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It is well known that thallium (Tl) is a non-essential and toxic metal to human health, but less is known about
the geo-environmentally-induced Tl pollution and its associated health impacts. High concentrations of Tl
that are primarily associated with the epithermal metallogenesis of sulfide minerals have the potential of
producing Tl pollution in the environment, which has been recognized as an emerging pollutant in China. This
paper aims to review the research progress in China on Tl pollution in terms of the source, mobility,
transportation pathway, and health exposure of Tl and to address the environmental concerns on Tl pollution
in a geo-environmental perspective. Tl associated with the epithermal metallogenesis of sulfide minerals has
been documented to disperse readily and accumulate through the geo-environmental processes of soil
enrichment, water transportation and food crop growth beyond a mineralized zone. The enrichments of Tl in
local soil, water, and crops may result in Tl pollution and consequent adverse health effects, e.g. chronic Tl
poisoning. Investigation of the baseline Tl in the geo-environment, proper land use and health-related
environmental planning and regulation are critical to prevent the Tl pollution. Examination of the human
urinary Tl concentration is a quick approach to identify exposure of Tl pollution to humans. The experiences of
Tl pollution in China can provide important lessons for many other regions in the world with similar geo-
environmental contexts because of the high mobility and toxicity of Tl.
l rights reserved.
© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Thallium (Tl) is one of the 13 priority pollutant metals (Keith and
Telliard, 1979). It is more toxic tomammals than cadmium, lead, copper
or zinc, and is known to have causedmany accidental, occupational and
therapeutic poisonings since its discovery in 1861 (Smith and Carson,
1977; Mulkey and Oehme, 1993). The triad of gastroenteritis,
polyneuropathy and alopecia is regarded as the classic syndrome of Tl
poisoning (Liu, 1983; Feldman and Levisohn, 1993; Tabandeh et al.,
1994; WHO/IPCS, 1996). Historically, Tl poisoning was noticed from
industrial emission of coal burning and smelting (Smith and Carson,
1977; Brockhaus et al., 1981; Wells, 2001), and from criminal purpose
by using Tl chemicals (Zhou, 1998). However, less attention has been
paid to geo-environmentally-induced Tl pollution and its associated
human health impacts.

Tl is usually excluded from the list ofmetals tobe analyzeddespite its
high toxicity, although Tl can be precisely measured by the inductively
coupled plasma-mass spectrometry (ICP-MS) techniques. This is due to
its low concentrations in the natural environment, although it is widely
distributed in nature. The mean abundance of Tl in the Earth's upper
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crust is 0.75 mg/kg (Taylor and McLennan, 1985), 0.001–0.25 μg/L in
groundwater (Frengstad et al., 2000), 0.001–0.036 μg/L in lake water
(Cheam et al., 1995; Lin and Nriagu, 1999), and 0.012–0.016 μg/L in
seawater (Flegal and Patterson, 1985). Tl in soil is generally less than
1 mg/kg (Fergusson, 1990), and it is low to 0.03–0.3 mg/kg in theworld
edible plants (Kabata-Pendias and Pendias, 1992).

