# 斜长石和橄榄石成分对四川攀枝花钒钛磁铁矿床 成因的指示意义<sup>\*</sup>

张晓琪<sup>12</sup> 张加飞<sup>3</sup> 宋谢炎<sup>1\*\*</sup> 邓宇峰<sup>12</sup> 官建祥<sup>12</sup> 郑文勤<sup>1</sup>

ZHANG XiaoQi<sup>1 2</sup>, ZHANG JiaFei<sup>3</sup>, SONG XieYan<sup>1 \*\*\*</sup>, DENG YuFeng<sup>1 2</sup>, GUAN JianXiang<sup>1 2</sup> and ZHENG WenQin<sup>1</sup>

- 1. 中国科学院地球化学研究所 矿床地球化学国家重点实验室 贵阳 550002
- 2. 中国科学院研究生院 北京 100049
- 3. 攀钢集团有限公司矿业公司 攀枝花 617000
- 1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
- 2. Graduate University of Chinese Academy of Sciences , Beijing 100049 , China
- 3. Mining Company of Panzhihua Group Company Limited , Panzhihua 617000 , China 2010-01-22 收稿 , 2011-03-27 改回 .

Zhang XQ , Zhang JF , Song XY , Deng YF , Guan JX and Zheng WQ. 2011. Implications of compositions of plagioclase and olivine on the formation of the Panzhihua V–Ti magnetite deposit , Sichuan Province.  $Acta\ Petrologica\ Sinica\ , 27\,(12)$ :3675 – 3688

Abstract Mineral assemblages and associated textures in the low and middle part of the Panzhihua intrusion indicate that plagioclase, olivine and Fe-Ti oxides were crystallized at a similar temperature range. Thus, it is possible to estimate variation of temperature, oxygen fugacity  $(f_{02})$  and magma composition during the formation of the magnetite gabbro and gabbro in different cycles of the Panzhihua layered intrusion by means of compositions of plagioclase and olivine. Electron microprobe data indicate that plagioclase has small compositional variation (An<sub>58.0-52.5</sub>) from the low zone to the middle zone. Whereas, forsterite percentages of olivine (Fo) decrease significantly upwards from magnetite gabbro to gabbro within a single cycle unit. These features indicate that the Panzhihua intrusion was developed by replenishment of many pulses of Fe-Ti enriched magmas. Small and regular composition variations of plagioclase suggest that variations of  $f_0$ , and  ${\rm Fe}^{3+}/{\rm Fe}^{2+}$  of the magma have little effect on crystallization of plagioclase. Therefore, compositions of plagioclase can be used to estimate temperature of crystallization of Fe-Ti oxides. In contrast, large variations of Fo of olivine within a cycle unit suggest that the compositions of olivine depend on values of Fe3+/Fe2+ and Fe2+/Mg of the magma, from which the olivine crystallized. Thus, Fo of olivine was used to rebuild variation of  $f_0$ , during the formation of the magnetite gabbro and gabbro. Crystallizations of plagioclase of the lower and middle zones of the Panzhihua intrusion occurred between 1079°C and 1121°C, we estimate that Fe-Ti oxide probably crystallized at the same temperature range as well. On the other hand, decrease of Fo of olivine from magnetite gabbro to gabbro within a cycle unit indicate that  $f_{0}$ , decreased during fractional crystallization of a new replenished magma. This conclusion is consistent with previous experimental studies about the  $f_0$ , variations during fractional crystallization process at a system closed to oxygen.

**Key words** Plagioclase; Olivine; Oxygen fugacity; Layered intrusion; Panzhihua Fe-Ti-V deposit; Emeishan large igneous province

摘要 攀枝花岩体下部和中部岩相带各旋回中磁铁辉长岩和辉长岩的岩相结构特征表明,钛铁氧化物和斜长石、橄榄石的结晶发生在相近的温度区间内,这为我们利用斜长石和橄榄石的成分探讨磁铁矿形成时温度、氧逸度和岩浆成分的变化提供了可能。电子探针分析结果表明,下部和中部岩相带中斜长石 An 牌号自下向上有规律地逐渐降低,而在每一个旋回内部,

<sup>\*</sup> 本文受国家"973"计划(2007CB411408)、国家自然科学基金重点项目(40730420)、科学院知识创新方向性项目(KZCX2-YW-Q04)和矿床地球化学国家重点实验室课题(KCZX20090105)联合资助。

第一作者简介: 张晓琪 ,女 ,1984 年生 .硕士 .地球化学专业 ,E-mail: wish-you@ live. cn

<sup>\*\*\*</sup> 通讯作者:宋谢炎 男 1962 年生 研究员 地球化学专业 , E-mail: songxieyan@ vip. gyig. ac. cn

橄榄石的 Fo 值总是由磁铁辉长岩向辉长岩表现出强烈降低的趋势。这些特征说明攀枝花岩体经历了多次富铁钛的岩浆的补充。斜长石 An 牌号小幅度的规律性降低说明岩浆氧逸度和  $Fe^{3+}/Fe^{2+}$  比值变化对斜长石成分影响很小 因此 ,我们可以根据斜长石成分估计钛铁氧化物结晶过程中温度变化。然而 同一旋回中橄榄石 Fo 值变化较大说明橄榄石成分在很大程度上取决于岩浆中的  $Fe^{3+}/Fe^{2+}$  和  $Fe^{2+}/Mg$  含量 因此 ,可以根据橄榄石成分分析磁铁辉长岩与辉长岩形成过程中氧逸度和  $Fe^{3+}/Fe^{2+}$  比值的相对变化。计算得到下部和中部岩相带中斜长石的结晶温度介于  $1079 \sim 1121$   $^{\circ}$  之间,认为钛铁氧化物的结晶也大致发生在此温度区间;根据同一旋回中磁铁辉长岩与邻近辉长岩中橄榄石 Fo 值的差异 发现每次新补充的岩浆分离结晶过程中氧逸度总是逐渐降低,这与前人对封闭体系岩浆结晶分异过程中氧逸度变化规律的认识一致。

关键词 斜长石; 橄榄石; 氧逸度; 层状岩体; 攀枝花钒钛磁铁矿床; 峨眉大火成岩省中图法分类号 P578. 942; P578. 968; P618. 31

# 1 引言

钒钛磁铁矿通常被认为是镁铁质岩浆分离结晶晚期的 产物 因此 钒钛磁铁矿层一般出现在层状岩体的上部 如南 非 Bushveld 岩体和格陵兰的 Skaergaard 岩体(McBirney and Naslund , 1990; Cawthorn , 1996)。然而 ,与国外典型层状岩 体不同 四川攀枝花层状岩体巨厚的钒钛磁铁矿层却分布在 岩体的底部和下部。攀西地区是世界最大的钒钛磁铁矿矿 集区 几处超大型 V-Ti 磁铁矿床蕴藏着近  $33 \times 10^9 t$  的 Fe、  $1862 \times 10^4$ t 的  $V_2O_5$  6.  $18 \times 10^9$ t 的  $TiO_2$  , V 和 Ti 分别占世界 储量的 11.6% 和 35% ,占我国总储量的 52% 和 95% ①。自 20 世纪80 年代以来,前人对该地区的层状岩体及钒钛磁铁 矿床的成因进行了大量探讨。攀西地质大队 $(1984^{2})$ 和张 云湘等(1988) 认为含钒钛磁铁矿的层状岩体是攀西裂谷发 育早期阶段幔源岩浆活动的产物; 李德惠和茅燕石(1982) 及 王正允(1982) 对该岩体的岩相带进行了系统划分; 宋谢炎等 (1997,1999) 和张正阶等(1996) 运用热力学和化学动力学 方法对韵律层理的形成过程进行了定量模拟。近年来 Zhou et al. (2005) 利用锆石 SHRIMP U-Pb 定年技术,确定攀枝花 层状岩体形成的年龄为 263 ± 3Ma ,肯定了其与二叠世峨眉 山地幔柱高钛玄武岩浆活动的成因联系(宋谢炎等,2005; Zhou et al., 2008; Zhang et al., 2009) o

然而 攀枝花钒钛磁铁矿的成因认识仍存在分歧。攀西地质大队(1984)、卢记仁等(1988a,b)、张云湘等(1988)认为钒钛磁铁矿床的形成与分离结晶作用有关,应是在岩浆作用早期较高氧逸度下形成的;宋谢炎等(1994,1999)及张正阶等(1996)认为块状磁铁矿层的形成与铁矿浆的不混溶分离有关,而浸染状磁铁矿的形成与分离结晶作用有关; Zhou et al. (2005)认为侵入攀枝花岩体的岩浆在深部岩浆房经历了一定程度的分离结晶,分异后的岩浆在来自围岩的富 C-O的流体影响下,发生液态不混溶形成相互分离的富 Fe-Ti 的氧化物熔浆和贫 Fe-Ti 的硅酸盐岩浆,钒钛磁铁矿矿层是直接从富 Fe-Ti 氧化物熔浆中结晶出来的。然而,迄今为止并没有支持富 Fe-Ti 氧化物矿浆从镁铁质岩浆中熔离的实验岩石学证据。

岩体中钛铁氧化物以及橄榄石中的钛铁氧化物包裹体

的成分和结构特征为攀枝花钒钛磁铁矿的重力结晶分异的 观点提供了更多的新证据( Pang et al. , 2008a , b , 2009) ,包 裹体中钛铁氧化物成分与块状矿体全岩氧化物成分的相似性 ,说明铁钛氧化物是在接近液相线时与橄榄石等硅酸盐矿物同时结晶形成的。遗憾的是 ,由于存在固溶体分离 ,使得根据磁铁矿和钛铁矿电子探针成分获得的温度和氧逸度结果只能代表固相线以下这两种矿物固溶体分离的物理化学条件( Pang et al. , 2008b) ,未能论证矿层形成时的温度、氧逸度条件 ,也没有更深入地讨论诸如是什么因素促使大量钒钛磁铁矿聚集在攀枝花岩体的下部 ,而不是在岩体的上部?为什么钒钛磁铁矿层往往呈韵律式分布? 本文试图利用没有固相线下钛铁氧化物固溶体分离的造岩矿物( 斜长石和橄榄石) 的成分对上述问题进行探讨。

# 2 地质背景

峨眉山大火成岩省位于扬子板块西部至青藏高原东缘 的广大地区,并一直延伸至越南北部,出露面积超过5×105 km<sup>2</sup>(图 1) (Song et al., 2001, 2004; Xu et al., 2001; Xiao et al., 2004a) ,它由峨眉山玄武岩、镁铁-超镁铁侵入岩及同源 酸性、碱性侵入岩组成。峨眉山玄武岩厚度数十米至数千米 不等 局部地区厚度可达五千米 ,是中晚二叠世(~259Ma) 受峨眉山地幔柱作用快速(1~2Ma)喷发的产物(Chung and Jahn , 1995; Xu et al. , 2001; 宋谢炎等 , 2001; Zhou et al. , 2002; He  $\it et~al.$  , 2003 , 2007; Xiao  $\it et~al.$  , 2004b; Song  $\it et~al.$  , 2009)。根据地球化学特点,可以将其分为高钛玄武岩(Ti/Y >500) 和低钛玄武岩(Ti/Y < 500) 两个系列(Xu et al., 2001)。它们源于不同的原始岩浆组成,经历了不同的岩浆 演化路线,并具有不同的时空分布关系(Xu et al., 2001; Xiao et al., 2004a; 宋谢炎等, 2005; Zhou et al., 2008; Song et al., 2009)。前者与钒钛磁铁矿成矿有关,主要分布在峨 眉山大火成岩省内带,是地幔柱活动晚期阶段的产物;后者

① 数据来自攀钢网站 http://www.pzhsteel.com.cn/AboutCompany/Default.aspx

② 攀西地质大队. 1984. 攀枝花-西昌地区钒钛磁铁矿共生矿成矿 规律与预测研究报告(附件1).79-110

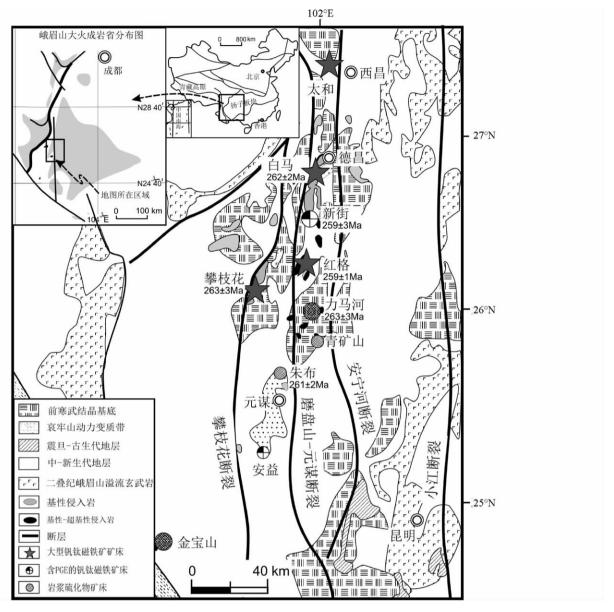



图 1 攀西地区镁铁-超镁铁层状侵入体分布图 (据攀西地质大队,1984; Song et al., 2009 修改)

Fig. 1 Distribution map of mafic-ultramafic layered intrusions in Pan-Xi area SW China (after Song et al., 2009)

与岩浆硫化物矿床成矿有关 ,主要分布在峨眉山大火成岩省 的外带 ,形成时间早于前者。

攀西地区位于峨眉山大火成岩省的内带(图 1) 沿南北向的磨盘山—元谋断裂和攀枝花断裂带出露一系列具有巨大经济价值的含 Fe-Ti-V 矿的层状基性—超基性侵入体,从北向南依次为太和岩体( $262\pm2$ Ma,Zhou et al.,2008)、白马岩体( $261\pm2$ Ma,Shellnutt et al.,2009);新街岩体( $259\pm3$ Ma,Zhou et al.,2002) 紅格岩体( $259\pm1.3$ Ma,Zhong and Zhu,2006) 攀枝花岩体( $263\pm3$ Ma,Zhou et al.,2005),其中攀枝花铁矿床是目前开采规模最大的钒钛磁铁矿床。

攀枝花层状岩体长约  $19 \, \mathrm{km}$  宽约  $2 \, \mathrm{km}$  面积约  $40 \, \mathrm{km}^2$  (图 2) 岩体呈单斜层状产出 走向 NE-SW 倾向 NW 倾角  $50^\circ$  ~  $60^\circ$ 。岩体侵位于新元古代晚期的灯影组灰岩中 底部与围

岩接触部位普遍存在大理岩化和矽卡岩化的热接触变质晕。 其上部与三叠纪沉积岩呈断层接触,北部和南部与正长岩断 层接触(攀西地质大队 1984)。由于后期 NW 向断裂的破坏 攀枝花岩体自北向南被分割为朱家包包、兰家火山、尖山、刀马坎、公山、弄弄坪和纳拉箐等 7 个矿段(图 2)。本次研究主要对朱家包包矿段进行采样(图 2),该矿段长 2. 2 km,宽 1. 1 km 是攀枝花岩体岩相出露最全、矿体厚度较大、剥露最好的矿段。

根据岩石的矿物组合及含量变化 特征矿物相(磷灰石、橄榄石)的出现和消失;岩石的结构构造特征;固溶体矿物(斜长石、含钛普通辉石、橄榄石)的成分变化;微韵律层的发育情况等岩相特征,攀枝花岩体自下而上可分为边缘带,下部岩相带,中部岩相带和上部岩相带等4个岩相带(图3)

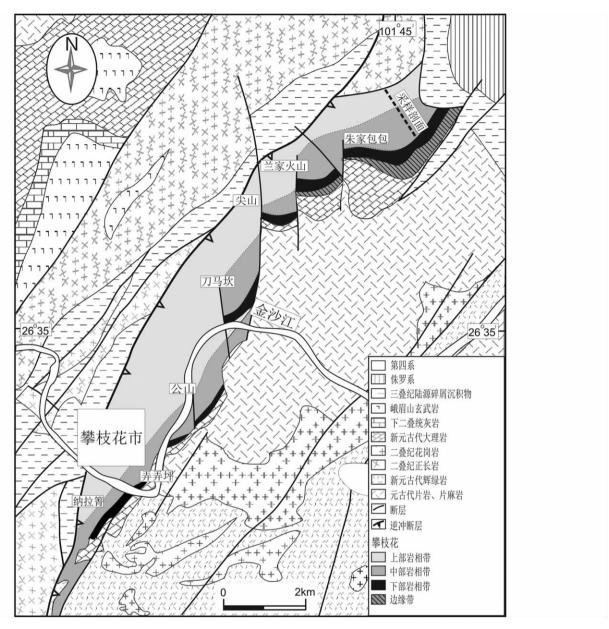



图 2 攀枝花岩体地质示意图(据 Zhou et al., 2005)

