赣南西华山钨矿床的流体混合作用: 基于 H、O 同位素模拟分析

魏文凤^{1,2},胡瑞忠^{1*},彭建堂¹,毕献武¹,宋生琼^{1,2},石少华^{1,2} (1. 中国科学院 地球化学研究所 矿床地球化学国家重点实验室,贵州 贵阳 550002; 2. 中国科学院 研究生院,北京 100049)

摘 要: 赣南西华山钨矿床是我国典型的大型石英脉型黑钨矿矿床。H、O 同位素的研究表明,该矿床 dD 值-43‰ -66‰ 石英 δ¹⁸O值 2.3‰13.2‰ 对应的成矿流体 δ¹⁸O值-8.7‰7.6‰ 表明成矿流体为岩浆 水与大气降水的混合流体。不同机制下矿物 O 同位素模拟计算表明,冷却、沸腾和混合作用所形成矿物的 O 同位素组成明显不同,不同矿化阶段矿物 O 同位素值的投影点与冷却和沸腾演化曲线相差甚远,而与混合 演化曲线比较吻合。冷却或沸腾不是西华山钨矿床成矿流体演化的主要过程,岩浆水与大气降水的混合可能 才是导致钨矿化的主因。

关键词:石英脉型钨矿床;O同位素; 混合作用; 模拟分析; 西华山

中图分类号: P597 文献标识码: A 文章编号: 0379-1726(2011)01-0045-11

Fluid mixing in Xihuashan tungsten deposit, Southern Jixangxi Province: Hydrogen and oxygen isotope simulation analysis

WEI Wen-feng^{1,2}, HU Rui-zhong^{1*}, PENG Jian-tang¹, BI Xian-wu¹, SONG Sheng-qiong^{1,2} and SHI Shao-hua^{1,2}

State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China,
 Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Abstract: Xihuashan tungsten deposit in Southern Jiangxi Province is a large typical quartz-vine type wolframite deposit. Based on hydrogen and oxygen isotope data measured in this paper and others, the δ D values of fluid inclusions are -43% -66% and the δ^{18} O values of quartz in the deposits vary between 2.3% and 13.2% while δ^{18} O values of the mineralizing fluids between -8.7%nd 7.6% is suggested that the ore fluids were a mixture between magmatic water and meteoric water. The oxygen isotope composition of minerals precipitating by each mechanism was modeled. It is evident that cooling, boiling and fluid mixing have a contrasting influence on the oxygen isotope composition of the precipitating minerals. The mixing of a magmatic fluid with meteoric water reproduces the observed δ^{18} O composition of the ore and gangue minerals remarkably well. Cooling or boiling is not a major process in the evolution of ore-forming fluids, while the magmatic water mixed with meteoric water may result in wolframite deposition.

Key words: quartz-vine type tungsten deposit; oxygen isotope; mixing; fluid source; Xihuashan

0 引 言

和国防安全。钨矿床的分布和成矿作用通常与花岗 岩密切相关,尽管前人对钨矿床开展了大量的研究 工作,但钨成矿的一些关键问题诸如成矿流体的来 源以及成矿机制等仍存有争议。成矿流体以原生岩

钨作为重要的战略资源, 关系着国家经济命脉

收稿日期(Received): 2010-03-10; 改回日期(Revised): 2010-08-23; 接受日期(Accepted): 2010-10-22 基金项目:国家重点基础研究发展计划项目(2007CB411408)

作者简介:魏文凤(1982-),女,博士研究生,矿床地球化学专业。E-mail:weiwenfenghao@163.com

* 通讯作者(Corresponding author): HU Rui-zhong, E-mail: huruizhong@vip.gyig.ac.cn, Tel: +86-851-5891962