Recent studies on Tl pollution indicated that Tl was an emerging
pollutant in theenvironment of Chinadue to the increasingawareness of
its high risk to humanhealth (Zhang et al., 1997, 1999; Chen et al., 2001;
Xiao et al., 2003a,b, 2004a, 2007; Yang et al., 2005; Zhou et al., 2008; Liu
et al., 2010;XinhuaNewsAgency, 2010; Li et al., 2011). Thefirst reported
adverse health impact of Tl pollution in China was from a rural area at
Lanmuchang (105°30′23″E, 25°31′28″N, Fig. 1) in Southwest China
(APASSGP and EGLIGCAS, 1977). Thallotoxicosis-related symptoms, e.g.,
weakness, muscle and joint pain, disturbance of vision and hair loss,
were rerecorded for 189 cases of Tl poisoning at this area in the 1960s
and 1970s (Liu, 1983; Zhou and Liu, 1985). More than 10 cases of
incidental Tl poisoning have occurred in China since 1997, which
aroused more public concerns on the health risk of Tl pollution in the
environment. In the recent two decades, increasing studies on Tl
pollution inChinashowed theenvironmental impacts of Tl released from
Tl-rich sulfide minerals through natural weathering processes and/or
mining activities (Zhang et al., 1997, 1999; Chen et al., 2001; Xiao et al.,
2003a,b, 2004a; Yang et al., 2005; Zhou et al., 2005; Liu et al., 2010)
(Fig. 1), the accumulation of Tl in food chain (Xiao et al., 2004b,c; He,
2008), Tl exposure to humans and its associated health effects (Zhang
et al., 1997; Xiao et al., 2004b, 2007; Li et al., 2011). With respect to Tl
toxicity andpollution impacts in China, themaximumcontaminant level
in drinking water of China is fixed as 0.1 μg/L (CNS, 2006), much lower
than that (2 μg/L) in the USA drinking water (USEPA, 1992). A recent
incidental Tl pollution (0.18–1.03 Tl μg/L) from the waste water
discharge of a lead/zinc smelting plant on drinking water source of
northern branch of Pearl River in southern China was reported in 2010
(Xinhua News Agency, 2010), which further aroused public concerns on
Tl pollution in China.
Fig. 1. Map showing the Tl p
However, the absence of detailed knowledge in the source, mobility,
dispersion, and exposure to humans of Tl that have produced significant
adverse consequences for human health, is still a matter of high concern
in China. A full understanding of such knowledge is necessary to evaluate
Tl's environmental impacts and to implement appropriate measures for
Tl pollution remediation. This paper aims to review the research progress
in China on Tl pollution and to address the environmental concerns on Tl
pollution related to Tl-rich geo-environment in China. To learn from the
experiences in Tl pollution in China is also important for many other
regions in theworldwith similar geo-environmental contexts because of
the high mobility and toxicity of Tl.

2. Occurrence of high Tl concentrations associated with epithermal
metallogenesis of sulfide minerals

Tl of geological origin generally presents lowconcentrations in various
rocks, i.e. 0.06–1.2 mg/kg in igneous rocks (De Albuquerque and Shaw,
1972), 0.65 mg/kg on average in metamorphic rocks, and 0.27–0.48 mg/
kg in sedimentary rocks (Heinrichs et al., 1980). However, Tl usually
occurs in high concentrations in sulfide minerals, although Tl minerals
andmineralization are rare in nature (De Albuquerque and Shaw, 1972).
For instance, Tl contents range from 4 to 1300 mg/kg in galena and
sphalerite of the Truskavets deposit in Ukraine (Voskresenskaya, 1969),
from 300mg/kg to N1% in realgar of the Allcar deposit in Yugoslavia
(Jankovic, 1989), and from 23 to 55 mg/kg in pyrite of Kuroko-type
deposit in Japan (Murao and Itoh, 1992). According to Sobott (1995), the
enrichment of Tl in specific sulfide minerals results from the epithermal
(b200 °C) metallogenesis.

It is interesting that high concentrations of Tl that are associatedwith
the low-temperature metallogenesis were also observed in China.
Particularly, the large-scale epithermal metallogenesis in Southwest
China results in high geochemical baselines of Tl. This domain is mainly
composed of Paleozoic and early Mesozoic sedimentary rocks (impure
carbonate rocks and siliciclastic sedimentary rock) and is characterized
by the occurrence of metal mineralization of Au, Hg, Sb, As, Tl, Pb, Zn, Ni
ollution areas in China.



Fig. 2. Map showing the distribution of epithermal ore deposits in Southwest China.
Modified after Hu et al., 2007.
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and Mo and deposits of associated ores within a large area of
900,000 km2 (Fig. 2). Minerals in this epithermal metallogenesis
domain include pyrite, marcasite, arsenopyrite, stibnite, realgar,
orpiment, cinnabar, Tl-sulfide minerals, some base-metal sulfide
minerals (chalcopyrite, sphalerite, and galena), rare Ag–Sb and Pb–Sb
sulphosalts, Hg-bearing minerals, sphalerite, and Ni-sulfide minerals
(Peters et al., 2007). It is showed that Tl is an indicator of the above
sulfide mineralization occurring at low temperature (b200 °C) (Tu,
1998). The associations of Tl with other low-temperature ore forming
metals are listed in Table 1. Tl minerals are rare in nature, however, 8 Tl
minerals were identified in this epithermal metallogenic domain. These
Tlminerals are hutchinsonite (PbTlAs5S9), picotpaulite (TlFe2S3), ellisite
(Tl3AsS3), thallium pyrite ((Fe,Tl)(S,As)2), lorandite (TlAsS2), christite
(TlHgAsS3), lanmuchangite (TlAl(SO4)2·12H2O), raguinite (TlFeS2), and
avicennite (Tl2O3) (He et al., 2005). In general, pyrite and sphalerite are
the two major carriers of Tl in the mineral ores in China. Remarkably,
two Tl ore deposits (Lanmuchang deposit and Nanhua deposit) were
discovered within this domain (Fig. 2).
Table 1
Thallium concentrations in various epithermal ore deposits in Southwest China.

