg (aq) concentrations from seven segments in East
River
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4.2 MeHg production

To investigate MeHg production, we followed the proce-
dures by several studies to calculated %MeHg used as a
surrogate measurement for methylation activity (Mitchell et
al. 2008; Zhang et al. 2009b). Firstly, ratios of MeHg to
THg were calculated ranging from 0.2% to 3%, with an
average of 0.9±0.5%. There is a significant positive
correlation (r=0.935, p<0.01, n=63) between MeHg and
MeHg/THg in waters (Fig. 3). This suggested that there is a
strong potential of methylation of Hg in East River. Secondly,
there is a substantial pool of RHg in proportion to that of
THg in the water samples (30±15%), which is substantially
higher than that of MeHg in relation to THg. This indicates a
high potential for mercury in East River to undergo red-ox
transformation and other conversion such as methylation.

MeHg production in aquatic system has been examined
to be influenced by a wide variety of environmental factors,
such as the availability of Hg, ORP, DO, water temperature,
presences of inorganic and organic solutes as well as
microbial activity (Ullrich et al. 2001). To investigate the
possible controlling factors, the correlation matrix between
Hg species/fractions and eight water quality parameters
measured (DO, pH, ORP, Cl−, NH4

+, NO3
−, Chl-a and

temperature) is tabulated (Table 3). As can be seen in
Table 3, with the exception of pH and ORP, the remaining
six water parameters were found to be significantly
correlated with MeHg in the river system. T, Cl−, and
Chl-a were significantly positively correlated with MeHg
concentration, while DO, NH4

+, and NO3
− were signifi-

cantly negatively correlated with MeHg concentration.

4.3 Hg loading from East River into South China Sea

Riverine input forms an important source of Hg entering the
South China Sea (Fu et al. 2010). The THg (aq), THg, and
PHg concentration in surface water were highly elevated in
downstream including A, B, C, D and E segments (Table 2).
The annual discharge of East River is 24×109 m3. Using
these data, the average fluxes of THg, THg (aq), and PHg
to the South China Sea by East River were estimated to be
0.48±0.14, 0.31±0.11 and 0.17±0.13 t/year, respectively.
As the average annual runoff of East River accounts for
7.1% of the Pearl River, the riverine input fluxes of THg,
THg (aq) and PHg to the South China Sea by the Pearl
River were estimated to be 6.8±2.0, 4.4±1.6 and 2.4±
1.8 t/year. In an oceanographic study of the North South
China Sea, Fu et al. (2010) used a limited number of THg
sampling data from the PRD (~40 ng/L) to predict
corresponding flow of ~34 t/year into the Sea. However,
in a perspective, our data of mercury load to the South
China Sea by the Pearl River are higher than, e.g., that of
Yalu River to the Northern Yellow Sea by in China (2.6

and 1.5 t/year of THg andTHg (aq) respectively; Liu
1999), and the Hg fluxes in the Sepetiba Bay tributaries,
SE Brazil (0.011 t/year of THg (aq) and 0.19 t/year of
THg; Paraquetti et al. 2004).

In the effort to scale up our East River Hg data to yield
estimates of annual Hg runoff of the Pearl River catchment
into the Sea, the data temporal limitation and lack of
information from the remaining tributaries compelled us
choosing a very simple approach. The calculation was
based on the assumption that there was no seasonal
variation in Hg concentration in East River and that this
parameter is levelled out to represent the whole catchment.
In the Pearl River system, West River (Chin. Xi Jiang) and
North River (Chin. Bei Jiang) are the largest tributaries,
whose average annual runoff account for 70.8% and 11.7%
of the total, respectively. More data on riverine inputs were
required to quantify the riverine influxes to South China
Sea. First of all, Hg concentrations in surface water of three
large tributaries of the Pearl River both in wet and dry
season need to be measured. Moreover, Hg concentrations
in eight mouths of the Pearl River system in different
season need also be studied.

5 Conclusions

Our data indicated elevated levels of both THg and MeHg in
surface water in East River when compared to rivers in
pristine areas in North America and Europe. An increase trend
of THg (aq) concentrations from the upstream to the
downstream of the river was observed. The majority of
TMeHg was present as dissolved species MeHg (aq), which
implies that MeHg is produced within East River bulk. This
study highlights that the elevated levels of THg (aq) in surface
water in industrial zone of DG area are a consequence of
industrial and domestic sewage inputs. The Pearl River system
is an important source of Hg input into the South China Sea.
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