济阳坳陷 CO₂ 气藏同位素地球化学特征及成因

林治家^{1,2},陈衍景^{1,3},黄智龙²,申宝剑^{1,2}

1. 中国科学院研究生院,北京 100049; 2. 中国科学院地球化学研究所,贵阳 550002;

3. 北京大学 造山带与地壳演化实验室,北京 100871

摘 要:济阳坳陷 CO₂ 气藏主要发育在高青-平南深断裂中南段和阳信次级凹陷西北缘及商店火山岩穹隆构造内。气藏中 CO₂ 气体浓度为 69%~97%, δ¹³ C_{CO2} 值为一5.67‰~~3.35‰, CH₄/³ He 值为(1.01~5.65)×10⁸, ³ He/¹ He 值为(2.80~ 4.49)×10⁻⁶,即 R/Ra 为 2.00~3.21,¹⁰ Ar/³⁵ Ar 值为 317~1791, CO₂/³ He 值为(0.25~2.61)×10⁹。以上地球化学数据表 明,济阳坳陷气藏中 CO₂ 主要来源于地幔, 且幔源 CO₂ 在成藏过程中有损失, 或者有壳源 CO₂ 的加入, 特别是部分碳酸盐岩 变质成因 CO₂ 的加入。在对 CO₂ 气来源定性分析的基础上,还需要在各来源的定量区分和 CO₂ 气藏的成藏及其与岩浆活动 的时空匹配关系等方面作进一步的研究。

关 键 词:济阳坳陷;CO2 气藏;同位素;惰性气体;成因 中图分类号:R618.130.2 文献标识码:A 文章编号:1007-2802(2006)03-0272-07

The Isotopic Geochemical Characteristics and Genesis of the CO₂ Gas Pools in the Jiyang Depression

LIN Zhi-jia^{1,2}, CHEN Yan-jing^{1,3}, HUANG Zhi-long², SHEN Bao-jian^{1,2}

1. Graduate School, Chinese Academy of Sciences, Beijing 100049, China; 2. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; 3. Department of Geology, Peking University, Beijing 100871, China

Abstract: The CO₂ gas pools of the Jiyang Depression are mainly located in the central and southern parts of the Gaoqing-Pingnan deep fault zone, Northwestern margin of the Yangxin subsidiary depression and the Shangdian volcanic dome. These CO₂ gas pools contain 69% - 97% CO₂. The geochemical analyses indicate that the δ^{13} C_{CO₂} values are varied from $-5.67\%_0$ to $-3.35\%_0$, the CH₁/³ He ratios are varied from 1.01×10^8 to 5.65×10^8 , the ³ He/₄ He ratios are varied from 2.80×10^{-6} to 4.49×10^{-6} (i. e. R/Ra= 2-3.21), the ⁴⁰ Ar/³⁶ Ar ratios are varied from 317 to 1791, and the CO₂/³ He ratio are varied from 0.25×10^9 to 2.61×10^9 respectively. The data above consistently suggest that the CO₂ reserved in the Jiyang Depression was mainly sourced from the mantle, with possible influence of partly loosing CO₂ in the upward migration process of the mantle sourced CO₂, or possible mixing with small part of crust-sourced CO₂ gases such as the CO₂ produced from metamorphism of carbonate rocks. Besides the qualitative analysis of the CO₂ source, many other research works, such as the quantitative analysis of CO₂ sources, the forming process of CO₂ gas pools and its relationship to the magmatic activities, should be further undertaken.

Key words: Jiyang depression; CO2 gas pool; isotope; noble gas; origin

我国东部构造强烈活动带发育有一系列中新生 代裂谷盆地,如松辽盆地、渤海湾盆地、苏北盆地、三 水盆地及莺歌海盆地等。这些盆地普遍发育富含 CO₂的(CO₂含量>60%)气藏(田),尤其是在渤海 湾盆地和莺歌海盆地。前人曾对渤海湾盆地济阳坳 陷 CO₂气藏的地球化学特征、分布规律、成因和成 藏模式做过比较详细的研究^[1~7]。在碳和氦同位素 分析的基础上,多数学者^[1.3.7]认为此类 CO₂ 气藏是 以幔源无机气为主的壳幔混合成因,但并未说明详 细壳源机理。沈渭洲等^[6]认为壳源 CO₂ 主要来自 前古近系碳酸盐岩的热变质脱碳作用。δ¹³C_{CO2}是目 前最常用的判别 CO₂ 成因与来源的指标,由于影响