Epithermal ore
deposits

Metal
associations

Tl (mg/kg) Reference

Thallium deposit Tl–As–Hg 1800–3500 Xiao et al. (2004a)
Carlin-type gold deposit Au–As–Hg–Tl 2.7–62.5 Zhang and Long (1994)
Mercury deposit Hg–As–Tl 4.8–189 Zhang and Long (1994)
Antimony deposit Sb–As–Tl 1.5–4.6 Zhang and Long (1994)

and Ning (2009)
Arsenic deposit As–Hg–Tl 1.5–1900 Zhang and Long (1994)

and Zhang et al. (1997)
Molybdenum deposit Mo–Ni–Tl 246–293 Ruo et al. (2003)
Lead/zinc deposit Pb–Zn–Cd–Tl 6.5–485 Li (2007) and Xiao (2009)
Coal deposit Ge–Tl; As–Tl 2.77–46 Xiao et al. (2004a) and

Qi et al. (2007)
Beyond the epithermal metallogenic domain in Southwest China, a
recently discovered Tl ore deposit in Xiangquan of Eastern China was
also found to be associatedwith epithermal metallogenesis (Zhou et al.,
2005) (Fig. 1). Tlmainly occurs inpyrite (up to 5000 mg/kg Tl) of theore
deposit, which may pose potential environmental impacts on the local
environment (Zhou et al., 2008). However, a similar context of high Tl
(46 mg/kg on average) in pyrite (Xie et al., 2001) associated with
epithermal metallogenesis from Yunfu pyrite deposit of Guangdong
Province (Fig. 1) has resulted in serious Tl pollution, throughmining and
sulfuric acidproducingbyusing theores of Tl-richpyrite, andposedhigh
risk to the soil and water safety in the catchment of Pearl River (Yang
et al., 2005; Liu et al., 2010).

The average concentrations of Tl in rocks of the epithermal
metallogenic domain in Southwest China ranged from 1.63 to 3.81 mg/
kg (Tu, 1998), which was much higher than Tl's abundance in Earth's
upper crust (0.75 mg/kg) (Taylor and McLennan, 1985). In the
Lanmuchang Tl mineralized area within this epithermal metallogenic
domain (Fig. 2), the concentrations of Tl are 6–490 mg/kg in the host
rocks, and 100–35,000 mg/kg in the sulfideminerals (Xiao et al., 2004a).
The geochemical simulation of Tl metallogenesis illustrated that lower
pH value and higher temperature of the thermal fluids facilitated the
mobility of Tl in the stratum, but high solubility of Tl was also observed
even in lower temperature (b200 °C) (Long, 1995). Iron abundance in
the stratum of the regional epithermal metallogenic domain in
Southwest China played a catalyzing role in promoting mobility of Tl,
and the clay minerals also aided the enrichment of Tl in rocks (Long,
1995). Positive correlations between Tl and iron, sulfur, potassium and
rubidium in rocks and sulfide mineral ores were observed, which
implied a lithophile and chalcophile behavior of Tl (Xiao et al., 2004a).
These correlations reflect the redox properties of Tl that Tl generally
exists in sulfide minerals in the reducing environment, but only in the
strong oxidized environment it exits in oxidized minerals (Vink, 1993).
Therefore, Tl is a quitemobilemetal during theweathering processes, by
which Tl is readily mobilized and transported together with alkaline
metals and sulfates to the surface environment (Xiao et al., 2004a).

The occurrence of Tl associated with the epithermal metallogenesis
is also a well-established fact in the world. For instance, hydrothermal
precipitates in theRotokawa geothermal systemof NewZealand have Tl
levels as high as 5000 mg/kg (Krupp and Seward, 1987). TheAllchar Sb–
As–Tl deposit in the former Yugoslavia also boasts an extremely high
natural Tl contents (Percival and Radtke, 1994), as does the Lengenbach
Pb–Zn–As–Ba–Tl in Switzerland (Hofmann and Knill, 1996). Similarly,
the local environments of the above sulfide mineralized areas may exit
enrichments of Tl.