浆流体为主^[1-2],但也包括大气降水、变质水以及它 们的混合流体^[3-6]。引起黑钨矿沉淀的机制可能包括 冷却^[7-11]、围岩蚀变引起 pH 增大^[12-13]、流体混 合^[14-16]、沸腾^[16-19]和压力降低^[20]等,其中,岩浆流 体和大气降水的混合是导致部分异常高品位、大型-超大型钨矿床形成的有效机制^[21-22]。然而,由于大 气降水对钨矿化热液体系影响的研究较少,该假设 一直没有得到合理论证。

江西西华山钨矿床是世界上最大的钨矿之一. 是研究上述钨成因问题的一个理想天然实验室。前 人对其地质和地球化学特征进行过大量研究[23-28]。 取得了丰硕成果。许多学者从不同角度、不同范围 对该矿区开展了 H,O 同位素研究, 但得出的结果截 然不同。穆治国等^[29]和张理刚等^[30]强调 δ¹⁸Ο、δD 值落入"正常岩浆水"范围,提出岩浆水热液成因; 陈振胜等[31]涌过蚀变岩石 H, O 同位素水-岩反应分 析认为主要以岩浆水为主,大气降水作用不大;刘 家齐等[32]考虑成矿流体不同阶段同位素组成的演化 特征 认为早期以岩浆水为主 晚期有大量大气降 水加入成矿系统。而关于西华山钨成矿机制, 前人 从流体包裹体的角度出发进行了大量研究,认为沸 腾和混合的综合作用引起了该区大规模钨矿化、但 沸腾和混合孰轻孰重却鲜有研究。本研究拟对该矿 区石英的 H、O 同位素进行测试分析, 定量模拟冷 却、沸腾和混合作用所形成矿物的O同位素组成演 化特征, 探讨成矿流体的性质和该区大规模钨沉淀 的机制。

1 区域地质概况

赣南地区位于东西向南岭构造带与北北东向武 夷山构造带的复合部位,大地构造处于华夏板块的 北西缘,欧亚大陆板块与滨西太平洋板块消减带的 内侧,在成矿带上位属杭州湾-武夷山和南岭两大成 矿带的交汇复合部位。赣南地区地层发育较为齐全, 除缺失志留系和个别时代的统、组之外,从前震旦 系至第四系均有出露,区内广泛分布含钨丰度高的 寒武纪、震旦纪地层。本区出露各类岩浆岩体 530 个,侵入岩以中生代花岗岩为主,岩石类型主要为 酸性花岗岩,少量中酸性及基性岩。岩浆侵入具多 期次活动特点,常呈复式岩体。赣南独特的区域条 件为中生代大规模岩浆成矿作用提供了良好的基础, 形成了大量的有色金属矿产,尤其盛产钨矿,享有 "世界钨都"的美誉。矿床类型以中高温热液石英脉 型黑钨矿床为主,一般产于花岗岩的内外接触带, 与燕山期花岗岩有着密切的成因联系,西华山是其 典型代表。

2 矿床地质特征

西华山钨矿床地处江西省大余县,是中国最早 发现和开采的内接触带大型脉钨矿床, 大地构造位 置处于华南加里东褶皱地槽区中的赣南后加里东 隆起区。燕山期强烈活动的北东向构造带以及北北 东构造带、东西向构造带, 是控制区域成矿花岗岩 及钨矿分布的主要构造条件。区内出露的地层为寒 武系浅变质岩,为一套巨厚的泥砂质类复理石沉 积, 钨平均含量为 6.11 µg/g^[33], 比世界沉积岩中 钨含量(0.6~1.8 ug/g)^[34]高出许多。区内广泛分布的 岩浆岩以花岗岩为主、中基性岩类次之、具有多 旋回、多期次岩浆活动的特点。燕山期花岗岩浆侵 人活动最感 目与钨成矿关系极为密切。西华山岩 体呈株状侵入于寒武系浅变质岩中, 矿床位于该 花岗岩株之西南端, Wang et al.[35]将该花岗岩体侵 入期次划分为三个阶段: 第一阶段为粗粒斑状黑 云母花岗岩, 第二阶段为中粒斑状黑云母花岗 岩和第三阶段细粒黑云母花岗岩。西华山钨矿床 含钨石英脉主要赋存于中粒斑状黑云母花岗岩内 (图 1)。