收稿日期:2005-12-19 收到,2006-02-27 改回

基金项目:国家自然科学基金资助项目(40425006,40352003);中国科学院地球化学研究所百人计划资助项目

第一作者简介:林治家(1980一),男,硕士研究生,专业方问:油气地球化学. E-mail:lin-zhijia@163.com.

δ¹³C_{co₂}的因素很多,因此非烃气藏的成因解释较多, 争论较大^[8]。

本文总结了济阳凹陷 CO₂ 气藏的同位素和稀 有气体地球化学研究成果,探讨了成藏物质来源。

1 气藏地质和组分特征

三叠纪一早侏罗世,华北板块与扬子板块碰 撞^[9],同时,沿蒙古-鄂霍茨克缝合带与西伯利亚板 块碰撞^[10],强烈的陆陆碰撞作用导致华北板块内部 破碎、走滑和向东蠕散、逃逸。其中,沿郯庐断裂发 生左行走滑,鲁东地块向东逃逸,在郯庐断裂两侧形 成了中晚侏罗世以来的走滑拉分(pull-apart)盆地, 如莱阳盆地、济阳盆地和合肥盆地等。

济阳坳陷北部和西北部为埕宁隆起,西南为临 清坳陷,南部以齐河-广饶深断裂与鲁西隆起相隔, 东界为郑庐大断裂(图1)。济阳坳陷最古老的基底 岩层是太古界泰山群,缺失元古界;下古生界以浅海 碳酸盐岩沉积为主,上古生界为陆相含煤建造,缺失 上奥陶统到下石炭统之间的地层;中生界缺失三叠 系,侏罗系和白垩系是一套火山-沉积地层;古近系 为河湖相砾岩、砂岩、泥岩,局部发育礁-滩白云岩和 膏岩层等,坳陷中部断裂两侧有大面积玄武岩类分 布;新近系超覆不整合在所有老地层之上;第四系泥 质、砂质沉积物互层。

图 1 济阳坳陷断层、火成岩及 CO₂ 气藏分布图

Fig. 1 The distribution of faults, igneous rocks and CO2 gas pools in Jiyang depression

坳陷内发育不同规模的断裂 1500 多条,多为犁 式断层,呈箕状断陷,显示为块断运动的产物,使济 阳坳陷由一系列凹凸相间的次级凸起和凹陷构造组 成。晚中生代至新近纪,火山活动活跃,发育大量碱 性、钙碱性系列火山岩。

济阳坳陷内的 CO₂ 气藏主要发育在高青-平南 深断裂中南段和阳信次级凹陷西北缘及商店火山岩 穹隆构造内,主要有平方王气顶、平南潜山、花沟、高 青、阳 2 及阳 5 井、阳 25 井 CO₂ 气藏(图 1)。各气 藏或沿断裂呈链状分布,或分布在断裂交汇地段,或 位于火山岩穹隆地带,均与新生代碱性系列火山岩 在空间上有密切关系。

如表 1 所示, 气藏中 CO₂ 含量为 68.85% ~ 96.99%, 变化较大, 总体上呈两个集合, 且距气藏越 深 CO₂ 含量越高(图 2)。气藏中 CH₁ 含量为 $0.44\% \sim 26.43\%$, N₂ 为 $0.06\% \sim 5.43\%$, He 为 $(84 \sim 847) \times 10^{-6}$, 含量变化均较大; 其他烃类组分 含量较低; CO₂ 与 CH₁ 含量呈负相关, 与 He 含量 关系不明显(图 3)。