Fig. 2 Geological map of the Panzhihua intrusion, SW China (after Zhou et al., 2005)

(李德惠和茅燕石,1982; 王正允,1982; 攀西地质大队,1984)。

边缘带以暗色细粒辉长岩为主,底部直接与灯影组大理岩接触,其突出特征是含角闪石及大量大理岩捕虏体(王正允,1982)。下部岩相带为攀枝花岩体的主要赋矿层,其底部有厚数米的粗粒橄榄岩、橄辉岩层,之上为厚达60m的块状钒钛磁铁矿层,其中仅夹少量浸染状矿石;上部为磁铁辉长岩夹辉长岩,暗色矿物(钛普通辉石+钛铁氧化物+橄榄石)与浅色矿物(斜长石)比例的交替变化显示出韵律层理(王正允,1982;宋谢炎等,1994)。中部岩相带由磁铁辉长岩与辉长岩的交替变化显示出5个岩相旋回(图3),除第一旋回底部形成厚约40~50m的块状钒钛磁铁矿层外,每个旋

回底部和中部也形成若干浸染状磁铁矿层,但磁铁矿层的厚度和矿石品位向上逐渐降低。较之下部岩相带而言,中部岩相带的韵律层理更加发育。上部岩相带主要为层状辉长岩,局部有稀疏浸染状矿,以磷灰石的突然增多为标志,该层的出现也标志着攀枝花层状岩体成矿作用的终结(李德惠和茅燕石,1982; 王正允,1982; 攀西地质大队,1984)。

# 3 样品加工和分析方法

为探讨 Ti-Fe 氧化物矿层形成时的温度、氧逸度条件 本次研究对中、下岩相带的矿物成分进行了电子探针测定。对于新采集的样品,首先将样品的氧化表面切除,选择新鲜面

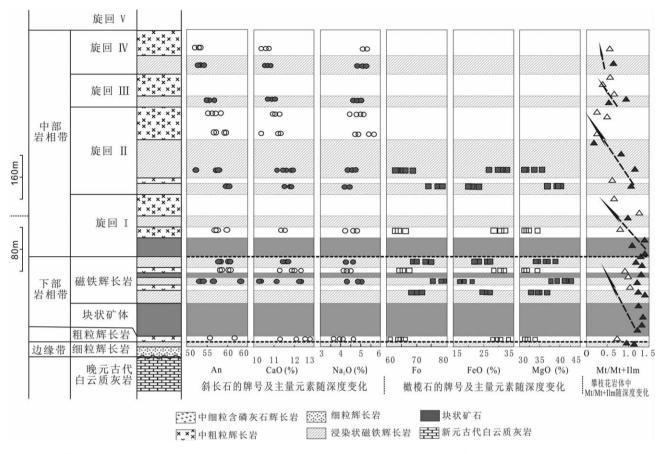



图 3 攀枝花岩体朱家包包矿体柱状图及斜长石牌号、橄榄石的牌号、主量元素和岩体中磁铁矿、钛铁矿体积百分比随深度变化柱状图(据 Song  $et\ al.$ , unpublished 改编)

小圆圈代表斜长石的电子探针数据; 小方格代表橄榄石的电子探针数据; 小三角代表攀枝花岩体中磁铁矿体积百分数与全岩总铁钛氧化物体积百分数的比值; 空心代表数据来自辉长岩; 实心代表数据来自磁铁辉长岩或块状矿体. 中部岩相带第 V 旋回及上部岩相带在本图中略去

Fig. 3 Generalized stratigraphic section of the Zhujiabaobao segment of the Panzhihua intrusion, showing the general lithologic variations and An, Fo content, major element and Mt/Mt + Ilm variation with the cumulus stratigraphy (after Song et al., unpublished)

Circles indicate data from plagioclase; squares indicate data from olivine; triangles represent the ratio of volume percentage of magnetite and bulk Fe-Ti oxide of Panzhihua intrusion. Cycle V in the middle zone and the whole upper zone are omitted in this figure

做岩石切片,在偏光显微镜下对岩石的矿物组成、含量、结构、构造以及蚀变情况进行观察、描述,挑选新鲜的、未发生 钛铁氧化物出溶的橄榄石和斜长石对其进行电子探针分析。

橄榄石、斜长石电子探针成分分析在中国科学院地球化学研究所电子探针实验室完成。分析仪器为: 日本岛津公司生产的 EMPA-1600 电子探针。分析条件为: 加速电压 25kV, 电流 10nA,分析束斑直径为  $10\mu m$ 。分析时所用标样为: 美国生产的标样 SPI#2753—AB,分析精度为 0.01。主要氧化物百分含量(表 1、表 2)的分析误差 < 2%。

## 4 分析结果

斜长石 CaO 含量介于 12.9% ~ 9.6% ,Al<sub>2</sub>O<sub>3</sub> 含量为 29.4% ~ 27.0% ,Na<sub>2</sub>O 含量介于 3.66% ~ 5.65% (表 1、图

3)。下部和中部岩相带自下而上斜长石 CaO 和  $Al_2O_3$  含量逐渐减少,而  $Na_2O$  含量逐渐增加。相应地斜长石 An 牌号向上有规律地逐渐降低,其中,下部岩相带底部粗粒辉长岩中斜长石 An = 66. 1 ~ 55. 4 平均 61. 6 ,下部岩相带的斜长石 An = 63. 7 ~ 53. 7 ,平均 59. 1;中部岩相带斜长石 An = 60. 7 ~ 48. 6 ,平均 56. 3 (图 3)。 FeO 含量变化范围在 0.29% ~ 0.22% 之间,且磁铁辉长岩中斜长石的 FeO 含量略高于辉长岩中斜长石的 FeO 含量(表 1)。需要强调的是中部岩相带各旋回中斜长石的成分并没有显示出反复的韵律式变化(图 3)。在  $SiO_2$  对 CaO  $Na_2O$  的相关图解中(图 4a ,b),磁铁辉长岩与辉长岩差别不明显。

与斜长石不同,下部岩相带和中部岩相带中橄榄石的 MgO、FeO 含量和橄榄石 Fo 牌号却并未反映出从下至上逐渐 降低的规律,而是在每一个旋回内部的磁铁辉长岩层与辉长岩层中表现出显著的韵律式变化,即磁铁辉长岩中橄榄石的

# 表 1 攀枝花岩体朱家包包矿段斜长石主要氧化物组成 (wt%)

Table 1  $\,$  Major oxides of plagioclase from the Zhujiabaobao section of Panzhihua intrusion ( wt%)

| ————<br>样品号                             | SP05-3           |        | SP05-9              |        | SP05-15            |        | SP05-18             |         | SP05-              | SP05-22 |                    | 26     |
|-----------------------------------------|------------------|--------|---------------------|--------|--------------------|--------|---------------------|---------|--------------------|---------|--------------------|--------|
| 岩石名称                                    | 和 粗粒辉长岩          |        | 浸染状磁铁辉长岩            |        | 辉长岩                |        | 稠密浸染磁铁辉长岩           |         | 辉长岩                |         | 浸染状磁铁辉长岩           |        |
| 深度( m)                                  | 11               |        | 100                 |        | 138                |        | 155                 |         | 215                |         | 335                |        |
| 岩相带<br>(旋回)                             | 粗粒辉-             | 长岩     | 下部岩相带               |        | 下部岩相带              |        | 下部岩相带               |         | 中部岩相带<br>( I 旋回)   |         | 中部岩相带<br>(Ⅱ旋回)     |        |
| 点数( 个)                                  | 5                |        | 5                   |        | 5                  |        | 5                   |         | 5                  |         | 4                  |        |
|                                         | 范围               | 平均值    | 范围                  | 平均值    | 范围                 | 平均值    | 范围                  | 平均值     | 范围                 | 平均值     | 范围                 | 平均值    |
| $SiO_2$                                 | $54.0 \sim 56.0$ | 54. 46 | 53. 1 ~ 56. 0       | 54. 68 | 54. 0 ~ 56. 4      | 55. 09 | 54. 2 ~ 55. 6       | 55. 18  | $53.8 \sim 55.6$   | 54. 63  | 54. 6 ~ 55. 6      | 54. 97 |
| ${ m TiO}_2$                            | $0.02 \sim 0.06$ | 0.04   | $0.05 \sim 0.12$    | 0. 11  | $0.02 \sim 0.12$   | 0.06   | $0.10 \sim 0.11$    | 0.10    | $0.04 \sim 0.14$   | 0.08    | $0.09 \sim 0.12$   | 0.10   |
| $Al_2O_3$                               | 28. 4 ~ 29. 4    | 28. 92 | 27. 2 ~ 28. 7       | 28. 03 | 27. 0 ~ 29. 2      | 28. 20 | 28. 1 ~ 28. 6       | 28. 35  | 27. $8 \sim 28. 8$ | 28. 17  | 28. $3 \sim 28.6$  | 28. 45 |
| FeO                                     | $0.24 \sim 0.27$ | 0. 26  | $0.25 \sim 0.32$    | 0. 27  | $0.20 \sim 0.31$   | 0. 24  | 0. 17 $\sim$ 0. 27  | 0. 22   | $0.21 \sim 0.36$   | 0. 29   | 0. 24 $\sim$ 0. 28 | 0. 26  |
| MgO                                     | $0.00 \sim 0.03$ | 0.01   | $0.01 \sim 0.05$    | 0.03   | $0.01 \sim 0.05$   | 0.02   | 0.00 ~ 0.02         | 0.01    | $0.01 \sim 0.04$   | 0.03    | 0.00 ~ 0.02        | 0.01   |
| CaO                                     | 11. 2 ~ 12. 9    | 12. 25 | 10. 2 ~ 12. 5       | 11. 33 | 11. 1 ~ 12. 4      | 11. 83 | 11.4 ~11.8          | 11.60   | 11.3 ~11.6         | 11.44   | 11.5 ~11.9         | 11.77  |
| Na <sub>2</sub> O                       | 3. 66 ~ 4. 98    | 4. 23  | 3. 91 ~ 5. 09       | 4. 53  | 4. 17 ~ 4. 55      | 4. 34  | 4. 25 ~ 4. 73       | 4. 44   | 4. 16 ~ 4. 81      | 4. 52   | 4. 25 ~ 4. 44      | 4. 33  |
| $K_2O$                                  | $0.20 \sim 0.22$ | 0.20   | 0. 20 ~ 0. 29       | 0. 26  | 0. 24 $\sim$ 0. 27 | 0. 25  | 0. 16 ~ 0. 24       | 0. 19   | 0. 17 $\sim$ 0. 25 | 0. 22   | 0. 12 $\sim$ 0. 14 | 0. 13  |
| BaO                                     | $0.00 \sim 0.07$ | 0.03   | $0.00 \sim 0.04$    | 0.01   | $0.00 \sim 0.07$   | 0.04   | $0.00 \sim 0.04$    | 0.02    | $0.00 \sim 0.05$   | 0.02    | $0.00 \sim 0.04$   | 0.01   |
| SrO                                     | 0.00             | 0.00   | 0.00                | 0.00   | 0.00               | 0.00   | 0.00                | 0.00    | 0.00               | 0.00    | 0.00               | 0.00   |
| Total                                   | 99. 8 ~ 101. 1   | 100.40 | 98. 3 $\sim$ 100. 4 | 99. 24 | 99.3 ~101.6        | 100.07 | 98. 7 $\sim$ 100. 5 | 100. 10 | 98. 6 ~ 100. 1     | 99.40   | 99. 5 ~ 100. 6     | 100.05 |
| Si <sup>2 +</sup>                       | $2.43 \sim 2.50$ | 2.45   | 2. 43 ~ 2. 53       | 2. 48  | 2. 46 ~ 2. 54      | 2.48   | 2. 47 ~ 2. 50       | 2.48    | $2.45 \sim 2.50$   | 2.48    | 2. 47 ~ 2. 49      | 2.48   |
| Ti <sup>2 +</sup>                       | 0.00             | 0.00   | 0.00                | 0.00   | 0.00               | 0.00   | 0.00                | 0.00    | 0.00               | 0.00    | 0.00               | 0.00   |
| Al <sup>3 +</sup>                       | 1.49 ~1.56       | 1.53   | 1. 46 ~ 1. 55       | 1.50   | 1. 44 ~ 1. 53      | 1.50   | 1.49 ~1.52          | 1.50    | 1. 49 ~ 1. 55      | 1.51    | 1.51 ~ 1.52        | 1.51   |
| $\mathrm{Fe^{2}}$ +                     | 0.01             | 0.01   | 0.01                | 0.01   | 0.01               | 0.01   | 0.01                | 0.01    | 0.01               | 0.01    | 0.01               | 0.01   |
| $Mg^{2}$ +                              | 0.00             | 0.00   | 0.00                | 0.00   | 0.00               | 0.00   | 0.00                | 0.00    | 0.00               | 0.00    | 0.00               | 0.00   |
| Ca <sup>2 +</sup>                       | $0.54 \sim 0.62$ | 0.59   | 0. 50 ~ 0. 61       | 0.55   | $0.54 \sim 0.59$   | 0.57   | 0.55 ~ 0.57         | 0.56    | $0.55 \sim 0.57$   | 0.56    | 0.56 ~ 0.58        | 0.57   |
| Na +                                    | 0. 32 ~ 0. 43    | 0.37   | $0.35 \sim 0.45$    | 0.40   | 0. 36 ~ 0. 40      | 0.38   | $0.37 \sim 0.41$    | 0.39    | 0. 36 ~ 0. 42      | 0.40    | 0.37 ~0.39         | 0.38   |
| K +                                     | 0.01             | 0.01   | 0. 01 ~ 0. 02       | 0.02   | 0.01 ~ 0.02        | 0.01   | 0.01                | 0.01    | 0.01               | 0.01    | 0.01               | 0.01   |
| Ba <sup>2 +</sup>                       | 0.00             | 0.00   | 0.00                | 0.00   | 0.00               | 0.00   | 0.00                | 0.00    | 0.00               | 0.00    | 0.00               | 0.00   |
| Sr <sup>2 +</sup>                       | 0.00             | 0.00   | 0.00                | 0.00   | 0.00               | 0.00   | 0.00                | 0.00    | 0.00               | 0.00    | 0.00               | 0.00   |
| An                                      | 55. 4 ~ 66. 1    | 61. 6  | 52. 8 ~ 63. 7       | 58.0   | 57. 9 ~ 61. 8      | 60. 1  | 57. 3 ~ 60. 4       | 59. 1   | 56. 5 ~ 60. 2      | 58. 3   | 59. 4 ~ 60. 6      | 60.0   |
| T( °C)                                  | 1121             |        | 1113                | ;      | 1107               | 1      | 1102                | 2       | 1101               | l       | 1103               | 3      |
| 样品号                                     | SP05-            | 28     | SP05-32             |        | SP05-34            |        | SP05-36             |         | SP05-40            |         | SP05-              | 42     |
| 岩石名称                                    | 浸染状磁铁            | 辉长岩    | 辉长岩                 | 岩      | 辉长岩                |        | 浸染状磁铁辉长岩            |         | 浸染状磁铁辉长岩           |         | 辉长                 | 岩      |
| 深度( m)                                  | 400              |        | 505                 |        | 585                |        | 635                 |         | 735                |         | 805                |        |
| 岩相带<br>(旋回)                             | 中部岩相带<br>(Ⅱ旋回)   |        | 中部岩相带<br>(Ⅱ旋回)      |        | 中部岩相带<br>(Ⅱ旋回)     |        | 中部岩相带<br>(Ⅲ旋回)      |         | 中部岩相带<br>(Ⅳ旋回)     |         | 中部岩相带<br>(Ⅳ旋回)     |        |
| 点数(个)                                   | 5                |        | 5                   |        | 5                  |        | 5                   |         | 5                  |         | 5                  |        |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 范围               | 平均值    | 范围                  | 平均值    | 范围                 | 平均值    | 范围                  | 平均值     | 范围                 | 平均值     | 范围                 | 平均值    |
| $SiO_2$                                 | 54. 3 ~ 56. 1    |        | 54. 4 ~ 57. 1       |        | 54. 8 ~ 55. 8      | 55. 41 | 54. 6 ~ 56. 0       | 55. 44  |                    | 56. 17  | 54. 9 ~ 57. 4      | 56. 43 |
| ${ m TiO}_2$                            | 0.08 ~ 0.13      | 0.10   | 0.06 ~ 0.13         | 0. 11  | 0.03 ~ 0.11        | 0.07   | 0.09 ~ 0.13         | 0. 10   | 0. 03 ~ 0. 13      | 0.08    | 0.07 ~ 0.16        | 0.11   |
| $Al_2O_3$                               | 27. 9 ~ 28. 8    | 28. 39 | 26. 8 ~ 28. 3       | 27. 80 | 27. 9 ~ 28. 4      | 28. 17 | 28. 3 ~ 27. 7       | 28. 03  | 27. 2 ~ 28. 0      | 27. 59  | 27. 2 ~ 27. 7      | 27. 45 |
| FeO                                     | 0. 18 ~ 0. 25    | 0. 22  | 0. 23 ~ 0. 34       | 0. 29  | 0. 20 ~ 0. 29      | 0. 25  | 0. 22 ~ 0. 30       | 0. 27   | 0. 24 ~ 0. 31      | 0. 27   | 0. 23 ~ 0. 30      | 0. 27  |
| MgO                                     | 0. 01 ~ 0. 03    | 0.02   | 0. 00 ~ 0. 04       | 0. 02  | 0. 01 ~ 0. 03      | 0.02   | 0.00 ~ 0.03         | 0.02    | 0. 01 ~ 0. 04      | 0.02    | 0.00 ~ 0.04        | 0.01   |
| CaO                                     | 11. 1 ~ 12. 0    | 11. 58 | 9.6~11.4            | 10. 75 | 11.0 ~ 11.4        | 11. 21 | 10.7 ~ 11.3         | 11.06   | 10.5 ~ 10.9        | 10.66   | 10. 3 ~ 10. 8      | 10.48  |
| Na <sub>2</sub> O                       | 4. 36 ~ 4. 86    | 4. 59  | 4. 43 ~ 5. 65       | 4. 95  | 4. 29 ~ 5. 08      | 4. 74  | 4. 62 ~ 5. 04       | 4. 81   | 4. 84 ~ 5. 33      | 5. 08   | 5. 10 ~ 5. 36      | 5. 23  |
| $K_2O$                                  | 0. 15 ~ 0. 26    | 0. 20  | 0. 21 ~ 0. 33       | 0. 26  | 0. 19 ~ 0. 27      | 0. 22  | 0. 21 ~ 0. 24       | 0. 23   | 0. 24 ~ 0. 28      | 0. 25   | 0. 25 ~ 0. 29      | 0. 27  |
| BaO                                     | 0.00 ~ 0.05      | 0. 02  | 0. 01 ~ 0. 05       | 0. 03  | 0.00 ~ 0.07        | 0. 02  | 0.00 ~ 0.07         | 0. 03   | 0.00 ~ 0.04        | 0. 01   | 0.00 ~ 0.09        | 0. 03  |
| SrO                                     | 0.00             | 0.00   | 0.00                | 0.00   | 0.00               | 0.00   | 0.00                | 0.00    | 0.00               | 0.00    | 0.00               | 0.00   |
| Total                                   |                  |        | 98. 7 ~ 100. 9      |        | 99. 6 ~ 101        |        | 99. 5 ~ 100. 7      | 99. 97  |                    |         | 99. 2 ~ 101. 1     |        |
| Si <sup>2+</sup>                        | 2. 45 ~ 2. 51    | 2. 49  | 2. 48 ~ 2. 56       | 2. 51  | 2. 48 ~ 2. 51      | 2. 49  | 2. 48 ~ 2. 52       | 2. 50   | 2. 52 ~ 2. 53      | 2. 52   | 2. 50 ~ 2. 55      | 2. 53  |
| Ti <sup>2 +</sup>                       | 0.00             | 0.00   | 0. 00 ~ 0. 01       | 0.00   | 0.00               | 0.00   | 0.00                | 0.00    | 0.00               | 0.00    | 0.00 ~ 0.01        | 0.00   |
| Al <sup>3 +</sup>                       | 1. 47 ~ 1. 53    | 1. 50  | 1. 46 ~ 1. 50       | 1. 48  | 1. 48 ~ 1. 51      | 1. 49  | 1. 47 ~ 1. 51       | 1. 49   | 1. 45 ~ 1. 47      | 1. 46   | 1. 43 ~ 1. 48      | 1. 45  |
| Fe <sup>2 +</sup>                       | 0.01             | 0. 01  | 0.01                | 0. 01  | 0.01               | 0. 01  | 0. 01               | 0. 01   | 0.01               | 0. 01   | 0. 01              | 0. 01  |
| Mg <sup>2 +</sup>                       | 0.00             | 0.00   | 0.00                | 0.00   | 0.00               | 0.00   | 0.00                | 0.00    | 0.00               | 0.00    | 0.00               | 0.00   |
| 1418                                    | 0.00             | 5.00   | 0.00                | 0.00   | 0.00               | 0.00   | 5. 00               | 0.00    | 5.00               | 5.00    | 5. 00              | 0.00   |