3. Tl pollution related to geo-environmental processes

The geo-environmental processes that are involved in the environ-
mental media of water, soil, and plant (Guha, 2003) may facilitate the
release, transportation and secondary enrichmentofmetals into the soil,
water, and even food crops. The enrichments of Tl that are involvedwith
the geo-environmental processes have high potential of producing Tl
pollution.

Tl in soil is generally less than 1 mg/kg (Fergusson, 1990), however,
high concentrations of Tl were observed in many areas of the world. For
instance, high concentrations of Tl (1.54–55 mg/kg) in the arable soils of
France were reported by Tremel et al. (1997a). Relatively high Tl levels
(1.5–3.0 mg/kg) were also found in the soils of Southwest Siberia (Il'in
andKonarbaeva, 2000). Elevated levels of Tl (8.8–35mg/kg) in soils from
the Silesian–Cracowian zinc–lead mine areas were recorded (Lis et al.,
2003). These high Tl contents in the soils are of pedogeochemical origin
(Tremel et al., 1997a; Il'in and Konarbaeva, 2000) or anthropogenic
(mining, processing and smelting) origin (Lis et al., 2003).

Tl generally presents low concentrations (0.29–1.2 mg/kg) in the
soils in China (Qi et al., 1992). However, the levels were remarkably
elevated in soils impacted by natural mineralization of sulfide minerals

image of Fig.�2
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and/ormining activities. Relatively higher Tl contents (0.94–1.4 mg/kg)
were recorded in soils surrounding a pre-mined Carlin-type gold
deposit and elevated levels (40–124 mg/kg) in soils from the Tl-rich
sulfide mineralized area of Lanmuchang in Southwest China were
recorded (Xiao et al., 2004b). High contents of Tl (3.17–4.47 mg/kg)
were recorded in the soils from a Tl-rich pyrite mineralized zone in
Eastern China (Zhou et al., 2008). Tl in the soils from a Tl-rich pyrite
processing area of South China was also recorded at 5–15 mg/kg (Yang
et al., 2005). In similar, the high Tl contents in soil in China are also of
pedogeochemical origin or anthropogenic origin.

Themobile fractions of Tl in Tl-polluted soils are essential in causing
environmental impacts. The sequential extraction on the Tl-polluted
soils in China showed that thewater-soluble fraction of Tl accounted for
approximately 0.1% of the total Tl content in soil, the weak acid
(CH3COONH4) extracted fraction accounted for 0.6%–4%, and the strong
acid (HNO3) extracted fraction accounted for 60%–70% (Xiao et al.,
2003b). This implied ahigh portion of Tl that exit in the environmentally
mobile fraction in the polluted soils. This finding is significant for the
mobility of Tl in the polluted soils. In many cases, the Tl-polluted soils
are acidic due to the acid production from the weathering of Tl-rich
sulfide minerals or the sulfide ore mining, processing and smelting. For
instance, 70% of the determined pH ranges from 3.3 to 6.0 from the Tl-
polluted soils of Lanmuchang in Southwest China (Xiao et al., 2004b).
LowpH(3.66–5.33)was also recorded from the soil profile fromapyrite
processing site in South China (Yang et al., 2005). These determined low
pH values in the polluted soils implied the contribution of the
weathering, mining, processing or smelting of Tl-rich sulfide minerals.

Water is an important media to transport and disperse Tl in the
environment. Tl generally presents quite low contents in water (Flegal
andPatterson, 1985; Cheamet al., 1995; Lin andNriagu, 1999; Frengstad
et al., 2000). However, in the Tl-rich geo-environment in Southwest
China, Tl presents elevated levels in waters. For instance, the
concentration of Tl is 13–1966 μg/L in groundwater and 1.9–8.1 μg/L
in streamwater fromaTl–As–Hg–Aumineralized zone(Xiao et al., 2000,
2003a). The Tl levels are 13.2–193 μg/L in groundwater and 0.92–
45.9 μg/L in stream water from a Pb–Zn mine area in Lanping (Li et al.,
2007) (Fig. 1). Similarly, high concentrations of Tl (2.5–80.3 μg/L) were
detected in river waters surrounding the base-metal sulfide mine areas
in northeastern New Brunswick, Canada (Zitko et al., 1975). The above
high levels of Tl in waters indicated that bothweathering processes and
miningactivities can accelerate the releaseof Tl (highmobility in lowpH
condition by acid production of sulfide weathering) from the Tl-rich
rocks and sulfide minerals into water.