地区	井 号	地层	井 段	$\mathrm{He}(imes 10^{-6})$	$N_2(\%)$	$C()_2(\%)$	CH4(%)	$C_1 + (\%)$	资料来源		
	平 12	ES_4	1470.5~1498.0	216	0.63	74.20	21.63	3.39			
平方王	平 4	ES_4	1459.4~1474.5	237	0.46	75.33	20.89	3.27			
	平 9-3	ES_4	1462.6~1489.2	277	0.25	73.87	22.46	3.36			
	平 13-2	ES_4	1453.6~1483.2	242	1.07	68.85	26.43	3.54			
	平 13-4	ES_4	1450.8~1486.4	238	1.21	74.92	19.04	4.36			
	平 14-3	ES_4	1467.0~1484.6	222	0.61	77.93	18.17	3.15	文献[7]		
	演 4-10-4	ES_4	1441.0~1469.0		0.93	71.90	23.78	3.40			
	滨 4-13-2	ES₄	1453.0~1455.0		0.85	72.68	22.71	3.77			
平南	滨 4-6-6	ES_4	1469.7~1481.6	281	0.33	72.50	23.52	3.53			
	滨古 14	0	2404.0~2460.0		0.46	96.99	0.16	1.39			
高青	高气 3	Ng	833.40~834.80		5.43	94.36	0.14				
花沟	花 17(1)	ES_3	1965.1~1980.0	358	1.60	93.78	3.89	0.73			
	花 17(2)		2000.0~2009.6	847	2.06	93.54	3.86	1.46			
平方王	平 12-61	ES_4	1452.4~1487.6	84	84 0.38		17.13	3.19	又献[2]		
阳信	阳 25	ES_1	2794.0~2805.0		3.06	96.50	0.44				

Table 1 The composition of gases in CO₂ gas pools in Jiyang depression

2 气藏的同位素地球化学特征

2.1 碳同位素

 CO_2 可由多种方式产生,各类碳储库均可为气 藏提供 CO_2 ;在各类碳储库中^[11~13]无机碳储库的 $\delta^{13}C$ 高于有机碳储库;无机碳储库中以海相碳酸盐 的 $\delta^{13}C$ 最高(0.5%),地幔或岩浆岩的 $\delta^{13}C$ 约为 -5%,大气 CO_2 的 $\delta^{13}C$ 约为 -8%。总的来说,无 机成因 CO_2 的 $\delta^{13}C > -8\%$,有机成因 CO_2 的 $\delta^{13}C$ $<-10\%^{[1]}$ 。研究表明,济阳 坳陷 CO_2 气藏中的 $\delta^{13}C_{CO_2}$ 值为 $-5.67\% \sim -3.35\%$,主频率段为 $-4.76\% \sim -4.32\%$ (表 2),指示 CO_2 以无机成因 为主,最大可能来自地幔或岩浆活动,不排除来自碳 酸盐岩地层受热变质脱气而产生的 CO_2 混入^[7]。

图 3 济阳坳陷 CO₂ 含量与 CH₁、He 含量关系 Fig. 3 A plot showing the relationship among contents of CO₂, CH₁ and He of the gas pools in the Jiyang depression

研究表明,无机成因甲烷的 $\delta^{13}C>-30\%$,多数 有机成因的甲烷的 $\delta^{13}C<-30\%^{[1]}$ 。Zheng 等^[7]指 出,济阳坳陷气藏中 CH₄的 $\delta^{13}C$ 为-54.39‰~ -35.00‰,主频率段为-54.39‰~-51.55‰,显 示以有机成因为主。此外,他们报道的其他烃类 (C₂H₆~C₅H₁₂)的碳同位素组成均显示有机成因特 点,指示部分 CO₂ 可能来自有机质的氧化^[7]。

2.2 氦同位素

地球上不同氦储库的³He/⁴He值^[14]为:大气氦 (Ra)1.4×10⁻⁶,壳源氦2×10⁻⁸,上地幔源氦1.1× 10⁻⁵。济阳坳陷气藏中³He/⁴He值为(2.80~ 4.49)×10⁻⁶,主频率段为(3.55~4.49)×10⁻⁶,其 R/Ra为2.00~3.21,介于壳源(1.43×10⁻²)与幔