续表 1 Continued Table 1

|                    | 范围            | 平均值   | 范围            | 平均值   | 范围            | 平均值   | 范围            | 平均值   | 范围            | 平均值  | 范围            | 平均值   |
|--------------------|---------------|-------|---------------|-------|---------------|-------|---------------|-------|---------------|------|---------------|-------|
| Ca <sup>2 +</sup>  | 0. 53 ~ 0. 58 | 0.56  | 0. 46 ~ 0. 55 | 0. 52 | 0. 53 ~ 0. 55 | 0. 54 | 0. 52 ~ 0. 55 | 0. 53 | 0. 50 ~ 0. 52 | 0.51 | 0. 50 ~ 0. 53 | 0.50  |
| Na +               | 0. 38 ~ 0. 42 | 0.40  | 0. 39 ~ 0. 49 | 0.43  | 0.38 ~ 0.44   | 0.41  | 0.40 ~0.44    | 0.42  | 0.42 ~ 0.46   | 0.44 | 0.44 ~ 0.47   | 0.46  |
| K +                | 0. 01 ~ 0. 02 | 0.01  | 0.01 ~0.02    | 0.02  | 0.01 ~0.02    | 0.01  | 0.01          | 0.01  | 0.01 ~0.02    | 0.01 | 0.01 ~0.02    | 0.02  |
| Ba <sup>2 +</sup>  | 0.00          | 0.00  | 0.00          | 0.00  | 0.00          | 0.00  | 0.00          | 0.00  | 0.00          | 0.00 | 0.00          | 0.00  |
| $\mathrm{Sr}^{2+}$ | 0.00          | 0.00  | 0.00          | 0.00  | 0.00          | 0.00  | 0.00          | 0.00  | 0.00          | 0.00 | 0.00          | 0.00  |
| An                 | 55. 8 ~ 60. 0 | 58. 2 | 48. 4 ~ 58. 1 | 54. 6 | 54. 7 ~ 56. 0 | 56. 7 | 54. 6 ~ 57. 4 | 56. 0 | 52. 6 ~ 54. 8 | 53.7 | 51. 5 ~ 53. 3 | 52. 5 |
| T( °C)             | 1101          |       | 1094          | ļ     | 1098          | 3     | 1092          | 2     | 1084          | 1    | 1079          | )     |

注: 该表中的温度均是以各样品中斜长石 An 牌号的最大值计算的

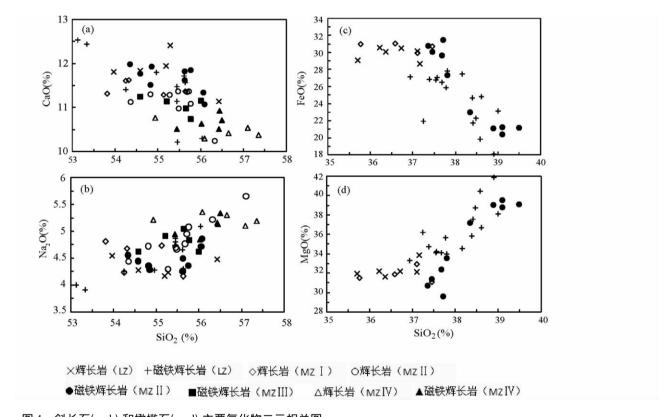



图 4 斜长石(a、b) 和橄榄石(c、d) 主要氧化物二元相关图 LZ-下部岩相带; MZ-中部岩相带; I - 旋回 I; II - 旋回 II; III - 旋回 III | Fig. 4 Binary plots of major oxide elements of plagioclase(a,b) and olivine(c,d) LZ-low zone; MZ-middle zone; I - cycle I; II - cycle II | III - cycle III | Toycle II | Toycle II | Toycle III | Toycle II | Toyc

量升高为 35.1% ,FeO = 21.0% ~ 31.5% ,平均含量降低至 25.6% ,对应地 ,Fo = 62.7 ~ 77.6 ,平均值升高为 70.8 (表 2 、图 3 )。橄榄石中  $SiO_2$  对 FeO 、MgO 相关图(图 4c , d) ,也显示磁铁辉长岩与辉长岩存在较大差异 .磁铁辉长岩中橄榄石的 FeO 含量较低 ,MgO 含量较高 ,而不含矿或少含矿的辉长岩所表现出的特征正好相反。

此外、对攀枝花岩体底部至顶部含磷灰石辉长岩的矿物含量统计结果表明,每个岩相旋回从底部磁铁辉长岩到上部辉长岩层 不仅 Ti-Fe 氧化物含量在降低、磁铁矿/(磁铁矿+钛铁矿)(Mt/(Mt+Ilm))比值也逐渐降低(图3)。

# 表 2 攀枝花岩体朱家包包矿段橄榄石主要氧化物组成 (wt%)

Table 2 Major oxides of olivine from the Zhujiabaobao section of Panzhihua intrusion ( wt%)