Theenrichmentof Tl in soil andwatermay result in Tl transfer to food
crops. Previous studies havedemonstrated that Tl tends to accumulate in
the food crops grown in Tl-polluted soils (Tremel et al., 1997b; Zhang
et al., 1999; LaCoste et al., 2001;Xiaoet al., 2004b; Pavlickova et al., 2006;
Table 2
Concentrations of Tl, Hg and As in crop materials (mg/kg, DW).

Crop samples Tl

Range Mean±SDa

Green cabbage (n=3)b,c 120–495 338±195
Green cabbage (n=6)d 95.8–187.9 139.9±39
Green cabbage (n=6)e 41.4–121.1 78.1±33
Chinese cabbage (n=8)c 0.87–5.3 2.5±2.0
Chili (n=3)c 0.8–5.3 3±2.3
Corn (n=8)c 0.78–3.1 1.4±0.74
Rice (n=4)c 1.0–5.2 2.4±2.0
World edible plantf 0.03–0.3

a SD refers to standard deviation.
b n = number of sample.
c Xiao et al. (2004b).
d Pot trials spiked with Tl (4.1 mg/kg) from He (2008).
e Pot trials spiked with Tl (8.1 mg/kg) from He (2008).
f Kabata-Pendias and Pendias (1992).
He, 2008; Vaneka et al., 2010). For instance, high contents of Tl were
recorded in the French rape seeds (33 mg/kg) and shoots (20 mg/kg)
(Tremel et al., 1997b), and in mustard shoots (65 mg/kg), leaves
(47.8 mg/kg), and roots (34.8 mg/kg) (Vaneka et al., 2010). High Tl
levels were also detected in crops cultivated in soils that are polluted by
dust emission of a cement plant in Germany, i.e. 9.5 mg/kg in cereal
grains and45 mg/kg in green cabbage (Dolgner et al., 1983). The original
source of Tl in the dust was likely from the minerals of pyrite (FeS2) or
troilite (FeS) or coals (containing pyrite) or tailings of base-metal
processing or smelting slag, which are all the raw materials together
with limestone and clays for cement producing. In China, similar Tl
accumulation in crop plants grown in the Tl-polluted soils was also
recorded. In the Lanmuchang Tl-polluted area, Tl showed the highest
concentration in green cabbage, ranging from 120 to 495 mg/kgwith an
average of 338 mg/kg (Xiao et al., 2004b). For other local crops, Tl
presented at 0.87–5.3 mg/kg in Chinese cabbage, 0.8–5.3 mg/kg in chili,
1–5.2 mg/kg in shelled rice, and 0.78–3.1 mg/kg in granular corns
(Table 2) (Xiao et al., 2004b). These findings clearly demonstrate that Tl
pollution in soil and water may result in the Tl pollution in food crops.
The potential health risk of Tl pollution in food chain should be highly
concerned.

4. Pathways of Tl transfer in the environment

Previous studies have demonstrated that Tl is a quite mobile metal
(rather than being locked-up into solid oxides) in most aqueous
environments, and can disperse easily during oxidation of Tl-bearing
sulfides (Vink, 1993; Xiao et al., 2000, 2003a). High levels of Tl in the
geo-environment of the regional epithermal metallogenic domain in
Southwest China are mainly associated with sulfide minerals. Regional
climate, e.g. high rainfall precipitation (around 1000 mm per year) and
warm temperature, is the main factor that facilitates the release of Tl
from the sulfideminerals and rocks throughweathering process. Lower
pH (around 4–6) in rainfall of the region also facilitates the oxidation of
Tl-richmineral and rocks. Regional physiognomy (steep landscape) and
hydrology (development of underground rivers) would also aid Tl
dispersion from the source points to the downstream areas.