Table 2 The gas isotope characteristics of CO_2 gas pools in Jiyang depression											
地区	井号	δ ¹³ C(%, PDB)		³ He/ ⁴ He		40 A /36 A	幔源 He	CH ₄ / ³ He	$\overline{\text{CO}_2}/{}^3\text{He}$	$CO_2/^3 He_m$	次叔士酒
		CH ₄	CO_2	(×10 ⁻⁶)	K/Ka	··· Ar/ 3* Ar	(%)	$(\times 10^8)$	($ imes 10^9$)	$(\times 10^9)$	贝科木你
平 方 王	P12	-51.87	-4.36	3.85 ± 0.11	2.75	1051	27.40	2.60	0.89	3.26	
	P4	-51.67	-4.52	3.85 ± 0.11	2.75	1758	27.40	2.29	0.83	3.01	
	P 9-3	- 51, 58	-4.47	3.87±0.11	2.76	317	27.54	2.10	0.69	2.50	文献[7]
	P 13-2	-52,69	-4.74	3.59 ± 0.11	2.56	1220	25.54	3.04	0.79	3.10	
	P13-4	-51.74	-4.43	3.55 \pm 0.11	2.54	1722	25.25	2.25	0.89	3.51	
平 南	P14-3	-51,82	-4.32	4.47±0.11	3.19	1378	31.83	1.83	0.79	2.47	
	B4-10-4	- 50, 19	5.67								
	B4-13-2	- 52, 37	-5.08			600					文献[3]
	B4-6-6	-51,67	-4.57	3.87 ± 0.11	2.76	1791	27.54	2.16	0.67	2.42	
	BG14	-47.50	-4.76	2.80 \pm 0.11	2.00	_	19.89				
高青	GQ3	-35,00	-4.41								
花沟	花 17(1)	-54.39	-3.41	4.45 \pm 0.12	3.18	770	31.69	2.44	0.59	1,86	
	花 17(2)	-53.98	-3.35	4.49±0.12	3.18	1054	31.97	1.01	0.25	0.769	
平方王	平 12-61	-51.80	-4.50	3.61±0.10	2.58	1478	25.68	5.65	2.61	10.2	又町[2]
阳信	阳 25	-42.51	-4.38	4.12±0.12	2.94		29.33				

表 2 济阳坳陷 CO2 气田气体同位素特征

源(7.86)氦之间,也介于地幔与大气氦之间(高于后 者)。由于工业气井中的大气氦含量通常可以忽略 不计[14],因此可以认为,济阳坳陷气藏中的氦以幔 源为主,受壳源氦的影响。

此外,同一口井中(如花17井)深部气层的氦含 量和³He/⁴He值高于浅部气层,说明运移过程对深 部来源气体的含量和同位素组成有一定影响。

据赖勇等[15]的研究,6件五大连池和3件宽 甸新生代玄武岩中地幔包体的 R/Ra 值分别为 4.53~5.49 和 7.30~7.52,显示了中国东部新 生代地幔的不均一性。这与济阳坳陷气藏的氦 同位素组成接近,略高于济阳坳陷气藏的 R/Ra, 显示济阳气藏中的氦主要来自地幔,并受到壳源 氦的混染。

2.3 氯同位素

天然气中的氩主要由大气氩和放射性成因氩组 成,并受到幔源氩的影响^[14]。大气氩的⁴⁰ Ar/³⁶ Ar 值为 295. 5^[15],就壳源氩而言,其⁴⁰ Ar/³⁶ Ar 值受放 射成因⁴⁰ Ar 积累的影响,气源岩的年龄越老, 40 Ar/36 Ar值越大,如古近系-新近系天然气(指自生 自储)⁴⁰ Ar/³⁶ Ar值约为 400, 二叠系增至 1000, 震旦 系达 7000^[14]。济阳坳陷的 CO₂ 气藏与新生代地层 和火山岩有密切的成因和空间联系,成藏时间较 晚^[1],因此其⁴⁰Ar/³⁶Ar 表征值应在 400 左右。济阳 **坳陷** CO₂ 气藏的实测⁴⁰ Ar/³⁶ Ar 值为 317~1791, 变 化较大,多值为 770~1791,高于大气¹⁰ Ar/³⁶ Ar 表 征值 295.5,与五大连池火山岩地幔包体中的