| 样品号                                                                                                                                                                                               | SP05                                                                                                                                                                                                                                                            | 5-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SP05                                                                                                                                                                                                                                                                                                                                                                                                    | 9                                                                                                                                                        | SP05-                                                                                                                                                                                                                                                                                                                                                                                                            | 41                                                                                                                                                                | SP05                                                                                                                                                                                                                                                             | 1-15                                                                                                                                                                       |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 岩石名称                                                                                                                                                                                              | 尔 粗粒辉长岩                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 浸染状磁铁                                                                                                                                                                                                                                                                                                                                                                                                   | 失辉长岩                                                                                                                                                     | 稠密浸染状磁                                                                                                                                                                                                                                                                                                                                                                                                           | 铁辉长岩                                                                                                                                                              | 辉长岩                                                                                                                                                                                                                                                              |                                                                                                                                                                            |  |
| 深度( m)                                                                                                                                                                                            | 11<br>粗粒辉长岩                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                     | )                                                                                                                                                        | 118                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                   | 138                                                                                                                                                                                                                                                              |                                                                                                                                                                            |  |
| 岩相带                                                                                                                                                                                               |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 下部岩                                                                                                                                                                                                                                                                                                                                                                                                     | 相带                                                                                                                                                       | 下部岩                                                                                                                                                                                                                                                                                                                                                                                                              | 相带                                                                                                                                                                | 下部岩                                                                                                                                                                                                                                                              | 相带                                                                                                                                                                         |  |
| 点数( 个)                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                |                                                                                                                                                                            |  |
|                                                                                                                                                                                                   | <br>范围                                                                                                                                                                                                                                                          | 平均值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <br>范围                                                                                                                                                                                                                                                                                                                                                                                                  | 平均值                                                                                                                                                      | <br>范围                                                                                                                                                                                                                                                                                                                                                                                                           | 平均值                                                                                                                                                               | <br>范围                                                                                                                                                                                                                                                           | 平均值                                                                                                                                                                        |  |
| $SiO_2$                                                                                                                                                                                           | 36. 2 ~ 36. 7                                                                                                                                                                                                                                                   | 36. 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36. 9 ~ 37. 8                                                                                                                                                                                                                                                                                                                                                                                           | 37. 48                                                                                                                                                   | 38. 4 ~ 40. 9                                                                                                                                                                                                                                                                                                                                                                                                    | 39. 06                                                                                                                                                            | 35. 7 ~ 37. 2                                                                                                                                                                                                                                                    | 36. 55                                                                                                                                                                     |  |
| $TiO_2$                                                                                                                                                                                           | 0. 01 ~ 0. 05                                                                                                                                                                                                                                                   | 0. 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0. 00 ~ 0. 04                                                                                                                                                                                                                                                                                                                                                                                           | 0. 02                                                                                                                                                    | 0. 03 ~ 0. 04                                                                                                                                                                                                                                                                                                                                                                                                    | 0. 03                                                                                                                                                             | 0. 00 ~ 0. 04                                                                                                                                                                                                                                                    | 0. 01                                                                                                                                                                      |  |
| $Al_2O_3$                                                                                                                                                                                         | 0. 00 ~ 0. 01                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0. 00 ~ 0. 02                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                     | 0. 00 ~ 0. 02                                                                                                                                                                                                                                                                                                                                                                                                    | 0. 01                                                                                                                                                             | 0. 00 ~ 0. 01                                                                                                                                                                                                                                                    | 0.00                                                                                                                                                                       |  |
| $Cr_2O_3$                                                                                                                                                                                         | 0.00 ~ 0.01                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00 ~ 0.02                                                                                                                                                                                                                                                                                                                                                                                             | 0. 01                                                                                                                                                    | 0. 00 ~ 0. 01                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                                                                                                                                                              | 0.00 ~ 0.01                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                       |  |
| FeO                                                                                                                                                                                               | 30. 2 ~ 33. 6                                                                                                                                                                                                                                                   | 31. 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25. 8 ~ 27. 1                                                                                                                                                                                                                                                                                                                                                                                           | 26. 69                                                                                                                                                   | 18. 0 ~ 22. 3                                                                                                                                                                                                                                                                                                                                                                                                    | 20. 16                                                                                                                                                            | 28. 6 ~ 30. 6                                                                                                                                                                                                                                                    | 29. 84                                                                                                                                                                     |  |
| NiO                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0. 00 ~ 0. 02                                                                                                                                                                                                                                                                                                                                                                                           | 0. 01                                                                                                                                                    | 0.00 ~ 0.03                                                                                                                                                                                                                                                                                                                                                                                                      | 0. 01                                                                                                                                                             | 0. 00 ~ 0. 03                                                                                                                                                                                                                                                    | 0.01                                                                                                                                                                       |  |
| MnO                                                                                                                                                                                               | 0. 36 ~ 0. 47                                                                                                                                                                                                                                                   | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0. 34 ~ 0. 40                                                                                                                                                                                                                                                                                                                                                                                           | 0.37                                                                                                                                                     | 0.00 ~ 0.29                                                                                                                                                                                                                                                                                                                                                                                                      | 0. 21                                                                                                                                                             | 0. 42 ~ 0. 51                                                                                                                                                                                                                                                    | 0.47                                                                                                                                                                       |  |
| MgO                                                                                                                                                                                               | 30. 0 ~ 32. 0                                                                                                                                                                                                                                                   | 31. 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33. 3 ~ 35. 7                                                                                                                                                                                                                                                                                                                                                                                           | 34. 37                                                                                                                                                   | 37. 5 ~41. 9                                                                                                                                                                                                                                                                                                                                                                                                     | 39. 87                                                                                                                                                            | 32. 0 ~ 33. 8                                                                                                                                                                                                                                                    | 32. 33                                                                                                                                                                     |  |
| CaO                                                                                                                                                                                               | 0. 02 ~ 0. 03                                                                                                                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00 ~ 0.05                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                                                                                                                                                     | 0. 03 ~ 0. 05                                                                                                                                                                                                                                                                                                                                                                                                    | 0.03                                                                                                                                                              | 0. 01 ~ 0. 03                                                                                                                                                                                                                                                    | 0.02                                                                                                                                                                       |  |
| Na <sub>2</sub> O                                                                                                                                                                                 | 0.00 ~ 0.02                                                                                                                                                                                                                                                     | 0. 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                                                                                                                                                     | 0. 00 ~ 0. 01                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                                       |  |
| Total                                                                                                                                                                                             | 99. 8 ~ 100. 7                                                                                                                                                                                                                                                  | 100. 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97. 8 ~ 99. 7                                                                                                                                                                                                                                                                                                                                                                                           | 98. 97                                                                                                                                                   | 98. 0 ~ 100. 9                                                                                                                                                                                                                                                                                                                                                                                                   | 99. 39                                                                                                                                                            | 97. 2 ~ 100. 2                                                                                                                                                                                                                                                   | 99. 24                                                                                                                                                                     |  |
| Si <sup>2+</sup>                                                                                                                                                                                  | 0. 98 ~ 1. 00                                                                                                                                                                                                                                                   | 0. 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. 00 ~ 1. 01                                                                                                                                                                                                                                                                                                                                                                                           | 1. 01                                                                                                                                                    | 1. 00 ~ 1. 03                                                                                                                                                                                                                                                                                                                                                                                                    | 1. 01                                                                                                                                                             | 0. 99 ~ 1. 00                                                                                                                                                                                                                                                    | 1.00                                                                                                                                                                       |  |
| Ti <sup>2 +</sup>                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0. 00                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                                       |  |
| Al <sup>3 +</sup>                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0. 00                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                                       |  |
| Cr <sup>3 +</sup>                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0. 00                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                     | 0. 00                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                              | 0. 00                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                       |  |
| Fe <sup>2 +</sup>                                                                                                                                                                                 | 0. 69 ~ 0. 77                                                                                                                                                                                                                                                   | 0. 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0. 57 ~ 0. 62                                                                                                                                                                                                                                                                                                                                                                                           | 0. 60                                                                                                                                                    | 0. 39 ~ 0. 48                                                                                                                                                                                                                                                                                                                                                                                                    | 0. 44                                                                                                                                                             | 0. 64 ~ 0. 70                                                                                                                                                                                                                                                    | 0. 68                                                                                                                                                                      |  |
| Ni <sup>2 +</sup>                                                                                                                                                                                 | 0. 01                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                                       |  |
| Mn <sup>2 +</sup>                                                                                                                                                                                 | 0. 01                                                                                                                                                                                                                                                           | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0. 01                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01                                                                                                                                                     | 0.00 ~ 0.01                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                              | 0. 01                                                                                                                                                                                                                                                            | 0.01                                                                                                                                                                       |  |
| $Mg^{2+}$                                                                                                                                                                                         | 1. 22 ~ 1. 34                                                                                                                                                                                                                                                   | 1. 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. 35 ~ 1. 41                                                                                                                                                                                                                                                                                                                                                                                           | 1. 38                                                                                                                                                    | 1. 48 ~ 1. 60                                                                                                                                                                                                                                                                                                                                                                                                    | 1.54                                                                                                                                                              | 1. 30 ~ 1. 35                                                                                                                                                                                                                                                    | 1.31                                                                                                                                                                       |  |
| Ca <sup>2 +</sup>                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                                       |  |
| Na +                                                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                                       |  |
| Fo                                                                                                                                                                                                | 61. 4 ~ 66. 1                                                                                                                                                                                                                                                   | 64. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68. 6 ~ 71. 1                                                                                                                                                                                                                                                                                                                                                                                           | 69. 7                                                                                                                                                    | 75. 5 ~ 80. 5                                                                                                                                                                                                                                                                                                                                                                                                    | 77. 9                                                                                                                                                             | 65. 2 ~ 67. 8                                                                                                                                                                                                                                                    | 65. 9                                                                                                                                                                      |  |
| <br>样品号                                                                                                                                                                                           | SP05-                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                          | SP05-                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                   | SP05                                                                                                                                                                                                                                                             |                                                                                                                                                                            |  |
|                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SP05-22                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                          | 浸染状磁铁辉长岩                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                   | 浸染状磁                                                                                                                                                                                                                                                             |                                                                                                                                                                            |  |
| 岩石名称                                                                                                                                                                                              | 稠密浸染状码                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 辉长岩                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                   |                                                                                                                                                                                                                                                                  |                                                                                                                                                                            |  |
| 深度(m)                                                                                                                                                                                             | 155                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 215                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                          | 335                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                   | 400                                                                                                                                                                                                                                                              |                                                                                                                                                                            |  |
| 岩相带(旋回)                                                                                                                                                                                           | 下部岩                                                                                                                                                                                                                                                             | 相审                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 中部岩相带(I旋回)                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                          | 中部岩相带(Ⅱ旋回)                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                   | 中部岩相带(Ⅱ 旋回)<br>5                                                                                                                                                                                                                                                 |                                                                                                                                                                            |  |
| 点数( 个)                                                                                                                                                                                            | 6                                                                                                                                                                                                                                                               | <br>平均值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                       | 亚拉佐                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                | 亚拉(古                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                            |  |