Mining andagricultural activities are themainhuman factors affecting
the transfer of Tl in the environment. Tl in the sulfideminerals is normally
not recycled in China but left in waste rocks and tailings exposed to
surface oxidation. The mine wastes containing high contents of sulfide
minerals have higher potential of acid production. The produced acid
mine drainage can easily extract Tl from the solid wastes into the water
system. Therefore, Tl may easily enter the farmland through irrigation in
the surrounding and downstream areas of themining and smelting sites.

Much attention has been paid to the transfer of Tl to the drinking
water supply and agricultural irrigation systems. The case studies from
Hg As

Range Mean±SD Range Mean±SD

0.45–0.72 0.63±0.15 0.38–0.89 0.7±0.28

0.1–0.7 0.4±0.23 0.17–1.3 0.8±0.32
0.01–0.04 0.02±0.02 0.15–0.29 0.23±0.07
nd 0.01–0.02 0.02±0.01
0.02–0.03 0.03±0.03 0.1–0.18 0.15±0.01
0.013–0.17 0.01–1.5
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the Lanmuchang Tl-polluted area in Southwest China clearly illustrated
the presence of such transfer processes in the local geo-environment
(Zhou and Liu, 1985; Xiao et al., 2003a). In the Lanmuchang area, the
local domestic wells were contaminated by the recharge of Tl-rich
groundwater. High concentrations (17–40 μg/L) of Tl were detected in
1977 (Zhou and Liu, 1985). After 1998, some of the wells have been
abandoned, while other wells that were still supplying drinking water
showed lower levels of Tl (0.12–0.38 μg/L) (Xiao et al., 2003a). The
lower Tl contents in thewell watermay be attributed to the fact that the
oxidation process for Tl-bearing sulfides or host rocks actually tends to
deplete Tl over the years and less Tl was released into the groundwater
recharging to the wells (Xiao et al., 2003a). The local stream water
receiving the acid mine drainage and groundwater discharge was used
for local irrigation. The averaged concentrations of Tl in the stream
water were 8.1 μg/L in dry season and 1.9 μg/L in rainy season (Xiao
et al., 2003a). It has been demonstrated that irrigation water containing
1 μg/L of Tl would contribute to Tl accumulation ranging from 0.26 to
1 mg/kg (dryweight, D.W.) in plantmaterials,which can be regarded as
the upper limit for human and farm animal consumption (Sager, 1998).

Tl transfer from soil to food crops is also highly concerned in China.
The study by Xiao et al. (2004b) illustrated that Tl in soils was
preferentially transferred to locally planted food crops compared to
other metals (metalloids) (e.g., arsenic and mercury) (Table 2). The
accumulation of Tl in the edible parts of the local crop species is
decreased in the following order with respect to mean values (D.W.):
green cabbage (338 mg/kg)Nchili (3 mg/kg)NChinese cabbage (2.5 mg/
kg)Nrice (2.4 mg/kg)Ncorn (1.4 mg/kg) (Xiao et al., 2004b). The highest
level of Tl in green cabbage is up to 500 mg/kg, surpassing the levels of Tl
(40–124mg/kg) in the root soils (Xiao et al., 2004b). Recent studies have
recorded that Tl may accumulate in green cabbage up to 1180 mg/kg
(D.W.) from the Lanmuchang area (Xiao, T.F., unpublished data). Tl
concentrationsmaypresent 10–29 times the levels of Tl spiked in thepot
experiments (Table 2) (He, 2008).

In addition, other potential pathways for Tl entering the human body
may include consumption of domestic birds and animals, air inhalation,
and inadvertent soil ingestion in China (Xiao et al., 2007). Appreciable
amounts of Tlwere recorded in the local domestic poultry andanimals of
Lanmuchang Tl-polluted area, i.e. 7.2 to 10.3 mg/kg (fresh weight, F.W.)
in chickens, 3 to 12.7 mg/kg (F.W.) in eggs and 0.1 to 0.38 mg/kg (F.W.)
in pork (Feng et al., 2001). Although averaged concentration of Tl in
Chinese coals (0.47 mg/kg) is similarwith that (0.63 mg/kg) in theworld
coals (Dai et al., 2011), but concentrated Tl levels were recorded in coals
of certain areas. For instance, high Tl contents were recorded in coals
from a sulfide mineralized zone in Southwest China (5.7–46 mg/kg)
(Xiao et al., 2004a), and from the germanium-bearing coals in Northern
China (2.77–31.7 mg/kg) (Qi et al., 2007). Thus, the air inhalation of Tl-
bearing particles outdoor from power plants and indoor from cooking
and heating in rural areas may be a potential pathway of transferring Tl
into human body in China. However, the data for Tl levels in the air
around the polluted areas in China or in the world are not available.
Finally, the inadvertent ingestion of Tl-bearing soils by so-called hand-
to-mouth behavior may also transfer Tl to human body. It has also been
shown that soil ingestion is a health concern for children (Lambert and
Lane, 2004), however, there have been no studies on this specific
pathway for Tl transfer either in China or in the world.