¹⁰ Ar/³⁶ Ar值(557.2~4005.6,n=7)^[16] 接近(略低)。 以上种种特征都显示成藏气体主要来自地幔,并略 微受到低⁴⁶ Ar/³⁶ Ar 值的大气氩或壳源氩的混染。 此外,在同一气藏不同深度的气层中,如花17井和 阳 25 井气藏,深部气层的⁴⁰ Ar/³⁶ Ar 值高于浅部气 层同样也说明有大气氩的混入,并降低了浅层气藏 的 10 Ar/ 36 Ar值。

2.4 碳、氦、氯同位素

研究表明,多来源混合成因是多数气藏的特 征11,尤其是含油气的伸展盆地,既存在有机质转变 而来的 CO₂,又有地幔/岩浆释放的无机 CO₂,还有 碳酸盐岩变质脱气释放的 CO2,不同来源的 CO2 混 合到同一盆地,造成厘定气藏成因的困难。借鉴前 人的研究[17~21],我们借助 C-He-Ar 同位素组合来 探讨济阳坳陷 CO₂ 气藏的成因。

由于壳源³He/⁴He 值低于大气,更低于地幔 源,且地幔碳储库的δ¹³Cco。值近于-5‰,地壳中的 δ¹³C_{co.} = -7‰^[22],大气 δ¹³C_{co.} = -8‰,有机质转 变的 CO₂ 的 δ^{13} C < -10%, 因此, 济阳坳陷气藏较 高的 δ¹³ C_{co}。 值和³ He/¹ He(图 4), 应指示成藏气体 主要来源于地幔;图4显示的δ¹³C_{co},值与³He/⁴He 呈正相关关系,应指示幔源气体与来自地壳或大气 圈的 CO₂、He 的二元混合作用。此外,花沟气藏 2 个样品的 δ¹³ C_{co}, 值明显偏高, 且没有显示 与³He/⁴He之间的相关关系(图 4),表明花沟气藏 的部分 CO₂ 来自碳酸盐地层的分解。

图 4 济阳坳陷³He/⁴He 与 δ¹³C_{CO2} 关系图 Fig. 4 A plot showing the ratios of ³He/⁴ He vs. δ¹³C_{CO2} values of the gas pools in the Jiyang depression

典型上地幔来源气 $CO_2/^3$ He 值为(2~7)× 10^{9[23.24]},壳源气 $CO_2/^3$ He 值变化范围较大(约 10⁸ ~10^{14[25.26]})。在含油气的陆内盆地,壳源 CO_2 加 入可减少气藏中幔源 CO_2 的相对比例,幔源 CO_2 转 变成 CH_4 或通过反应形成碳酸盐矿物,会使幔源 CO_2 丢失,这些过程都会引起 $CO_2/^3$ He 值发生变化 (图 5)^[17]。因此, $CO_2/^3$ He_m 与 CO_2 含量的协变关 系可以反映幔源气藏中 CO_2 来源及其在成藏过程 中的变化,其中³He_m = He×He_m×R_m/(R_m+1), He_m(%)=100(R_s-R_c)/(R_m-R_c), R_c为地壳氦 R/Ra 值,R_m为上地幔氦 R/Ra 值,R_s为样品 R/Ra 值,He 为气藏中氦含量,He_m表示气藏中幔源氦的 比例(%),³He_m表示幔源氦中的³He 含量。

如图 5 所示,绝大多数取样井的 $CO_2/{}^{3}He_m$ 值 都略高于 2. 0×10^{9} , $CO_2/{}^{3}He_m$ 值与 CO_2 含量有一 定的正相关,说明济阳坳陷 CO_2 气藏具幔源特征, 且在成藏过程中有部分壳源 CO_2 气体加入。然而, 花 17-1 和花 17-2 井十分特殊,显示幔源 CO_2 丢失 或壳源 CO_2 加入而导致 $CO_2/{}^{3}He_m$ 值偏低。