|                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 范围                                                                                                                                                                                                                                                                                                                                                                                                      | 平均值                                                                                                                                                      | 范围                                                                                                                                                                                                                                                                                                                                                                                                               | 平均值                                                                                                                                                               | 范围                                                                                                                                                                                                                                                               | 平均值                                                                                                                                                                        |  |
| SiO                                                                                                                                                                                               | 范围                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                         | 26 72                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                  | 29 00                                                                                                                                                             | 27 / 27 9                                                                                                                                                                                                                                                        | 27 60                                                                                                                                                                      |  |
| SiO <sub>2</sub>                                                                                                                                                                                  | 37. 3 ~ 39. 0                                                                                                                                                                                                                                                   | 38. 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35. 8 ~ 37. 5                                                                                                                                                                                                                                                                                                                                                                                           | 36. 73                                                                                                                                                   | 38. 3 ~ 39. 5                                                                                                                                                                                                                                                                                                                                                                                                    | 38. 99                                                                                                                                                            | 37. 4 ~ 37. 8                                                                                                                                                                                                                                                    | 37. 60                                                                                                                                                                     |  |
| ${ m TiO}_2$                                                                                                                                                                                      | 37. 3 ~ 39. 0<br>0. 02 ~ 0. 11                                                                                                                                                                                                                                  | 38. 20<br>0. 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35. 8 ~ 37. 5<br>0. 01 ~ 0. 02                                                                                                                                                                                                                                                                                                                                                                          | 0. 01                                                                                                                                                    | 38. 3 ~ 39. 5<br>0. 04 ~ 0. 18                                                                                                                                                                                                                                                                                                                                                                                   | 0.09                                                                                                                                                              | 0.00 ~ 0.06                                                                                                                                                                                                                                                      | 0. 03                                                                                                                                                                      |  |
| $TiO_2$ $Al_2O_3$                                                                                                                                                                                 | 37. 3 ~ 39. 0<br>0. 02 ~ 0. 11<br>0. 00 ~ 0. 03                                                                                                                                                                                                                 | 38. 20<br>0. 04<br>0. 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35. 8 ~ 37. 5<br>0. 01 ~ 0. 02<br>0. 00 ~ 0. 01                                                                                                                                                                                                                                                                                                                                                         | 0. 01<br>0. 01                                                                                                                                           | 38. 3 ~ 39. 5<br>0. 04 ~ 0. 18<br>0. 00 ~ 0. 01                                                                                                                                                                                                                                                                                                                                                                  | 0. 09<br>0. 00                                                                                                                                                    | 0. 00 ~ 0. 06<br>0. 00 ~ 0. 02                                                                                                                                                                                                                                   | 0. 03<br>0. 01                                                                                                                                                             |  |
| $TiO_2$ $Al_2O_3$ $Cr_2O_3$                                                                                                                                                                       | 37. 3 ~ 39. 0<br>0. 02 ~ 0. 11<br>0. 00 ~ 0. 03<br>0. 00 ~ 0. 04                                                                                                                                                                                                | 38. 20<br>0. 04<br>0. 01<br>0. 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35. 8 ~ 37. 5<br>0. 01 ~ 0. 02<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01                                                                                                                                                                                                                                                                                                                                        | 0. 01<br>0. 01<br>0. 00                                                                                                                                  | 38. 3 ~ 39. 5<br>0. 04 ~ 0. 18<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01                                                                                                                                                                                                                                                                                                                                                 | 0. 09<br>0. 00<br>0. 01                                                                                                                                           | 0. 00 ~ 0. 06<br>0. 00 ~ 0. 02<br>0. 00 ~ 0. 02                                                                                                                                                                                                                  | 0. 03<br>0. 01<br>0. 01                                                                                                                                                    |  |
| ${ m TiO_2}$ ${ m Al_2O_3}$ ${ m Cr_2O_3}$ ${ m FeO}$                                                                                                                                             | 37. 3 ~ 39. 0<br>0. 02 ~ 0. 11<br>0. 00 ~ 0. 03<br>0. 00 ~ 0. 04<br>21. 9 ~ 27. 8                                                                                                                                                                               | 38. 20<br>0. 04<br>0. 01<br>0. 01<br>24. 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35. 8 ~ 37. 5<br>0. 01 ~ 0. 02<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>29. 9 ~ 31. 1                                                                                                                                                                                                                                                                                                                       | 0. 01<br>0. 01<br>0. 00<br>30. 68                                                                                                                        | 38. 3 ~ 39. 5<br>0. 04 ~ 0. 18<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>20. 4 ~ 23. 0                                                                                                                                                                                                                                                                                                                                | 0. 09<br>0. 00<br>0. 01<br>21. 36                                                                                                                                 | 0. 00 ~ 0. 06<br>0. 00 ~ 0. 02<br>0. 00 ~ 0. 02<br>27. 3 ~ 31. 5                                                                                                                                                                                                 | 0. 03<br>0. 01<br>0. 01<br>29. 87                                                                                                                                          |  |
| $\begin{aligned} & \text{TiO}_2 \\ & \text{Al}_2  \text{O}_3 \\ & \text{Cr}_2  \text{O}_3 \\ & \text{FeO} \\ & \text{NiO} \end{aligned}$                                                          | 37. 3 ~ 39. 0<br>0. 02 ~ 0. 11<br>0. 00 ~ 0. 03<br>0. 00 ~ 0. 04<br>21. 9 ~ 27. 8<br>0. 00 ~ 0. 02                                                                                                                                                              | 38. 20<br>0. 04<br>0. 01<br>0. 01<br>24. 97<br>0. 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35. 8 ~ 37. 5<br>0. 01 ~ 0. 02<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>29. 9 ~ 31. 1<br>0. 00 ~ 0. 02                                                                                                                                                                                                                                                                                                      | 0. 01<br>0. 01<br>0. 00<br>30. 68<br>0. 01                                                                                                               | 38. 3 ~ 39. 5<br>0. 04 ~ 0. 18<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>20. 4 ~ 23. 0<br>0. 00 ~ 0. 02                                                                                                                                                                                                                                                                                                               | 0. 09<br>0. 00<br>0. 01<br>21. 36<br>0. 01                                                                                                                        | 0. 00 ~ 0. 06<br>0. 00 ~ 0. 02<br>0. 00 ~ 0. 02<br>27. 3 ~ 31. 5<br>0. 00 ~ 0. 03                                                                                                                                                                                | 0. 03<br>0. 01<br>0. 01<br>29. 87<br>0. 01                                                                                                                                 |  |
| $\begin{aligned} &\operatorname{TiO_2} \\ &\operatorname{Al_2O_3} \\ &\operatorname{Cr_2O_3} \\ &\operatorname{FeO} \\ &\operatorname{NiO} \\ &\operatorname{MnO} \end{aligned}$                  | 37. 3 ~ 39. 0<br>0. 02 ~ 0. 11<br>0. 00 ~ 0. 03<br>0. 00 ~ 0. 04<br>21. 9 ~ 27. 8<br>0. 00 ~ 0. 02<br>0. 32 ~ 0. 45                                                                                                                                             | 38. 20<br>0. 04<br>0. 01<br>0. 01<br>24. 97<br>0. 01<br>0. 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35. 8 ~ 37. 5<br>0. 01 ~ 0. 02<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>29. 9 ~ 31. 1<br>0. 00 ~ 0. 02<br>0. 46 ~ 0. 52                                                                                                                                                                                                                                                                                     | 0. 01<br>0. 01<br>0. 00<br>30. 68<br>0. 01<br>0. 49                                                                                                      | 38. 3 ~ 39. 5<br>0. 04 ~ 0. 18<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>20. 4 ~ 23. 0<br>0. 00 ~ 0. 02<br>0. 28 ~ 0. 34                                                                                                                                                                                                                                                                                              | 0. 09<br>0. 00<br>0. 01<br>21. 36<br>0. 01<br>0. 31                                                                                                               | 0. 00 ~ 0. 06<br>0. 00 ~ 0. 02<br>0. 00 ~ 0. 02<br>27. 3 ~ 31. 5<br>0. 00 ~ 0. 03<br>0. 44 ~ 0. 50                                                                                                                                                               | 0. 03<br>0. 01<br>0. 01<br>29. 87<br>0. 01<br>0. 47                                                                                                                        |  |
| $\begin{aligned} & \text{TiO}_2 \\ & \text{Al}_2  \text{O}_3 \\ & \text{Cr}_2  \text{O}_3 \\ & \text{FeO} \\ & \text{NiO} \\ & \text{MnO} \\ & \text{MgO} \end{aligned}$                          | 37. 3 ~ 39. 0<br>0. 02 ~ 0. 11<br>0. 00 ~ 0. 03<br>0. 00 ~ 0. 04<br>21. 9 ~ 27. 8<br>0. 00 ~ 0. 02<br>0. 32 ~ 0. 45<br>34. 0 ~ 38. 1                                                                                                                            | 38. 20<br>0. 04<br>0. 01<br>0. 01<br>24. 97<br>0. 01<br>0. 38<br>35. 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35. 8 ~ 37. 5<br>0. 01 ~ 0. 02<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>29. 9 ~ 31. 1<br>0. 00 ~ 0. 02<br>0. 46 ~ 0. 52<br>31. 1 ~ 33. 0                                                                                                                                                                                                                                                                    | 0. 01<br>0. 01<br>0. 00<br>30. 68<br>0. 01<br>0. 49<br>31. 88                                                                                            | 38. 3 ~ 39. 5<br>0. 04 ~ 0. 18<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>20. 4 ~ 23. 0<br>0. 00 ~ 0. 02<br>0. 28 ~ 0. 34<br>37. 2 ~ 39. 5                                                                                                                                                                                                                                                                             | 0. 09<br>0. 00<br>0. 01<br>21. 36<br>0. 01<br>0. 31<br>38. 72                                                                                                     | 0. 00 ~ 0. 06<br>0. 00 ~ 0. 02<br>0. 00 ~ 0. 02<br>27. 3 ~ 31. 5<br>0. 00 ~ 0. 03<br>0. 44 ~ 0. 50<br>29. 6 ~ 33. 5                                                                                                                                              | 0. 03<br>0. 01<br>0. 01<br>29. 87<br>0. 01<br>0. 47<br>31. 53                                                                                                              |  |
| $\begin{array}{c} \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{Cr}_2\text{O}_3\\ \text{FeO}\\ \text{NiO}\\ \text{MnO}\\ \text{MgO}\\ \text{CaO} \end{array}$                                      | 37. 3 ~ 39. 0<br>0. 02 ~ 0. 11<br>0. 00 ~ 0. 03<br>0. 00 ~ 0. 04<br>21. 9 ~ 27. 8<br>0. 00 ~ 0. 02<br>0. 32 ~ 0. 45<br>34. 0 ~ 38. 1<br>0. 02 ~ 0. 04                                                                                                           | 38. 20<br>0. 04<br>0. 01<br>0. 01<br>24. 97<br>0. 01<br>0. 38<br>35. 90<br>0. 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35. 8 ~ 37. 5<br>0. 01 ~ 0. 02<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>29. 9 ~ 31. 1<br>0. 00 ~ 0. 02<br>0. 46 ~ 0. 52<br>31. 1 ~ 33. 0<br>0. 00 ~ 0. 03                                                                                                                                                                                                                                                   | 0. 01<br>0. 01<br>0. 00<br>30. 68<br>0. 01<br>0. 49<br>31. 88<br>0. 01                                                                                   | 38. 3 ~ 39. 5<br>0. 04 ~ 0. 18<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>20. 4 ~ 23. 0<br>0. 00 ~ 0. 02<br>0. 28 ~ 0. 34<br>37. 2 ~ 39. 5<br>0. 01 ~ 0. 06                                                                                                                                                                                                                                                            | 0. 09<br>0. 00<br>0. 01<br>21. 36<br>0. 01<br>0. 31<br>38. 72<br>0. 03                                                                                            | 0. 00 ~ 0. 06<br>0. 00 ~ 0. 02<br>0. 00 ~ 0. 02<br>27. 3 ~ 31. 5<br>0. 00 ~ 0. 03<br>0. 44 ~ 0. 50<br>29. 6 ~ 33. 5<br>0. 03 ~ 0. 05                                                                                                                             | 0. 03<br>0. 01<br>0. 01<br>29. 87<br>0. 01<br>0. 47<br>31. 53<br>0. 04                                                                                                     |  |
| $\begin{array}{c} \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{Cr}_2\text{O}_3\\ \text{FeO}\\ \text{NiO}\\ \text{MnO}\\ \text{MgO}\\ \text{CaO}\\ \text{Na}_2\text{O} \end{array}$                | 37. 3 ~ 39. 0<br>0. 02 ~ 0. 11<br>0. 00 ~ 0. 03<br>0. 00 ~ 0. 04<br>21. 9 ~ 27. 8<br>0. 00 ~ 0. 02<br>0. 32 ~ 0. 45<br>34. 0 ~ 38. 1<br>0. 02 ~ 0. 04<br>0. 00                                                                                                  | 38. 20<br>0. 04<br>0. 01<br>0. 01<br>24. 97<br>0. 01<br>0. 38<br>35. 90<br>0. 03<br>0. 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35. 8 ~ 37. 5<br>0. 01 ~ 0. 02<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>29. 9 ~ 31. 1<br>0. 00 ~ 0. 02<br>0. 46 ~ 0. 52<br>31. 1 ~ 33. 0<br>0. 00 ~ 0. 03<br>0. 00                                                                                                                                                                                                                                          | 0. 01<br>0. 01<br>0. 00<br>30. 68<br>0. 01<br>0. 49<br>31. 88<br>0. 01<br>0. 00                                                                          | 38. 3 ~ 39. 5<br>0. 04 ~ 0. 18<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>20. 4 ~ 23. 0<br>0. 00 ~ 0. 02<br>0. 28 ~ 0. 34<br>37. 2 ~ 39. 5<br>0. 01 ~ 0. 06<br>0. 00                                                                                                                                                                                                                                                   | 0. 09<br>0. 00<br>0. 01<br>21. 36<br>0. 01<br>0. 31<br>38. 72<br>0. 03<br>0. 00                                                                                   | 0. 00 ~ 0. 06<br>0. 00 ~ 0. 02<br>0. 00 ~ 0. 02<br>27. 3 ~ 31. 5<br>0. 00 ~ 0. 03<br>0. 44 ~ 0. 50<br>29. 6 ~ 33. 5<br>0. 03 ~ 0. 05<br>0. 00                                                                                                                    | 0. 03<br>0. 01<br>0. 01<br>29. 87<br>0. 01<br>0. 47<br>31. 53<br>0. 04<br>0. 00                                                                                            |  |
| $\begin{array}{c} \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{Cr}_2\text{O}_3\\ \text{FeO}\\ \text{NiO}\\ \text{MnO}\\ \text{MgO}\\ \text{CaO}\\ \text{Na}_2\text{O}\\ \text{Total} \end{array}$ | 37. 3 ~ 39. 0<br>0. 02 ~ 0. 11<br>0. 00 ~ 0. 03<br>0. 00 ~ 0. 04<br>21. 9 ~ 27. 8<br>0. 00 ~ 0. 02<br>0. 32 ~ 0. 45<br>34. 0 ~ 38. 1<br>0. 02 ~ 0. 04<br>0. 00<br>95. 8 ~ 100. 8                                                                                | 38. 20<br>0. 04<br>0. 01<br>0. 01<br>24. 97<br>0. 01<br>0. 38<br>35. 90<br>0. 03<br>0. 00<br>99. 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35. 8 ~ 37. 5<br>0. 01 ~ 0. 02<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>29. 9 ~ 31. 1<br>0. 00 ~ 0. 02<br>0. 46 ~ 0. 52<br>31. 1 ~ 33. 0<br>0. 00 ~ 0. 03<br>0. 00<br>98. 9 ~ 100. 5                                                                                                                                                                                                                        | 0. 01<br>0. 01<br>0. 00<br>30. 68<br>0. 01<br>0. 49<br>31. 88<br>0. 01<br>0. 00<br>99. 83                                                                | 38. 3 ~ 39. 5<br>0. 04 ~ 0. 18<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>20. 4 ~ 23. 0<br>0. 00 ~ 0. 02<br>0. 28 ~ 0. 34<br>37. 2 ~ 39. 5<br>0. 01 ~ 0. 06<br>0. 00<br>99. 0 ~ 100. 2                                                                                                                                                                                                                                 | 0. 09<br>0. 00<br>0. 01<br>21. 36<br>0. 01<br>0. 31<br>38. 72<br>0. 03<br>0. 00<br>99. 52                                                                         | 0. 00 ~ 0. 06<br>0. 00 ~ 0. 02<br>0. 00 ~ 0. 02<br>27. 3 ~ 31. 5<br>0. 00 ~ 0. 03<br>0. 44 ~ 0. 50<br>29. 6 ~ 33. 5<br>0. 03 ~ 0. 05<br>0. 00<br>99. 2 ~ 100. 3                                                                                                  | 0. 03<br>0. 01<br>0. 01<br>29. 87<br>0. 01<br>0. 47<br>31. 53<br>0. 04<br>0. 00<br>99. 56                                                                                  |  |
| $TiO_2$ $Al_2O_3$ $Cr_2O_3$ $FeO$ $NiO$ $MnO$ $MgO$ $CaO$ $Na_2O$ $Total$ $Si^{2+}$                                                                                                               | 37. 3 ~ 39. 0<br>0. 02 ~ 0. 11<br>0. 00 ~ 0. 03<br>0. 00 ~ 0. 04<br>21. 9 ~ 27. 8<br>0. 00 ~ 0. 02<br>0. 32 ~ 0. 45<br>34. 0 ~ 38. 1<br>0. 02 ~ 0. 04<br>0. 00<br>95. 8 ~ 100. 8<br>1. 01 ~ 1. 02                                                               | 38. 20<br>0. 04<br>0. 01<br>0. 01<br>24. 97<br>0. 01<br>0. 38<br>35. 90<br>0. 03<br>0. 00<br>99. 56<br>1. 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35. 8 ~ 37. 5<br>0. 01 ~ 0. 02<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>29. 9 ~ 31. 1<br>0. 00 ~ 0. 02<br>0. 46 ~ 0. 52<br>31. 1 ~ 33. 0<br>0. 00 ~ 0. 03<br>0. 00<br>98. 9 ~ 100. 5<br>0. 99 ~ 1. 02                                                                                                                                                                                                       | 0. 01<br>0. 01<br>0. 00<br>30. 68<br>0. 01<br>0. 49<br>31. 88<br>0. 01<br>0. 00<br>99. 83<br>1. 00                                                       | 38. 3 ~ 39. 5<br>0. 04 ~ 0. 18<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>20. 4 ~ 23. 0<br>0. 00 ~ 0. 02<br>0. 28 ~ 0. 34<br>37. 2 ~ 39. 5<br>0. 01 ~ 0. 06<br>0. 00<br>99. 0 ~ 100. 2<br>1. 01 ~ 1. 02                                                                                                                                                                                                                | 0. 09<br>0. 00<br>0. 01<br>21. 36<br>0. 01<br>0. 31<br>38. 72<br>0. 03<br>0. 00<br>99. 52<br>1. 01                                                                | 0. 00 ~ 0. 06<br>0. 00 ~ 0. 02<br>0. 00 ~ 0. 02<br>27. 3 ~ 31. 5<br>0. 00 ~ 0. 03<br>0. 44 ~ 0. 50<br>29. 6 ~ 33. 5<br>0. 03 ~ 0. 05<br>0. 00<br>99. 2 ~ 100. 3<br>1. 01 ~ 1. 03                                                                                 | 0. 03<br>0. 01<br>0. 01<br>29. 87<br>0. 01<br>0. 47<br>31. 53<br>0. 04<br>0. 00<br>99. 56<br>1. 02                                                                         |  |
| $TiO_2$ $Al_2O_3$ $Cr_2O_3$ $FeO$ $NiO$ $MnO$ $MgO$ $CaO$ $Na_2O$ $Total$ $Si^{2+}$ $Ti^{2+}$                                                                                                     | 37. 3 ~ 39. 0<br>0. 02 ~ 0. 11<br>0. 00 ~ 0. 03<br>0. 00 ~ 0. 04<br>21. 9 ~ 27. 8<br>0. 00 ~ 0. 02<br>0. 32 ~ 0. 45<br>34. 0 ~ 38. 1<br>0. 02 ~ 0. 04<br>0. 00<br>95. 8 ~ 100. 8<br>1. 01 ~ 1. 02<br>0. 00                                                      | 38. 20<br>0. 04<br>0. 01<br>0. 01<br>24. 97<br>0. 01<br>0. 38<br>35. 90<br>0. 03<br>0. 00<br>99. 56<br>1. 01<br>0. 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35. 8 ~ 37. 5<br>0. 01 ~ 0. 02<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>29. 9 ~ 31. 1<br>0. 00 ~ 0. 02<br>0. 46 ~ 0. 52<br>31. 1 ~ 33. 0<br>0. 00 ~ 0. 03<br>0. 00<br>98. 9 ~ 100. 5<br>0. 99 ~ 1. 02<br>0. 00                                                                                                                                                                                              | 0. 01<br>0. 01<br>0. 00<br>30. 68<br>0. 01<br>0. 49<br>31. 88<br>0. 01<br>0. 00<br>99. 83<br>1. 00<br>0. 00                                              | 38. 3 ~ 39. 5<br>0. 04 ~ 0. 18<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>20. 4 ~ 23. 0<br>0. 00 ~ 0. 02<br>0. 28 ~ 0. 34<br>37. 2 ~ 39. 5<br>0. 01 ~ 0. 06<br>0. 00<br>99. 0 ~ 100. 2<br>1. 01 ~ 1. 02<br>0. 00                                                                                                                                                                                                       | 0. 09<br>0. 00<br>0. 01<br>21. 36<br>0. 01<br>0. 31<br>38. 72<br>0. 03<br>0. 00<br>99. 52<br>1. 01<br>0. 00                                                       | 0. 00 ~ 0. 06<br>0. 00 ~ 0. 02<br>0. 00 ~ 0. 02<br>27. 3 ~ 31. 5<br>0. 00 ~ 0. 03<br>0. 44 ~ 0. 50<br>29. 6 ~ 33. 5<br>0. 03 ~ 0. 05<br>0. 00<br>99. 2 ~ 100. 3<br>1. 01 ~ 1. 03<br>0. 00                                                                        | 0. 03<br>0. 01<br>0. 01<br>29. 87<br>0. 01<br>0. 47<br>31. 53<br>0. 04<br>0. 00<br>99. 56<br>1. 02<br>0. 00                                                                |  |
| $TiO_{2}$ $Al_{2}O_{3}$ $Cr_{2}O_{3}$ $FeO$ $NiO$ $MnO$ $MgO$ $CaO$ $Na_{2}O$ $Total$ $Si^{2+}$ $Ti^{2+}$ $Al^{3+}$                                                                               | 37. 3 ~ 39. 0<br>0. 02 ~ 0. 11<br>0. 00 ~ 0. 03<br>0. 00 ~ 0. 04<br>21. 9 ~ 27. 8<br>0. 00 ~ 0. 02<br>0. 32 ~ 0. 45<br>34. 0 ~ 38. 1<br>0. 02 ~ 0. 04<br>0. 00<br>95. 8 ~ 100. 8<br>1. 01 ~ 1. 02<br>0. 00<br>0. 00                                             | 38. 20<br>0. 04<br>0. 01<br>0. 01<br>24. 97<br>0. 01<br>0. 38<br>35. 90<br>0. 03<br>0. 00<br>99. 56<br>1. 01<br>0. 00<br>0. 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35. 8 ~ 37. 5<br>0. 01 ~ 0. 02<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>29. 9 ~ 31. 1<br>0. 00 ~ 0. 02<br>0. 46 ~ 0. 52<br>31. 1 ~ 33. 0<br>0. 00 ~ 0. 03<br>0. 00<br>98. 9 ~ 100. 5<br>0. 99 ~ 1. 02<br>0. 00<br>0. 00                                                                                                                                                                                     | 0. 01<br>0. 01<br>0. 00<br>30. 68<br>0. 01<br>0. 49<br>31. 88<br>0. 01<br>0. 00<br>99. 83<br>1. 00<br>0. 00<br>0. 00                                     | 38. 3 ~ 39. 5<br>0. 04 ~ 0. 18<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>20. 4 ~ 23. 0<br>0. 00 ~ 0. 02<br>0. 28 ~ 0. 34<br>37. 2 ~ 39. 5<br>0. 01 ~ 0. 06<br>0. 00<br>99. 0 ~ 100. 2<br>1. 01 ~ 1. 02<br>0. 00<br>0. 00                                                                                                                                                                                              | 0. 09<br>0. 00<br>0. 01<br>21. 36<br>0. 01<br>0. 31<br>38. 72<br>0. 03<br>0. 00<br>99. 52<br>1. 01<br>0. 00<br>0. 00                                              | 0. 00 ~ 0. 06<br>0. 00 ~ 0. 02<br>0. 00 ~ 0. 02<br>27. 3 ~ 31. 5<br>0. 00 ~ 0. 03<br>0. 44 ~ 0. 50<br>29. 6 ~ 33. 5<br>0. 03 ~ 0. 05<br>0. 00<br>99. 2 ~ 100. 3<br>1. 01 ~ 1. 03<br>0. 00<br>0. 00                                                               | 0. 03<br>0. 01<br>0. 01<br>29. 87<br>0. 01<br>0. 47<br>31. 53<br>0. 04<br>0. 00<br>99. 56<br>1. 02<br>0. 00<br>0. 00                                                       |  |
| $TiO_{2}^{2}$ $Al_{2}O_{3}$ $Cr_{2}O_{3}$ $FeO$ $NiO$ $MnO$ $MgO$ $CaO$ $Na_{2}O$ $Total$ $Si^{2+}$ $Ti^{2+}$ $Al^{3+}$ $Cr^{3+}$                                                                 | 37. 3 ~ 39. 0<br>0. 02 ~ 0. 11<br>0. 00 ~ 0. 03<br>0. 00 ~ 0. 04<br>21. 9 ~ 27. 8<br>0. 00 ~ 0. 02<br>0. 32 ~ 0. 45<br>34. 0 ~ 38. 1<br>0. 02 ~ 0. 04<br>0. 00<br>95. 8 ~ 100. 8<br>1. 01 ~ 1. 02<br>0. 00<br>0. 00<br>0. 00                                    | 38. 20<br>0. 04<br>0. 01<br>0. 01<br>24. 97<br>0. 01<br>0. 38<br>35. 90<br>0. 03<br>0. 00<br>99. 56<br>1. 01<br>0. 00<br>0. 00<br>0. 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35. 8 ~ 37. 5<br>0. 01 ~ 0. 02<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>29. 9 ~ 31. 1<br>0. 00 ~ 0. 02<br>0. 46 ~ 0. 52<br>31. 1 ~ 33. 0<br>0. 00 ~ 0. 03<br>0. 00<br>98. 9 ~ 100. 5<br>0. 99 ~ 1. 02<br>0. 00<br>0. 00<br>0. 00                                                                                                                                                                            | 0. 01<br>0. 01<br>0. 00<br>30. 68<br>0. 01<br>0. 49<br>31. 88<br>0. 01<br>0. 00<br>99. 83<br>1. 00<br>0. 00<br>0. 00<br>0. 00                            | 38. 3 ~ 39. 5<br>0. 04 ~ 0. 18<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>20. 4 ~ 23. 0<br>0. 00 ~ 0. 02<br>0. 28 ~ 0. 34<br>37. 2 ~ 39. 5<br>0. 01 ~ 0. 06<br>0. 00<br>99. 0 ~ 100. 2<br>1. 01 ~ 1. 02<br>0. 00<br>0. 00<br>0. 00                                                                                                                                                                                     | 0. 09<br>0. 00<br>0. 01<br>21. 36<br>0. 01<br>0. 31<br>38. 72<br>0. 03<br>0. 00<br>99. 52<br>1. 01<br>0. 00<br>0. 00<br>0. 00                                     | 0. 00 ~ 0. 06<br>0. 00 ~ 0. 02<br>0. 00 ~ 0. 02<br>27. 3 ~ 31. 5<br>0. 00 ~ 0. 03<br>0. 44 ~ 0. 50<br>29. 6 ~ 33. 5<br>0. 03 ~ 0. 05<br>0. 00<br>99. 2 ~ 100. 3<br>1. 01 ~ 1. 03<br>0. 00<br>0. 00<br>0. 00                                                      | 0. 03<br>0. 01<br>0. 01<br>29. 87<br>0. 01<br>0. 47<br>31. 53<br>0. 04<br>0. 00<br>99. 56<br>1. 02<br>0. 00<br>0. 00<br>0. 00                                              |  |
| $TiO_{2}^{2}$ $Al_{2}O_{3}$ $Cr_{2}O_{3}$ $FeO$ $NiO$ $MnO$ $MgO$ $CaO$ $Na_{2}O$ $Total$ $Si^{2+}$ $Ti^{2+}$ $Al^{3+}$ $Cr^{3+}$ $Fe^{2+}$                                                       | 37. 3 ~ 39. 0<br>0. 02 ~ 0. 11<br>0. 00 ~ 0. 03<br>0. 00 ~ 0. 04<br>21. 9 ~ 27. 8<br>0. 00 ~ 0. 02<br>0. 32 ~ 0. 45<br>34. 0 ~ 38. 1<br>0. 02 ~ 0. 04<br>0. 00<br>95. 8 ~ 100. 8<br>1. 01 ~ 1. 02<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 50 ~ 0. 62          | 38. 20<br>0. 04<br>0. 01<br>0. 01<br>24. 97<br>0. 01<br>0. 38<br>35. 90<br>0. 03<br>0. 00<br>99. 56<br>1. 01<br>0. 00<br>0. 00 | 35. 8 ~ 37. 5<br>0. 01 ~ 0. 02<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>29. 9 ~ 31. 1<br>0. 00 ~ 0. 02<br>0. 46 ~ 0. 52<br>31. 1 ~ 33. 0<br>0. 00 ~ 0. 03<br>0. 00<br>98. 9 ~ 100. 5<br>0. 99 ~ 1. 02<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 67 ~ 0. 72                                                                                                                       | 0. 01<br>0. 01<br>0. 00<br>30. 68<br>0. 01<br>0. 49<br>31. 88<br>0. 01<br>0. 00<br>99. 83<br>1. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00          | 38. 3 ~ 39. 5<br>0. 04 ~ 0. 18<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>20. 4 ~ 23. 0<br>0. 00 ~ 0. 02<br>0. 28 ~ 0. 34<br>37. 2 ~ 39. 5<br>0. 01 ~ 0. 06<br>0. 00<br>99. 0 ~ 100. 2<br>1. 01 ~ 1. 02<br>0. 00<br>0. 00 | 0. 09<br>0. 00<br>0. 01<br>21. 36<br>0. 01<br>0. 31<br>38. 72<br>0. 03<br>0. 00<br>99. 52<br>1. 01<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00 | 0. 00 ~ 0. 06<br>0. 00 ~ 0. 02<br>0. 00 ~ 0. 02<br>27. 3 ~ 31. 5<br>0. 00 ~ 0. 03<br>0. 44 ~ 0. 50<br>29. 6 ~ 33. 5<br>0. 03 ~ 0. 05<br>0. 00<br>99. 2 ~ 100. 3<br>1. 01 ~ 1. 03<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 61 ~ 0. 72                   | 0. 03<br>0. 01<br>0. 01<br>29. 87<br>0. 01<br>0. 47<br>31. 53<br>0. 04<br>0. 00<br>99. 56<br>1. 02<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 01 |  |
| $TiO_{2}$ $Al_{2}O_{3}$ $Cr_{2}O_{3}$ $FeO$ $NiO$ $MnO$ $MgO$ $CaO$ $Na_{2}O$ $Total$ $Si^{2} + Ti^{2} + Al^{3} + Cr^{3} + Fe^{2} + Ni^{2} + Ni^{2} + Cr^{3}$                                     | 37. 3 ~ 39. 0<br>0. 02 ~ 0. 11<br>0. 00 ~ 0. 03<br>0. 00 ~ 0. 04<br>21. 9 ~ 27. 8<br>0. 00 ~ 0. 02<br>0. 32 ~ 0. 45<br>34. 0 ~ 38. 1<br>0. 02 ~ 0. 04<br>0. 00<br>95. 8 ~ 100. 8<br>1. 01 ~ 1. 02<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 50 ~ 0. 62<br>0. 00 | 38. 20 0. 04 0. 01 0. 01 24. 97 0. 01 0. 38 35. 90 0. 03 0. 00 99. 56 1. 01 0. 00 0. 00 0. 00 0. 55 0. 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35. 8 ~ 37. 5<br>0. 01 ~ 0. 02<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>29. 9 ~ 31. 1<br>0. 00 ~ 0. 02<br>0. 46 ~ 0. 52<br>31. 1 ~ 33. 0<br>0. 00 ~ 0. 03<br>0. 00<br>98. 9 ~ 100. 5<br>0. 99 ~ 1. 02<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 67 ~ 0. 72<br>0. 00                                                                                                                       | 0. 01<br>0. 01<br>0. 00<br>30. 68<br>0. 01<br>0. 49<br>31. 88<br>0. 01<br>0. 00<br>99. 83<br>1. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 70<br>0. 00 | 38. 3 ~ 39. 5<br>0. 04 ~ 0. 18<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>20. 4 ~ 23. 0<br>0. 00 ~ 0. 02<br>0. 28 ~ 0. 34<br>37. 2 ~ 39. 5<br>0. 01 ~ 0. 06<br>0. 00<br>99. 0 ~ 100. 2<br>1. 01 ~ 1. 02<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00                                                                                                                      | 0. 09<br>0. 00<br>0. 01<br>21. 36<br>0. 01<br>0. 31<br>38. 72<br>0. 03<br>0. 00<br>99. 52<br>1. 01<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00          | 0. 00 ~ 0. 06<br>0. 00 ~ 0. 02<br>0. 00 ~ 0. 02<br>27. 3 ~ 31. 5<br>0. 00 ~ 0. 03<br>0. 44 ~ 0. 50<br>29. 6 ~ 33. 5<br>0. 03 ~ 0. 05<br>0. 00<br>99. 2 ~ 100. 3<br>1. 01 ~ 1. 03<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 61 ~ 0. 72<br>0. 00                   | 0. 03<br>0. 01<br>0. 01<br>29. 87<br>0. 01<br>0. 47<br>31. 53<br>0. 04<br>0. 00<br>99. 56<br>1. 02<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 68<br>0. 00                   |  |
| $TiO_{2}^{2}$ $Al_{2}O_{3}$ $Cr_{2}O_{3}$ $FeO$ $NiO$ $MnO$ $MgO$ $CaO$ $Na_{2}O$ $Total$ $Si^{2+}$ $Ti^{2+}$ $Al^{3+}$ $Cr^{3+}$ $Fe^{2+}$ $Ni^{2+}$ $Mn^{2+}$                                   | 37. 3 ~ 39. 0<br>0. 02 ~ 0. 11<br>0. 00 ~ 0. 03<br>0. 00 ~ 0. 04<br>21. 9 ~ 27. 8<br>0. 00 ~ 0. 02<br>0. 32 ~ 0. 45<br>34. 0 ~ 38. 1<br>0. 02 ~ 0. 04<br>0. 00<br>95. 8 ~ 100. 8<br>1. 01 ~ 1. 02<br>0. 00<br>0. 00<br>0. 00<br>0. 50 ~ 0. 62<br>0. 00<br>0. 01 | 38. 20 0. 04 0. 01 0. 01 24. 97 0. 01 0. 38 35. 90 0. 03 0. 00 99. 56 1. 01 0. 00 0. 00 0. 55 0. 00 0. 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35. 8 ~ 37. 5<br>0. 01 ~ 0. 02<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>29. 9 ~ 31. 1<br>0. 00 ~ 0. 02<br>0. 46 ~ 0. 52<br>31. 1 ~ 33. 0<br>0. 00 ~ 0. 03<br>0. 00<br>98. 9 ~ 100. 5<br>0. 99 ~ 1. 02<br>0. 00<br>0. 00 | 0. 01 0. 01 0. 00 30. 68 0. 01 0. 49 31. 88 0. 01 0. 00 99. 83 1. 00 0. 00 0. 00 0. 70 0. 00 0. 01                                                       | 38. 3 ~ 39. 5<br>0. 04 ~ 0. 18<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>20. 4 ~ 23. 0<br>0. 00 ~ 0. 02<br>0. 28 ~ 0. 34<br>37. 2 ~ 39. 5<br>0. 01 ~ 0. 06<br>0. 00<br>99. 0 ~ 100. 2<br>1. 01 ~ 1. 02<br>0. 00<br>0. 00 | 0. 09<br>0. 00<br>0. 01<br>21. 36<br>0. 01<br>0. 31<br>38. 72<br>0. 03<br>0. 00<br>99. 52<br>1. 01<br>0. 00<br>0. 00<br>0. 00<br>0. 46<br>0. 00<br>0. 01          | 0. 00 ~ 0. 06<br>0. 00 ~ 0. 02<br>0. 00 ~ 0. 02<br>27. 3 ~ 31. 5<br>0. 00 ~ 0. 03<br>0. 44 ~ 0. 50<br>29. 6 ~ 33. 5<br>0. 03 ~ 0. 05<br>0. 00<br>99. 2 ~ 100. 3<br>1. 01 ~ 1. 03<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 61 ~ 0. 72<br>0. 00<br>0. 01 | 0. 03<br>0. 01<br>0. 01<br>29. 87<br>0. 01<br>0. 47<br>31. 53<br>0. 04<br>0. 00<br>99. 56<br>1. 02<br>0. 00<br>0. 00<br>0. 00<br>0. 68<br>0. 00<br>0. 01                   |  |
| $TiO_{2}^{2}$ $Al_{2}O_{3}$ $Cr_{2}O_{3}$ $FeO$ $NiO$ $MnO$ $MgO$ $CaO$ $Na_{2}O$ $Total$ $Si^{2+}$ $Ti^{2+}$ $Al^{3+}$ $Cr^{3+}$ $Fe^{2+}$ $Ni^{2+}$ $Mn^{2+}$ $Mg^{2+}$                         | 37. 3 ~ 39. 0 0. 02 ~ 0. 11 0. 00 ~ 0. 03 0. 00 ~ 0. 04 21. 9 ~ 27. 8 0. 00 ~ 0. 02 0. 32 ~ 0. 45 34. 0 ~ 38. 1 0. 02 ~ 0. 04 0. 00 95. 8 ~ 100. 8 1. 01 ~ 1. 02 0. 00 0. 00 0. 50 ~ 0. 62 0. 00 0. 01 1. 35 ~ 1. 47                                            | 38. 20 0. 04 0. 01 0. 01 24. 97 0. 01 0. 38 35. 90 0. 03 0. 00 99. 56 1. 01 0. 00 0. 00 0. 55 0. 00 0. 01 1. 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35. 8 ~ 37. 5<br>0. 01 ~ 0. 02<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>29. 9 ~ 31. 1<br>0. 00 ~ 0. 02<br>0. 46 ~ 0. 52<br>31. 1 ~ 33. 0<br>0. 00 ~ 0. 03<br>0. 00<br>98. 9 ~ 100. 5<br>0. 99 ~ 1. 02<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>1. 26 ~ 0. 72<br>0. 00<br>0. 01<br>1. 26 ~ 1. 32                                                                                    | 0. 01 0. 01 0. 00 30. 68 0. 01 0. 49 31. 88 0. 01 0. 00 99. 83 1. 00 0. 00 0. 00 0. 70 0. 00 0. 01 1. 29                                                 | 38. 3 ~ 39. 5 0. 04 ~ 0. 18 0. 00 ~ 0. 01 0. 00 ~ 0. 01 20. 4 ~ 23. 0 0. 00 ~ 0. 02 0. 28 ~ 0. 34 37. 2 ~ 39. 5 0. 01 ~ 0. 06 0. 00 99. 0 ~ 100. 2 1. 01 ~ 1. 02 0. 00 0. 00 0. 44 ~ 0. 51 0. 00 0. 01 1. 46 ~ 1. 53                                                                                                                                                                                             | 0. 09<br>0. 00<br>0. 01<br>21. 36<br>0. 01<br>0. 31<br>38. 72<br>0. 03<br>0. 00<br>99. 52<br>1. 01<br>0. 00<br>0. 00<br>0. 00<br>0. 46<br>0. 00<br>0. 01<br>1. 50 | 0. 00 ~ 0. 06<br>0. 00 ~ 0. 02<br>27. 3 ~ 31. 5<br>0. 00 ~ 0. 03<br>0. 44 ~ 0. 50<br>29. 6 ~ 33. 5<br>0. 03 ~ 0. 05<br>0. 00<br>99. 2 ~ 100. 3<br>1. 01 ~ 1. 03<br>0. 00<br>0. 00<br>0. 00<br>0. 01<br>1. 21 ~ 1. 34                                             | 0. 03<br>0. 01<br>0. 01<br>29. 87<br>0. 01<br>0. 47<br>31. 53<br>0. 04<br>0. 00<br>99. 56<br>1. 02<br>0. 00<br>0. 00<br>0. 68<br>0. 00<br>0. 01<br>1. 27                   |  |
| $TiO_{2}^{2}$ $Al_{2}O_{3}$ $Cr_{2}O_{3}$ $FeO$ $NiO$ $MnO$ $MgO$ $CaO$ $Na_{2}O$ $Total$ $Si^{2+}$ $Ti^{2+}$ $Al^{3+}$ $Cr^{3+}$ $Fe^{2+}$ $Ni^{2+}$ $Mn^{2+}$                                   | 37. 3 ~ 39. 0<br>0. 02 ~ 0. 11<br>0. 00 ~ 0. 03<br>0. 00 ~ 0. 04<br>21. 9 ~ 27. 8<br>0. 00 ~ 0. 02<br>0. 32 ~ 0. 45<br>34. 0 ~ 38. 1<br>0. 02 ~ 0. 04<br>0. 00<br>95. 8 ~ 100. 8<br>1. 01 ~ 1. 02<br>0. 00<br>0. 00<br>0. 00<br>0. 50 ~ 0. 62<br>0. 00<br>0. 01 | 38. 20 0. 04 0. 01 0. 01 24. 97 0. 01 0. 38 35. 90 0. 03 0. 00 99. 56 1. 01 0. 00 0. 00 0. 55 0. 00 0. 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35. 8 ~ 37. 5<br>0. 01 ~ 0. 02<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>29. 9 ~ 31. 1<br>0. 00 ~ 0. 02<br>0. 46 ~ 0. 52<br>31. 1 ~ 33. 0<br>0. 00 ~ 0. 03<br>0. 00<br>98. 9 ~ 100. 5<br>0. 99 ~ 1. 02<br>0. 00<br>0. 00 | 0. 01 0. 01 0. 00 30. 68 0. 01 0. 49 31. 88 0. 01 0. 00 99. 83 1. 00 0. 00 0. 00 0. 70 0. 00 0. 01                                                       | 38. 3 ~ 39. 5<br>0. 04 ~ 0. 18<br>0. 00 ~ 0. 01<br>0. 00 ~ 0. 01<br>20. 4 ~ 23. 0<br>0. 00 ~ 0. 02<br>0. 28 ~ 0. 34<br>37. 2 ~ 39. 5<br>0. 01 ~ 0. 06<br>0. 00<br>99. 0 ~ 100. 2<br>1. 01 ~ 1. 02<br>0. 00<br>0. 00 | 0. 09<br>0. 00<br>0. 01<br>21. 36<br>0. 01<br>0. 31<br>38. 72<br>0. 03<br>0. 00<br>99. 52<br>1. 01<br>0. 00<br>0. 00<br>0. 00<br>0. 46<br>0. 00<br>0. 01          | 0. 00 ~ 0. 06<br>0. 00 ~ 0. 02<br>0. 00 ~ 0. 02<br>27. 3 ~ 31. 5<br>0. 00 ~ 0. 03<br>0. 44 ~ 0. 50<br>29. 6 ~ 33. 5<br>0. 03 ~ 0. 05<br>0. 00<br>99. 2 ~ 100. 3<br>1. 01 ~ 1. 03<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 00<br>0. 61 ~ 0. 72<br>0. 00<br>0. 01 | 0. 03<br>0. 01<br>0. 01<br>29. 87<br>0. 01<br>0. 47<br>31. 53<br>0. 04<br>0. 00<br>99. 56<br>1. 02<br>0. 00<br>0. 00<br>0. 00<br>0. 68<br>0. 00<br>0. 01                   |  |