5. Adverse health impacts of Tl pollution

The evidences of adverse environmental impacts of Tl pollution in
China have been well illustrated in the Lanmuchang area in Southwest
China (Zhou and Liu, 1985; Zhang et al., 1997, 1999; Xiao et al., 2007).
Lanmuchang, a rural area with approximately 1000 inhabitants,
presents a specific geo-environmental context with Tl pollution in
local soils,waters and food crops. The adverse environmental impacts of
Tl pollution in this area were revealed by chronic Tl poisoning with
symptoms of weakness, muscle and joint pains, disturbance of vision
and hair loss (APASSGP and EGLIGCAS, 1977; Liu, 1983; Zhou and Liu,
1985). Previous epidemiological investigations showed that high
concentration of Tl existed in the urines of the local villagers, ranging
from 600 to 3000 μg/L in the 1970s (Zhou and Liu, 1985), 77.7 to
2660 μg/L in the 1990s (Zhang et al., 1999), and 2.51 to 2668 μg/L
(Mean=521.9 μg/L, Fig. 3) in 2003 (Xiao et al., 2007). These high
urinary Tl levelswere 1–4 orders ofmagnitude higher than the accepted
maximum urinary Tl concentration (b1 μg/L) for “non-exposed”
humans in the world (CDC, 2003). In accordance with the health
guidelines for Tl by theWorld Health Organization (WHO) (WHO/IPCS,
1996), the majority of the local population with urinary Tl concentra-
tions above 4.5–6 μg/L in the Lanmuchang area might suffer from the
early adverse health effects. Some of the villagers with urinary Tl
concentrations (N500 μg/L) could be considered as approaching clinical
intoxication (Xiao et al., 2007). It is surprising to note that the high Tl
levels in urine of the local villagers are nearly constant within the past
four decades. This likely reflects a long-term exposure to Tl in the local
environment, which was probably caused by the continuous consump-
tion of Tl-containing foods grown in the local Tl-polluted soils over the
years (Xiaoet al., 2004b, 2007). In contrast, exposure to theTl in thewell
water still supplying drinkingwater has been remarkably reduced from
17–40 μg/L (Zhou and Liu, 1985) to 0.12–0.38 μg/L (Xiao et al., 2003a).
However, Tl content (0.12–0.38 μg/L) in the localwellwaters is still over
the maximum contaminant level (0.1 μg/L) in China (CNS, 2006).
Therefore, the potential risk of Tl poisoning from the drinking water in
the Lanmuchang area should be constantly monitored.

The local villagers commonly consume vegetables grown in local Tl-
contaminated soils of Lanmuchang throughout the entire year. The
average daily dietary intake of Tl through locally planted crops was
estimated to be 1.9 mg per person, as compared to 0.01 mg for Hg and
0.03 mg for arsenic (Xiao et al., 2004b). This was approximately 1000
times higher than the world average daily intake (2 μg/day, Sabbioni
et al., 1984). Itwas also far above the ‘oral referenceTl dose’ of 0.056 mg/
day (RAIS, 1994) and the Tl intake of 3.8 μg/day for an average adult
from vegetables in the USA (USEPA, 1980). Xiao et al. (2007) showed
that the urinary Tl concentrations of the local population in the Tl-
impacted Lanmuchang area had positive correlations with the crop Tl
contents (r=0.990, pb0.0001) and with the soil Tl contents (r=0.952,
pb0.0001). These results clearly imply that Tl contents of the crops from
Tl-polluted soils have significant effect on Tl concentrations in urine of
the local population (Fig. 3). Significant differences of urinary Tl
concentrations between male and female groups (p=0.6452) or
amongdifferent age groups (p=0.9353)were not observed, suggesting
that the health impact of Tlwas independent of sex and age of the locally
exposed population (Xiao et al., 2007). The above findings strongly
demonstrated that Tl in soil is likely to be transferred to thehumanbody
through the consumption of local food cropswith high biological ability
to accumulate Tl, which ultimately produces adverse health effects.