美国萨克拉门托盆地和德国艾费尔地区的研究 表明^[27,28],当天然气中的 $CO_2/{}^{3}He = 5{}^{3}He/{}^{4}He = 2$ 显著相关时, CO_2 具地壳和地幔双重来源,且幔源 CO_2 在运移、聚集过程中没有损失;当 $CO_2/{}^{3}He$ 值 与 ${}^{3}He/{}^{4}He$ 值之间的相关性不明显时,则不能用简 单的壳幔混合模式来解释。图 6 显示, $CO_2/{}^{3}He$ 与 ${}^{3}He/{}^{4}He$ 之间的相关性微弱,说明济阳坳陷 CO_2 有一定程度的壳幔混合,并在运移、聚集过程中发生 了变化。

图 4、图 5 和图 6 均显示花 17-1 和花 17-2 井 样品与众不同,而花沟地区 CO_2 气藏的平均 He 含量最高,达(358~847)×10⁻⁶,高于绝大多数 气藏,后者 He 含量一般小于 $300 \times 10^{-6[1]}$ 。文中 的研究数据还显示花沟地区 CO_2 气藏的³ He/⁴ He 值和 $\delta^{13}C_{CO_2}$ 值是最高的。这些特征都说明花沟地 区气藏有特殊的气体来源和成藏过程,有待进一步 研究。

图 6 济阳坳陷³ He/⁴ He 与 CO₂/³ He 关系图

幔源流体中 $CH_4/{}^{3}$ He 值一般为 $10^{6} \sim 10^{7}$ ^[29], 高者可达 10^{8} 数量级,受壳源混染者呈明显高值,甚 至达 $10^{11} \sim 10^{12}$ 数量级,其原因与 $CO_2/{}^{3}$ He 值的变 化相同。在图 7 中,除花 17-1 和花 17-2 井外, $CH_4/{}^{3}$ He 值随³ He/⁴ He 值减少而增加,说明本区气 藏有明显的壳源混染特征。

3 结 论

济阳坳陷内非烃类气藏中气体具多来源的特征,但 CO₂ 主体是无机成因,并主要来自地幔,少量 来自碳酸盐岩热变质作用;成藏过程中幔源 CO₂ 通 过转变为 CH₁ 或碳酸盐岩而丢失了部分 CO₂,壳源

维普资讯 http://www.cqvip.com

CO₂ 和其他烃类加入气藏。花沟地区的气体地球 化学特征与众不同,可能有碳酸盐地层变质脱气产 生的 CO₂ 的混入。此外,为促进对 CO₂ 气藏的开 发,应加强 CO₂ 气体各来源的定量区分、气藏的成 藏年代、成藏过程及其与岩浆活动的时空匹配关系 的研究。

Fig. 7 The relationship of the $CH_4/{}^3$ He ratios and 3 He/ 4 He ratios of the gas pools in the Jiyang depression

参考文献(References):

[1] 戴金星,宋岩,戴春森,陈安福,孙明良,廖永胜.中国东部 无机成因气及其气藏形成条件[M].北京:科学出版社, 1995.131-150.

Dai Jinxing, Song Yan, Dai Chunsen, Chen Anfu, Sun Mingliang, Liao Yongsheng. Inorganic gases and the formative conditions of the inorganic gas pools in eastern China[M]. Beijing:Science Press, 1995. 131-150. (in Chinese)

- [2] 郑乐平, 冯祖钩, 徐寿根, 廖永胜. 起源于地球深部的济阳拗陷 CO₂ 气藏[J]. 科学通报,1995,40(24); 2264-2266.
 Zheng Leping, Feng Zujun, Xu Shougen, Liao Yongsheng.
 CO₂ gas pools originated from the earth interior in Jiyang depression [J]. Chinese Sci. Bull., 1995,40(24); 2264-2266. (in Chinese)
- [3] 郑乐平,冯祖钧,廖永胜,徐寿根.济阳拗陷非烃类气藏 (CO₂、He)的成因探讨[J].南京大学学报(自然科学版), 1997,33(1);76-81.

Zheng Leping, Feng Zujun, Liao Yongsheng, Xu Shougen, Genesis of the non-hydrocarbon gas reservoir(CO_2 , He) in Jiyang depression [J]. Journal of Nanjing University (Natural Sciences Edition), 1997, 33(1); 76 – 81. (in Chinese with English abstract)

[4] 侯贵廷、钱祥麟,宋新民,范亮星、济阳坳陷二氧化碳气田的 成因机制研究[J].北京大学学报(自然科学版).1996、32(6): 712-718.