# 5 讨论

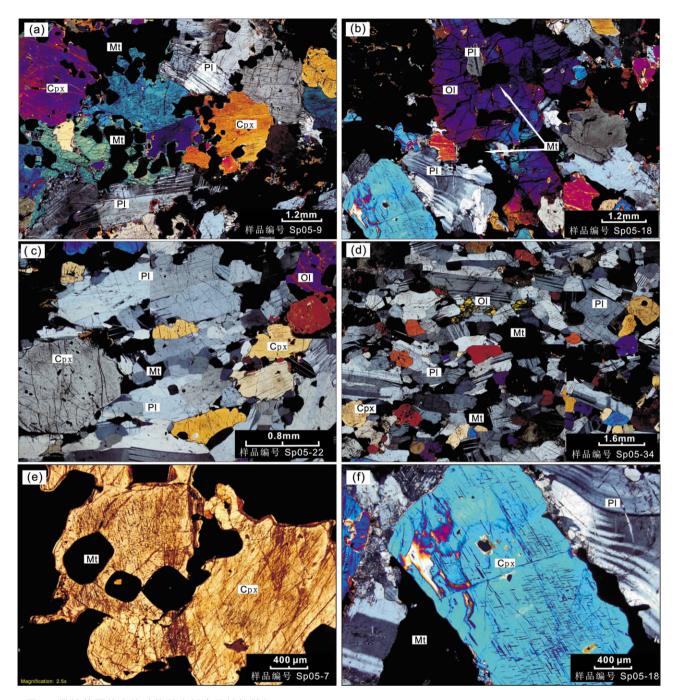
如前所述 攀枝花岩体钒钛磁铁矿层分布于下部岩相带 和中部岩相带每个旋回的底部,表明每次新补充的岩浆 Fe-Ti 氧化物也总是较早结晶的矿物相。分离结晶的矿物组成 主要受岩浆化学成分、温度、氧逸度等因素的控制(马鸿文, 1991) 在相同的化学成分条件下 岩浆中较高的 Fe,O,、FeO 和 TiO。含量 以及较高的氧逸度更有利于 Fe-Ti 氧化物的结 晶 同时 磁铁矿和钛铁矿的结晶顺序受氧逸度的控制(见后 文) (Toplis and Carroll, 1995)。对于开放的岩浆体系而言, 氧逸度与温度存在函数关系; 对于封闭体系而言, 分离结晶 过程中岩浆的氧逸度将随岩浆成分的变化而变化; 而岩浆成 分又受分离结晶矿物组成的控制 所以氧逸度不完全是温度 的函数。对于实际岩浆体系而言,由于不可能与周围环境进 行彻底的物质交换而保持完全稳定的氧逸度 ,所以岩浆的氧 逸度实际在很大程度上受岩浆成分的影响(特别是变价元素 不同价态离子比例 如 Fe<sup>3+</sup>/Fe<sup>2+</sup>)。Bushveld and Skaergaard 岩体富 Fe-Ti 氧化物层之所以出现在岩体上部 ,是因为在结 晶分异后期 随着硅酸盐矿物的结晶,镁铁质岩浆中 Fe<sub>2</sub>O<sub>3</sub> 和 TiO<sub>2</sub> 的含量增高 特别是 Fe<sup>3+</sup> /Fe<sup>2+</sup> 比值增高 岩浆的氧 逸度也随之增高的缘故(Toplis and Carroll, 1995)。问题是 哪些矿物的成分变化能够较好地反映岩浆中 Fe3+/Fe2+比值 以及岩浆氧逸度的变化,毫无疑问,磁铁矿和钛铁矿的成分 是它们结晶时岩浆成分和氢逸度的最佳指示剂。