In addition, consumption of domestic birds and animals bred in Tl-
polluted areas, air inhalation of Tl-bearing particles, and inadvertent
Tl-polluted soil ingestion may also increase the amounts of Tl into
human body and produce adverse health effects.

6. Geo-environmental management on Tl pollution

The multidisciplinary environmental studies by lithogeochemistry,
soil geochemistry, hydrogeochemistry and biogeochemistry of Tl and its
impact on human health in China have documented a real geo-
environmental concern. The Tl-rich epithermal metallogenic domain in
Southwest China is located in the upper reach catchments of both
Yangtze River and Pearl River (China's first and third longest rivers,
respectively). Tl in soils and waters from natural weathering or mining,
coupled with the favorable hydrological regimes, could result in wide
dispersion of Tl pollution into the rivers.

With respect to Tl toxicity and pollution impacts in China, the safe
limit of Tlwas set at 0.1 μg/L for theChinesedrinkingwater quality (CNS,



Fig. 3. (a) Map showing human exposure to Tl in terms of urinary Tl levels in the Lanmuchang Tl mineralized area, and (b) plot of Tl concentrations in soil and crop vs. Tl in urine
(mean values).
Modified after Xiao et al., 2007.
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2006), and the Tl-bearing mine wastes were also listed in the China
NationalHazardousWaste Inventory in2008.However, there have been
no threshold limits of Tl in soil and foodstuffs in China. According to the
world experiences and the pollution situations in China, the authors
suggest that the maximum contaminant levels of Tl be regulated at
1 mg/kg in the arable soils and 1 mg/kg (DW) in foodstuffs. Accordingly,
Tl level at 1 μg/L in irrigation water would be the acceptable maximum
contaminant levels for guaranteeing safe soil and foodstuff quality in
China. These regulations will provide guidelines for the appropriate
management of Tl pollution in China.

Tl dispersion and pollution in soils andwaters should be regarded as
critical parameters for proper land use and health-related environmen-
tal planning and regulation. The researches on Tl pollution and health
impacts in China have identified certain plants (e.g., green cabbage and
rape) that are able tohighly accumulate Tl fromarable soilswith slightly
higher content of Tl (1 mg/kg). These plants can be a health risk for
human consumption. Therefore, proper land management practice
surrounding the areas impacted bymetal sulfidemineralization/mining
should be carefully regulated. Simple solutions for immediate imple-
mentation include elimination of the planting of certain crops,
particularly the high Tl accumulation crops, in Tl polluted soils. The
practices for water qualitymonitoring, minewater treatment andmine
waste site remediation should not neglect Tl. Testing the urinary Tl
concentration of the population inhabiting the Tl-impacted areas
represents a quick and easy method to detect Tl exposure since Tl
poisoning symptoms may take years to manifest themselves in an
unambiguous manner (Xiao et al., 2007).

7. Conclusions

Tl occurs at high concentrations in the environment associated with
the epithermal metallogenesis of sulfide minerals in China. The natural
mineralization and/ormining for the Tl-richmetal sulfideminerals have
high potential of producing Tl pollution in the environment, which have
raised a specific environmental concern in China and other parts of the
world. The evidences of Tl pollution andenvironmental impacts inChina
reveal that Tl associated with epithermal metallogenesis can be
dispersed beyond a mineralized zone. Its high abundances in local
water, soil, and crops may rise above permissible levels and result in
adverse health effects to local residents. The geo-environmental
processes of water transportation and food crop accumulation of Tl
are the main factors resulting in Tl pollution. In terms of geo-
environmental concern, it is essential to understand the baseline and,
dispersion pattern of Tl in the environment in order to provide
guidelines for safe land use and minimize or prevent cases of adverse
health impacts of Tl pollution. The practices for water quality
monitoring, mine water treatment and mine waste site remediation
should no longer neglect Tl, and testing the urinary Tl concentration of
Tl-affectedpopulation represents aquick andeasymethod to evaluate Tl
exposure. The experiences of Tl pollution in China can provide

image of Fig.�3
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important lessons formany other regions in theworldwith similar geo-
environmental contexts.
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