Hou Guiting, Qian Xianglin, Song Xinmin, Fan Liangxing, The origin of carbon dioxide gas fields in Jiyang Basin [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1996, 32 (6): 712-718. (in Chinese with English abstract)

[5] 廖永胜,李钜源,李祥臣,徐寿根.应用碳、氦、氩同位素探讨 济阳坳陷二氧化碳气成因[J],矿物岩石地球化学通报,2001, 20(4):351-353

Liao Yongsheng, Li Juyuan, Li Xiangchen, Xu Shougen, A discussion of CO₂ genesis in Jiyang depression by using C, He,
Ar isotopes[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(4); 351 - 353. (in Chinese with English abstract)

[6] 沈渭洲,徐士进,王汝成,陆建军.济阳拗陷高含CO₂ 气藏的 同位素特征和成因探讨[J].南京大学学报(自然科学),1998, 34(3):308-313.

Shen Weizhou, Xu Shijin, Wang Rucheng, Lu Jianjun, The study on the isotopic characters and the origin of the CO_2 -rich gas deposits of Jiyang depression [J]. Journal of Nanjing University (Natural Sciences Edition), 1998, 34(3); 308 – 313. (in Chinese with English abstract)

- Zheng L P, Wang S J, Liao Y S, Feng Z J. CO₂ gas pools in Jiyang sag, China[J]. Applied Geochemistry, 2001, 16: 1033 -1039.
- [8] 陶明信,徐永昌,韩文功,高波,马锦龙,王万春.中国东部幔 源流体的活动特征与成藏效应[J].大地构造与成矿学,2001, 25(3):265-270.

Tao Mingxin, Xu Yongchang, Han Wengong, Gao Bo, Ma Jinlong, Wang Wanchun. Active characteristics and accumulative effects of mantle-derived fluids in eastern China [J]. Geotectonic et Metallogenia, 2001, 25(3); 265-270. (in Chinese with English abstract)

[9] 陈衍景,陈华勇, Zaw K, Pirajno F,张增杰.中国陆区大规模 成矿的地球动力学:以砂卡岩型金矿为例[J]、地学前缘, 2004,11:57-83.

Chen Yanjing, Chen Huayong, Zaw K, Pirajno F, Zhang Zengjie. The geodynamic setting of large-scale metallogenesis in mainland China: Exemplified by skarn type gold deposits [J]. Earth Science Frontiers, 2004, 11: 57-83. (in Chinese with English abstract)

- [10] Zorin Y A, Zorina L D, Spiridinov A M, Rutshtein I G. Geodynamic setting of gold deposits in eastern and central Trans-Baikal (Chita region, Russia) [J]. Ore Geology Reviews, 2001.17:215-232.
- [11] 郑永长,陈江峰.稳定间位素地球化学[M].北京:科学出版 社,2000.193-217.
 Zheng Yongfei, Chen Jiangfeng. Stable isotope geochemistry [M]. Beijing: Science Press, 2000.193-217. (in Chinese)
- [12] 陈衍景,隋颖慧, Pirajno F. CMF模式的排他性证据和造山 型银矿的实例:铁炉坪银矿同位素地球化学[J]. 岩石学报, 2003, 19(3): 551-568.

Chen Yanjing, Sui Yinghui, Pirajno F. Exclusive evidences for CMF model and a case of orogenic silver deposits: Isotope geochemistry of the Tieluping silver deposit, east Qinling orogen[J]. Acta Petrologica Sinica, 2003,19(3),551-568. (in Chinese with English abstract) [13] 黄智龙. 幔源岩浆活动过程中的去气作用——以云南老王寨 金矿煌斑岩为例[J]、矿物岩石地球化学通报,2001,20(1):1 -5.