Buddington and Lindsley (1964) 就提出 在岩浆体系中钛铁尖晶石和磁铁矿共结时有下列反应平衡:

$$6Fe_2TiO_4 + O_2 = 2Fe_3O_4 + 6FeTiO_3$$
 (1)

通过电子探针分析确定钛铁尖晶石和磁铁矿的成分后,利用平衡反应(1)就可以确定它们的温度和氧逸度。但是,在温度缓慢降低时,它们往往会在固相线下发生固溶体分离,使得获取它们结晶时的成分并非易事。攀枝花岩体所有磁铁矿和钛铁矿都经历了固溶体分离,所计算出的温度和氧逸度都只是反映了固相线之下固溶体分离的物理化学条件(Pang et al.,2008b)。因此本文拟利用与钛铁氧化物平衡共生的斜长石和橄榄石的成分变化估计钛铁氧化物形成时的温度和氧逸度的相对变化,从而为探讨层状岩体中钛铁氧化物矿床成因提供依据。

之所以选择这两个硅酸盐矿物,首先是因为在攀枝花层 状辉长岩体中橄榄石、斜长石与钛铁氧化物都是主要的堆积矿物,具有相近的自形程度和相互包含的现象。由于磁铁矿是固溶体矿物,具有很宽的结晶温度和相应的成分范围,所以,既可以看到早结晶的磁铁矿颗粒被硅酸盐矿物包裹,也可以见到硅酸盐矿物晶间填隙状的磁铁矿,这种现象说明虽然它们结晶有先后次序,但形成的温度差异并不大(图 5a-d);其次,由于磁铁矿中普遍存在钛铁矿的出溶条纹,我们无法利用电子探针分析获得磁铁矿结晶时的成分,也无法探讨


岩浆结晶过程中磁铁矿成分的变化,而橄榄石和斜长石自形成至今基本保持了其结晶时的成分特点。斜长石基本不含变价元素,它的结晶更多受岩浆成分和温度控制,而对氧逸度不敏感。所以,可以利用斜长石的成分估计 Ti—Fe 氧化物的结晶大致的温度范围。橄榄石是 Fe—Fe0 含量及 Fe3+ Fe2+ 比值非常敏感,所以橄榄石更有利于探讨浸染状磁铁辉长岩与辉长岩形成时的氧逸度条件的变化及其对岩浆液相线矿物组成的制约。尽管单斜辉石的结晶也与岩浆中 Fe0 含量及 Fe3+ Fe4+ 比值有关,但它在固相线以下常常发生固溶体分离形成席列构造(图 Fe5e,Fe7),而不能保留其原始成分特点。

## 5.1 斜长石成分估算结晶温度

铁离子在斜长石中多是以类质同象的形式占据矿物晶格 其含量较低,不足以影响斜长石的成分(Toplis and Carroll,1995; Tegner,1997),所以,斜长石的An 牌号是温度的函数,与氧逸度无关(图6)。

由于晶间硅酸盐熔体离子交换 或者成岩后蚀变作用均 会导致斜长石牌号降低 从而导致计算的结晶温度较斜长石 实际的结晶温度稍低。因此,仅选用同一样品中 An 最大值 来计算结晶温度 从而尽可能减小晶间熔体和后期蚀变对结 晶温度的影响。对于攀枝花岩体 ,利用斜长石 An 牌号最大 值计算得到的底部粗粒辉长岩中斜长石结晶温度为 1121℃; 下部岩相带磁铁辉长岩中斜长石的结晶温度为 1113℃; 辉长 岩中斜长石的结晶温度略低 ,为 1107℃。中部岩相带第Ⅰ旋 回辉长岩中斜长石的结晶温度为 1102℃; 第 Ⅱ 旋回磁铁辉长 岩中斜长石的结晶温度为1103℃ 辉长岩中斜长石的结晶温 度相对较低,为1094℃;第Ⅲ旋回磁铁辉长岩中斜长石结晶 温度为 1092℃; 第Ⅳ旋回磁铁辉长岩中斜长石的结晶温度为 1084%; 辉长岩中斜长石的结晶温度降为 1079% (表 1)。可 以看出,总体反映出向上结晶温度逐渐降低的趋势,而每一 个旋回内部磁铁辉长岩与辉长岩中斜长石的结晶温度差异 很小(表1、图6)。

质量平衡计算表明 要形成下部岩相带底部 60m 厚的块状磁铁矿层 需要约 2000m 厚的岩浆 ,这说明攀枝花岩体实际上是一个岩浆通道 ,有多次的岩浆补充 ( Song et al. , unpublished) 。攀枝花岩体下部岩相带和中部岩相带下部含矿部分斜长石 An 牌号变化较小 ,结合块状磁铁矿层只出现在下部岩相带和中部岩相带底部 ,一方面说明岩浆补充较为频繁 ,也说明由于频繁的岩浆补充使得岩浆的温度维持在一个比较稳定的区间 ,而岩体上部斜长石 An 牌号明显地逐渐降低 ,同时中部岩相带从第 II 旋回至第 V 旋回磁铁辉长岩的厚度逐渐减小的现象 ,可以推测岩浆补充的频率是逐渐降低的 这必然导致岩浆成分和结晶的温度降低越来越明显。磁铁辉长岩中 Ti-Fe 氧化物与斜长石同时出现表明 尽管它们开始结晶的温度不同 结晶温度区间却有较大的重叠 即攀枝花层状岩体中钒钛磁铁矿层的形成温度大于或等于 1079~1121℃。



## 图 5 攀枝花层状岩体矿物共生组合及结构特征

(a)-磁铁辉长岩中斜长石、单斜辉石多包含自形-半自形的钛铁氧化物;(b)-磁铁辉长岩中斜长石、橄榄石、单斜辉石及晶间钛铁氧化物平衡共生,其中斜长石、橄榄石表面新鲜,未见钛铁氧化物出溶;橄榄石包含较自形的磁铁矿、斜长石颗粒;(c)-中粗粒辉长岩具辉长结构,单斜辉石,斜长石中包含有较自形的磁铁矿;(d)-中粗粒辉长岩具辉长结构;(e)-单斜辉石具席列构造;(f)-单斜辉石具席列构造。(a-d,f)为正交偏光;(e)为单偏光。Ol-橄榄石;Cpx-单斜辉石;Pl-斜长石;Mt-铁钛氧化物

Fig. 5 Mineral composition and textures in rocks of the Panzhihua intrusion

(a) -plagioclase and clinopyroxene-hosted titanomagnetite inclusions with euhedral to subhedral spinel morphology in magnetite gabbro; (b) -magnetite gabbro consisting of cumulus plagioclase, olivine and clinopyroxene surrounded by interstitial Fe-Ti oxides, plagioclase and olivine are fresh without Fe-Ti oxide exsolution, euhedral Fe-Ti oxide and plagioclase inclusions hosted in olivine; (c) -medium-coarse grained gabbro with gabbro texture, euhedral Fe-Ti oxide inclusions hosted in clinopyroxene and plagioclase respectively; (d) -medium-coarse grained gabbro with cumulus plagioclase, clinopyroxene and minor olivine and interstitial Fe-Ti oxide showing an gabbro texture; (e) -monopolars picture of clinopyroxene with hillel construction; (f) -clinopyroxene with hillel construction. Fig. 5(a-d,f) are observed under crossed polars; (e) is observed under monopolars. Ol-olivine; Cpx-clinopyroxene; Pl-plagioclase; Mt-Fe-Ti oxide

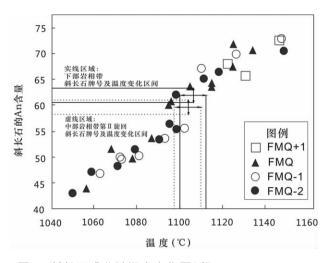



图 6 斜长石成分随温度变化图(据 Toplis and Carroll, 1995 修改)

Fig. 6 Binary plots of An in plagioclase with temperature (after Toplis and Carroll , 1995)

#### 5.2 根据橄榄石成分推测氧逸度的相对变化

Snyder et al. (1993) 通过实验证明,富铁玄武岩质岩浆结晶过程中氧逸度介于 QFM 和 IW 氧逸度缓冲剂之间(图7)。在降温初期氧逸度相对较低时( $\log f_{0_2}$ 约为 -11.5),首先结晶出橄榄石、辉石和斜长石等硅酸盐矿物,橄榄石和辉石的结晶消耗了熔浆中的  $\mathrm{Fe^{2+}}$ ,而使得岩浆中  $\mathrm{Fe^{3+}}$  的含量及  $\mathrm{Fe^{3+}}$  /Fe<sup>2+</sup> 比值逐渐增高; 当这些硅酸盐矿物结晶到一定程度 残余岩浆中  $\mathrm{Fe^{3+}}$  的增高使氧逸度升高  $1\sim1.5$  个  $\log$  单位 达到钛铁氧化物结晶条件,钛铁氧化物开始大量形成,它们的结晶又使体系氧逸度迅速降低(图7)。这个实验证明对于一个封闭的岩浆体系,分离结晶过程会使残余岩浆的成分和氧逸度发生变化。Bushveld 和 Skeargaard 岩体钒钛磁铁矿层形成于岩体上部与这种分离结晶过程有关。

如前所述 攀枝花岩体巨厚的块状钒钛磁铁矿层出现在岩体下部岩相带的底部 浸染状磁铁辉长岩形成与中部岩相带每个旋回的下部 ,同时 ,每一个旋回从下至上 Mt/( Mt + Ilm) 的比值有逐渐降低的趋势( 图 3) 。那么 2 个需要回答的问题包括: (1) Ti-Fe 氧化物的结晶究竟是受岩浆体系本身分离结晶的控制( Pang et al. ,2008a ,b) 还是由于与大理岩围岩的反应使得岩浆氧逸度突然增高所导致的( Ganino et al. ,2008) ? (2) 在每个旋回形成过程中岩浆成分和氧逸度条件是否发生规律性变化? 这种变化的成因意义究竟是什么?

首先攀枝花岩体橄榄石较低的 Fo 值(  $Fo_{80.5-61.4}$ ) ,表明岩浆侵入攀枝花岩体前已经经历了较高程度的分离结晶 ,MELTS 计算进一步表明岩浆侵入攀枝花岩体之前经历了大约 54% 的分离结晶(  $Song\ et\ al.\$ , unpublished) 。这种分离结晶导致岩浆进入攀枝花岩体所在的岩浆房时 ,不仅  $Fe_2O_3$ 、FeO 和  $TiO_2$  含量较高 ,而且具有高的  $Fe^{3+}$  / $Fe^{2+}$  比值 ,满足

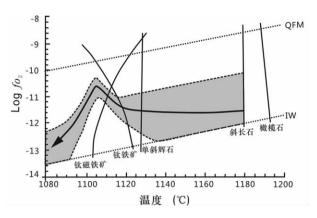



图 7 富铁质岩浆中矿物结晶过程的  $T-f_{0_2}$ 变化轨迹(据 Snyder *et al.* , 1993)

阴影部分为所有可能的  $T \neq_{O_2}$  演化路径; QFM-石英-铁橄榄石-磁铁矿氧逸度缓冲剂; IW-自然铁-方铁矿氧逸度缓冲剂

Fig. 7 Plot of oxygen fugacity versus temperature showing the most probable  $T - f_{0_2}$  path followed by the ferro-rich liquid (after Snyder *et al.*, 1993)

了 Ti-Fe 氧化物做为近液相线矿物较早结晶的条件。如果实际情况的确如此 磁铁辉长岩形成时岩浆中的  $Fe^{3+}/Fe^{2+}$  比值必然高于辉长岩形成时岩浆的  $Fe^{3+}/Fe^{2+}$  比值 相应地 磁铁辉长岩形成时岩浆具有较高的氧逸度。

虽然得到磁铁矿、钛铁矿形成时的确切氧逸度比较困难,但通过磁铁辉长岩与辉长岩中橄榄石成分来探讨钛铁氧化物形成时氧逸度的相对变化是有可能的。由图 3 可以看出,中部岩相带每个旋回中磁铁辉长岩中橄榄石的 Fo 值总是高于辉长岩中橄榄石的 Fo 值。这意味着磁铁辉长岩形成时岩浆中 FeO 的含量和  $Fe^{2+}$ /Mg 比值低于辉长岩形成时岩浆中的 FeO 含量  $Fe^{2+}$ /Mg 比值。如果不同层位橄榄石结晶于相同的氧逸度条件的话,意味着岩浆的  $Fe^{3+}$ / $Fe^{2+}$  比值不变。根据 Roeder and Emslie( 1970),常压下橄榄石与玄武岩浆之间存在如下反应平衡:

$$Mg_{(Ol)} + Fe_{(Lliq)}^{2+} = Mg_{(Liq)} + Fe_{(Ol)}^{2+}$$
 (2)

其中  $Mg_{(0l)}$  代表橄榄石中的 Mg  $Fe^{2+}_{(Liq)}$  表示熔浆中的  $Fe^{2+}$ ; 而且体系中  $Fe_{(0l)}$  / $Fe_{(Liq)}$  在任意氧逸度下的演化途径符合图 8 。

假设不同层位中橄榄石均在相同氧逸度条件下结晶 根据 Snyder et~al. (1993) 的研究 在 Fe-Ti 氧化物结晶之前玄武岩浆最可能的  $\log f_{0_2} = -11.5$  (图 7),此时, $Fe_{(0)}$  / $Fe_{(Liq)}$  为定值 1.75 (图 8)。以攀枝花岩体下部岩相带 2 个相邻层位样品 SP05-11 (磁铁辉长岩) 和 SP05-15 (辉长岩) 为例计算。样品 SP05-11 代表的磁铁辉长岩中橄榄石的 Fo 平均值为77.9,FeO 的平均含量为 20.2%,计算得到磁铁辉长岩形成

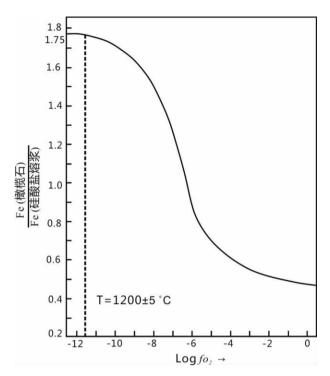



图 8 T = 1200 ±5℃时 Fe(Ol) /Fe (Liq) 随 log f<sub>02</sub> 变化图 (据 Roeder and Emslie , 1970)

Fig. 8 The change in the distribution of total iron ( wt% ) between olivine and liquid as a function of  $f_{0_2}$  at a constant temperature ( after Roeder and Emslie , 1970)