Huang Zhilong. Degassing in the process of mantle-derived magmatism: As exemplified by lamprophyres in Laowangzhai gold deposit, Yunnan Province [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(1); 1-5. (in Chinese with English abstract)

- [14] 徐永昌,沈平,刘文汇,陶明信,孙明良,杜建国、天然气中稀 有气体地球化学[M],北京,科学出版社,1998,1-231, Xu Yongchang, Shen Ping, Liu Wenhui, Tao Mingxin, Sun Mingliang, Du Jianguo. Noble gas geochemistry in natural gases [M]. Beijng: Science Press, 1998.1-231, (in Chinese)
- [15] Fisher D E. Implications of terrestrial ⁴⁰ Ar/³⁶ Ar for atmospheric and mantle evolutionary models [J], Earth Planet, Sci. Lett., 1982, 29, 242-251,
- [16] 赖勇,刘玉琳,黄宝玲,陈衍景、五大连池和宽甸地幔包体的 惰性气体同位素特征——MORB型地幔和交代型地幔[J], 岩石学报,2005,21;1373-1381. Lai Yong, Liu Yulin, Huang Baoling, Chen Yanjing, The characteristics of noble gases in mantle-derived xenoliths in Wudalianchi and Kuandian, NE China; MORB-like mantle and metasomated mantle[J], Acta Petrologica Sinica,2005, 21;1373-1381, (in Chinese with English abstract)
- [17] Lollar B S, Ballentine C J, O'Nions R K. The fate of mantlederived carbon in a continental sedimentary basin: Integration of C/He relationships and stable isotope signatures [J]. Geochim. Cosmochim. Acta, 1997, 61(11): 2295-2307
- [18] Wycherley H, Fleet A, Shwa H. Some observations on the origin of large volumes of carbon dioxide accumulations in sedimentary basins [J]. Marine and Petroleum Geology, 1999,16: 489-494
- [19] Ballentine C J, Schoell M, Coleman D, Cain B A. Magmatic CO₂ in natural gases in the Permian basin, West Texas; Identifying the regional source and filling history[J]. Journal of Geochemical Exploration, 2000, 69-70; 59-63.

- [20] Brauer K, Kampf H, Niedermann S, Strauch G, Weise S M. Evidence for a nitrogen flux directly derived from the European subcontinental mantle in the western Eger Rift, Central European[J], Geochim, Cosmochim, Acta, 2004, 68 (23): 4935-4947,
- [21] Cheng H H, Parnell J, Gong Z S, Li S T. Observation of catastrophic degassing from mantle-crust in Yinggehai basin, South China Sea [J]. Journal of China University of Geosciences, 2004, 15(3), 295-605.
- [22] Faure G, Principles of isotope geology (2nd Edition) [M]. New York; John Wiley & Sons, 1986, 1-589.
- [23] Marty B, Jambon A, C/³He in volatile fluxes from the solid Earth, Implications for carbon geodynamics [J], Earth Planet, Sci. Lett, ,1987,83,16-26,
- [24] Trull T, Nadeau S, Pineau F, Plove M, Javoy M. C-He systematics in hotspot xenoliths; Implications for mantle carbon contents and carbon recycling[J], Earth Planet, Sci. Lett., 1993,118; 43-64,
- [25] (Nions R K. Oxburgh E R. Helium, volatile fluxes and the development of continental crust [J], Earth Planet, Sci. Lett., 1988,90:331-347.
- [26] Hulston J R, Hilton D R, Kaplan I R. Helium and carbon isotope systematics of natural gases from Taranaki Basin, New Zealand [J]. Applied Geochemistry, 2001, 16, 419 – 436.
- [27] Poreda R J, Jenden P D, Kaplan I R, Craig H. Mantle helium in Sacremento basin natural gas wells[J]. Geochim. Cosmochim Acta, 1986, 50, 2847-2853.
- [28] Griesshaber E , O'Nions R K, Oxburgh E R. Helium and carbon isotope systematics in crustal fluids from the Eifel, the Rhine Graben and Black Forest, F. R. G[J]. Chem. Geol, 1992,99;213-235.
- [29] Fiebig J, Chiodini G, Caliro S, Rizzo A, Spangenberg J, Johannes C Hunziker. Chemical and isotopic equilibrium between CO₂ and CH₁ in fumarolic gas discharges: Generation of CH₁ in arc magmatic-hydrothermal systems[J]. Geochim. Cosmochim. Acta, 2004, 68(10): 2321-2334.