时,与其中橄榄石平衡的岩浆的 FeO 含量应为 11.5% ,如果假设攀枝花层状岩体母岩浆的  $Fe_2O_3^T$  含量一定,为 16% (相当于高钛峨眉山玄武岩最高  $Fe_2O_3^T$  值,据  $Song\ et\ al.$ , (resubmitted) 那么形成磁铁辉长岩的原始岩浆中  $Fe_2O_3$  的含量约为 3.2%,相应的  $Fe^{3+}/Fe^{2+}$  比值约为 0.25。如果辉长岩结晶时氧逸度与磁铁辉长岩结晶时氧逸度相同,则形成辉长岩的原始岩浆中  $Fe^{3+}/Fe^{2+}$  比值也是 0.25。样品 SPO5-15 所代表的辉长岩中橄榄石 Fo 值平均为 65.9 ,FeO 的平均含量为 29.8% 根据橄榄石的 FeO 含量估计与之平衡的岩浆中 FeO 含量为 17.0%,在氧逸度相同条件下,岩浆中  $Fe_2O_3$  含量应为 4.79%, $Fe_2O_3^T$  约为 23.69%,远高于磁铁辉长岩形成时岩浆中的  $Fe_2O_3^T$  含量 这显然是不可能的。

一种合理的解释是磁铁辉长岩形成时,尽管岩浆中  $Fe_2O_3^{\ T}$  含量较高,但 FeO 的含量相对较低,特别是由于  $Fe^{3+}/Fe^{2+}$  比值较高,因此,FeO/MgO 较低,所以,结晶出 Fo 值较高的橄榄石 较高的  $Fe^{3+}/Fe^{2+}$  比值也意味着岩浆的氧 逸度较高。随着磁铁辉长岩层逐渐堆积 岩浆中不仅  $Fe_2O_3^{\ T}$  的含量降低,同时, $Fe^{3+}/Fe^{2+}$  比值和氧逸度也随之降低, FeO/MgO 比值增高,所以 结晶出 Fo 值较低的橄榄石。这说明每个旋回结晶过程中岩浆的  $Fe^{3+}/Fe^{2+}$  比值及氧逸度是逐渐降低的。

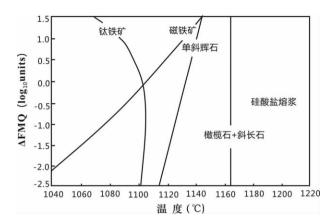



图 9 矿物结晶温度与相对氧逸度关系图(据 Toplis and Carroll, 1995)

Fig. 9 Phase equilibria as a function of temperature and oxygen fugacity (after Toplis and Carroll , 1995)

Toplis and Carroll (1995) 的实验研究表明在较高的氧逸 度条件下 $(\log f_{0}, > \triangle FMQ)$  磁铁矿的结晶早于钛铁矿 而在 较低的氧逸度条件下 $(f_0, > \triangle FMQ)$  这 2 种矿物的结晶顺序 相反(图9)。这意味着如果上述推论成立,每个旋回下部, 初始  $\operatorname{Fe}^{3+}/\operatorname{Fe}^{2+}$  比值较高 ,且  $f_0$ , 较高 ,此时首先大量晶出磁 铁矿 使 Mt/(Mt + Ilm) 比值较高 ,而至旋回上部 ,随着  $f_0$ ,下 降,钛铁矿开始大量晶出,Mt/(Mt+Ilm)比值会随之降低。 从我们对这两种矿物含量的统计结果看,实际情况的确如此 (图3) 无论从下部岩相带底部的块状磁铁矿层至上部的暗 色辉长岩 或是从中部岩相带每个旋回的下部的磁铁辉长岩 至上部的辉长岩都会有 Mt/( Mt + Ilm) 比值降低的现象。全 岩化学分析结果也显示每个旋回自下而上 Fe3+/Ti4+比值有 规律地降低 表明向上 Mt/(Mt + Ilm) 比值降低的趋势。下 部岩相带巨厚的块状磁铁矿层的形成以及中部岩相带多个 旋回的形成说明攀枝花岩体有多次岩浆补充,每一次补充的 岩浆的成分都因深部岩浆房的分离结晶而具有较高的 Fe<sub>2</sub>O<sub>3</sub> <sup>T</sup> 含量和较高的 Fe<sup>3+</sup> /Fe<sup>2+</sup> 比值 使得 Ti-Fe 氧化物总 是能够较早地结晶(Song et al. unpublished)。

如果 Ti-Fe 氧化物的结晶是由于岩浆与围岩的反应使得岩浆体系的氧逸度突然增高的话,这个反应将使岩浆体系的氧逸度稳定在一定的范围内,那么,每个旋回不同层位磁铁矿/钛铁矿的比值将保持一致,这与实际情况不符。因此,本文认为围岩同化混染对攀枝花岩体钒钛磁铁矿层的形成贡献不大。

# 6 结论

- (1) 通过与 Ti-Fe 氧化物共生的斜长石的形成时温度估算得到攀枝花层状岩体中钒钛磁铁矿层形成温度大致为1079~1121℃。
  - (2) 每一个旋回内部 磁铁辉长岩中橄榄石的 Fo 牌号总

是高于相邻辉长岩中橄榄石的 Fo 牌号,说明每次新补充的岩浆结晶分异过程中氧逸度总是逐渐降低的。

(3)每个旋回自下而上磁铁矿/(磁铁矿+钛铁矿)含量有规律地逐渐降低 进一步说明每一次新补充的岩浆结晶分异过程中氧逸度总是逐渐降低的 并且围岩同化混染对攀枝花岩体钒钛磁铁矿层形成的贡献不大。

致谢 野外考察过程中得到了攀钢矿业公司田春新高级 工程师、袁鹏工程师的大力帮助;在中国科学院地球化学研究所矿床地球化学国家重点实验室完成电子探针分析过程 中,得到周国富研究员、刘世荣副研究员予的诸多指导和帮助;在此一并深表谢意。

### References

- Buddington A and Lindsley D. 1964. Iron-titanium oxide minerals and synthetic equivalents. J. Petrol. ,5(2): 310 357
- Cawthorn RG. 1996. Re-evaluation of magma compositions and processes in the upper most Critical Zone of the Bushveld Complex. Mineral Mag. , 60(398): 131 – 148
- Chung S and Jahn B. 1995. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology, 23(10): 889 – 892
- Ganino C , Arndt NT , Zhou MF , Gaillard F and Chauvel C. 2008. Interaction of magma with sedimentary wall rock and magnetite ore genesis in the Panzhihua mafic intrusion , SW China. Mineralium Deposita , 43(6): 677 694
- He B , Xu YG , Chung SL , Xiao L and Wang Y. 2003. Sedimentary evidence for a rapid , kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth Planet. Sci. Lett. , 213(3-4): 391-405
- He B , Xu YG , Huang XL , Luo ZY , Shi YR , Yang QJ and Yu SY. 2007. Age and duration of the Emeishan flood volcanism , SW China: Geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites , post-volcanic Xuanwei Formation and clay tuff at the Chaotian section. Earth Planet. Sci. Lett. , 255(3-4): 306-323
- Li DH and Mao YS. 1982. V-Ti magnetite-bearing layered intrusions and the formation mechanism of the rhythmic layering, Panxi area, Sichuan. J. Mineral. Petrol., (1):29-43 (in Chinese)
- Lu JR , Zhang CX , Zhang GD , Liu YS and Huang YN. 1988a. Genetic type of V–Ti magnetite deposits in Panzhihua–Xichang area. Mineral Deposits , 7(1):2-13 ( in Chinese with English abstract)
- Lu JR , Zhang GD , Zhang CX , Liu YS and Huang YN. 1988b. A genetic model for layered intrusions and vanadic titanomagnetite deposits in Panzhihua-Xichang area. Mineral Deposits , 7 (2): 3 – 11 (in Chinese with English abstract)
- Ma HW. 1991. Silicate magma Fe<sup>3+</sup>-Fe<sup>2+</sup> equilibrium and oxygen fugacity. Geological Science and Technology Information , 10(3):17 22 (in Chinese)
- McBirney A and Naslund H. 1990. The differentiation of the Skaergaard intrusion. Contrib. Mineral. Petrol. , 104(2): 235 240
- Pang KN, Li CS, Zhou MF and Ripley EM. 2008a. Abundant Fe-Ti oxide inclusions in olivine from the Panzhihua and Hongge layered intrusions, SW China: Evidence for early saturation of Fe-Ti oxides in ferrobasaltic magma. Contrib. Mineral. Petrol., 156(3): 307 321
- Pang KN , Zhou MF , Lindsley D , Zhao D and Malpas J. 2008b. Origin of Fe-Ti oxide ores in mafic intrusions: Evidence from the Panzhihua intrusion , SW China. J. Petrol. , 49(2): 295 – 313
- Pang KN , Li CS , Zhou MF and Ripley EM. 2009. Mineral compositional constraints on petrogenesis and oxide ore genesis of the late Permian

- Panzhihua layered gabbroic intrusion , SW China. Lithos , 110 ( 1-4 ) :  $199-214\,$
- Roeder P and Emslie R. 1970. Olivine-liquid equilibrium. Contrib. Mineral. Petrol. , 29(4): 275 - 289
- Shellnutt JG, Wang CY, Zhou MF and Yang Y. 2009. Zircon Lu-Hf isotopic compositions of metaluminous and peralkaline A-type granitic plutons of the Emeishan large igneous province (SW China):

  Constraints on the mantle source. J. Asian Earth Sci., 35(1): 45

  -55
- Snyder D , Carmichael ISE and Wiebe RA. 1993. Experimental-study of liquid evolution in a Fe-rich , layered mafic intrusion: Constraints of Fe-Ti oxide precipitation on the  $Tf_{0_2}$  and T-Rho paths of tholeiltic magmas. Contrib. Mineral. Petrol. ,113(1): 73 86
- Song XY, Ma RZ, Wang YL and Zhang ZJ. 1994. The characteristics of layering and magma evolution of Panzhihua layered intrusion. J. Mineral. Petrol., 14 (4): 37 - 45 (in Chinese with English abstract)
- Song XY, Wang YL, Zhang ZJ and Ma RZ. 1997. Critical factors of the formation of the rhythmic layering of layered intrusion. Journal of Chendu University of Technology, 24(4): 61-64 (in Chinese with English abstract)
- Song XY, Wang YL, Zhang CJ and Ma RZ. 1999. Quantitative simulation of formation of the rhythmic layering in layered intrusions. Acta Geologica Sinica, 73 (1): 37 46 (in Chinese with English abstract)
- Song XY, Zhou MF, Hou ZQ, Cao ZM, Wang YL and Li YG. 2001. Geochemical constraints on the mantle source of the Upper Permian Emeishan Continental Flood Basalts, southwestern China. Int. Geol. Rev., 43(3): 213-225
- Song XY, Hou ZQ, Cao ZM, Lu JR, Wang YL, Zhang CJ and Li YG. 2001. Geochemical characteristic and period of Emei Igneous Province. Acta Geologica Sinica, 75 (4): 498 – 506 (in Chinese with English abstract)
- Song XY, Zhou MF, Cao ZM and Robinson PT. 2004. Late Permian rifting of the South China craton caused by the Emeishan mantle plume? J. Geol. Soc. London, 161: 773 – 781
- Song XY , Zhang CJ ,Hu RZ , Zhong H , Zhou MF , Ma RZ and Li YG. 2005. Genetic links of magmatic deposits in the Emeishan Large Igneous Province with dynamics of mantle plume. J. Mineral. Petrol. ,25(4):35-44 (in Chinese with English abstract)
- Song XY, Keays RR, Xiao L, Qi HW and Ihlenfeld C. 2009. Platinum—group element geochemistry of the continental flood basalts in the central Emeisihan Large Igneous Province, SW China. Chem. Geol., 262(3-4): 246-261
- Tegner C. 1997. Iron in plagioclase as a monitor of the differentiation of the Skaergaard intrusion. Contrib. Mineral Petrol. ,  $128\,(\,1\,):\,45\,$   $51\,$
- Toplis MJ and Carroll MR. 1995. An experimental-study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase-relations, and mineral-melt equilibria in ferro-basaltic systems. J. Petrol. ,36(5): 1137 1170
- Wang ZY. 1982. Characteristics and origin of vanadium-titanium magnetite of Panzhihua layered gabbro intrusion, Panxi area, Sichuan. J. Mineral. Petrol., (1):49-64 (in Chinese)
- Xiao L , Xu YG , Mei HJ , Zheng YF , He B and Pirajno F. 2004a. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province , SW China: Implications for plume-lithosphere interaction. Earth Planet. Sci. Lett. , 228 (3 – 4): 525 – 546
- Xiao L , Xu YG , Xu JF , He B and Franco P. 2004b. Chemostratigraphy of flood basalts in the Garze-Litang region and Zongza Block: Implications for western extension of the Emeishan Large Igneous Province , SW China. Acta Geol. Sinica , 78(1): 61 – 67
- Xu YG , Chung SL , Jahn BM and Wu GY. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos , 58 (3 - 4): 145 - 168
- Zhang YX , Luo YN and Yang CX. 1988. Panxi Rift. Beijing: Geological

- Publishing House , 271 274 (in Chinese)
- Zhang ZC, Mao JW, Saunders AD, Ai Y, Li Y and Zhao L. 2009. Petrogenetic modeling of three mafic-ultramafic layered intrusions in the Emeishan large igneous province, SW China, based on isotopic and bulk chemical constraints. Lithos, 113(3-4):369-392
- Zhang ZJ, song XY, Wang YL and Ma RZ. 1996. The cooling and dynamic stability of magma in sheet like magma chamber. Acta Petrologica Sinica, 12 (1): 1 16 (in Chinese with English abstract)
- Zhong H and Zhu WG. 2006. Geochronology of layered mafic intrusions from the Pan-Xi area in the Emeishan large igneous province, SW China. Mineralium Deposita, 41(6): 599-606
- Zhou MF, Malpas J, Song XY, Robinson PT, Sun M, Kennedy AK, Lesher CM and Keays RR. 2002. A temporal link between the Emeishan large igneous province (SW China) and the end– Guadalupian mass extinction. Earth Planet. Sci. Lett., 196 (3 – 4): 113 – 122
- Zhou MF, Robinson PT, Lesher CM, Keays RR, Zhang CJ and Malpas J. 2005. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits, Sichuan Province, SW China. J. Petrol., 46(11): 2253–2280
- Zhou MF , Arndt NT , Malpas J , Wang CY and Kennedy AK. 2008. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province , SW China. Lithos , 103(3-4):352-368

## 附中文参考文献

- 李德惠 茅燕石. 1982. 四川攀西地区含钒钛磁铁矿层状侵入体的韵律层及形成机理. 矿物岩石 (1):29-43
- 卢记仁,张承信,张光弟,顾光先,刘玉书,黄与能. 1988a. 攀西地

- 区钒钛磁铁矿矿床的成因类型. 矿床地质 7(1):2-13
- 卢记仁,张光弟,张承信,顾光先,刘玉书,黄与能. 1988b. 攀西层 状岩体及钒钛磁铁矿床成因模式. 矿床地质 7(2):3-11
- 马鸿文. 1991. 硅酸盐岩浆的  $Fe^{3}$  +  $Fe^{2}$  + 平衡与氧逸度. 地质科技情报, IO(3):17-22
- 宋谢炎,马润则,王玉兰 涨正阶. 1994. 攀枝花层状侵入体韵律层理及岩浆演化特征. 矿物岩石,14(4):37-45
- 宋谢炎,王玉兰,张正阶,马润则. 1997. 层状侵入体韵律层理成因的关键因素. 成都理工学院学报 24(4):61-64
- 宋谢炎,王玉兰,张成江,马润则. 1999. 层状侵入体韵律层理形成过程的定量模拟——以四川攀枝花层状岩体为例. 地质学报,73(1):37-46
- 宋谢炎,侯增谦,曹志敏,卢记仁,汪云亮,张成江,李佑国.2001. 峨眉大火成岩省的岩石地球化学特征及时限.地质学报,75 (4):498-506
- 宋谢炎,张成江,胡瑞忠,钟宏,周美夫,马润则,李佑国. 2005. 峨眉火成岩省岩浆矿床成矿作用与地幔柱动力学过程的耦合关系. 矿物岩石 25(4):35-44
- 王正允. 1982. 四川攀枝花含钒钛磁铁矿层状辉长岩体的岩石学特征及其成因初探. 矿物岩石 (1):49-64
- 张云湘, 骆耀南, 杨崇禧等. 1988. 攀西裂谷. 北京: 地质出版社, 271 - 274
- 张正阶,宋谢炎,王玉兰,马润则.1996. 席状岩浆房中的岩浆冷却及动力稳定性. 岩石学报,12(1):1-16