矿区面积 6.5 km², 矿化面积 3.04 km², 全区矿 脉分为北、中、南三组, 走向近东西, 倾向北, 倾角 多在 70°以上。矿脉中主要金属矿物有黑钨矿、锡石、 辉钼矿、辉铋矿、白钨矿、方铅矿、闪锌矿、黄铁 矿、黄铜矿和毒砂等, 鲜见赤铁矿; 非金属矿物主要 有石英、长石、方解石、冰长石、白云母、黑云母、 绿柱石、萤石、石榴子石、绢云母和重晶石等。围 岩蚀变主要有云英岩化和钾长石化等。

根据矿脉之间的穿插关系和矿物共生组合,可 将成矿作用分为 4 个阶段^[26]:①绿柱石-黑钨矿-石 英(长石)脉阶段,以富含绿柱石、石榴子石、黄玉 和钾长石等硅酸盐矿物为特征;②黑钨矿-石英(长 石)脉阶段,此阶段硅酸盐矿物锐减,黑钨矿最为 发育;③硫化物-石英脉阶段,以富含硫化物和白钨 矿为特征,仅含少量黑钨矿;④萤石-方解石-石英 脉阶段,此阶段黑钨矿已绝迹,仅含少量闪锌矿和 黄铁矿等。

田 1 四半山(毎年)本他(页目信長夫(大等)⁽²⁾) Fig.1 Geological map of the Xinashan inageten deposit (modified and the Xinashan inageten deposit (modified modified) 1-考試系中止後、2-4種 並取が無点でなお約3、3-中並取決黒云な花約44 1-midle-upper Cambrianyied, Z-coarte grained porphyrite boitte granute, 3-medium grained opphyrite boitte grainet, 4-medium to fine-grained porphyrite boitte granite, 4-medium to fine-grained porphyrite boitte granite, 4-medium to moder, 7-ore-bearing quart years.

本工作和前人对西华山钨矿床流体包裹体的研 究表明,脉石英中含 CO₂三相包裹体、富气包裹体、 气液两相包裹体、含子矿物包裹体等共生在一起, 而且具有较为近似的均一温度,反映成矿流体发生 了沸腾。盐度低(1%-10%),均一温度变化范围较大 (140-360 ℃),主要集中在 180-220 ℃和 260-320 ℃, 具有双路结构。

3 分析方法和结果

本次测试的 11 件石英 H、O 同位素组成均在中 国地质科学院矿产资源研究所稳定同位素实验室 MAT-253 质谱仪上完成。对于 H 同位素分析, 首先 使用凝裂法把水从流体包裹体中释放出来, 然后在 400 ℃的金属锌炉中使水与锌反应产生氢气, 再用 滚氮冷冻后, 收集到有活性炎的样品管中。O 同位 素质谱分析样品的制备采用 Clayton *et al.*¹⁵⁹的 BrF, 方法。H 同位素的分析误差为±2%O 同位素误差为 ±0.2%o.

西华山钨矿床石英的 H、O 同位素组成为: δ¹⁸O

4 理论模拟计算

4.1 成矿流体的 H、O 同位素组成

水是成矿流体的主要组成部分、其来源是矿床 成因和成矿规律研究的关键问题之一。为探讨该矿 床成矿流体来源、采用 Matsuhisa et al.[37]的石英-水 平衡分馏方程和 Zhang et al.[38]的黑钨矿-水平衡分 馏方程计算了石英、黑钨矿达到平衡时流体的 δ^{18} O 值(表 1)、本文 11 个样品的温度取自流体包裹体均 一温度峰值,经计算包赛体中 H₂O 的 δ¹⁸O 值为 -8.7% 8.4% 。从图 2 可知,各期次石英和黑钨矿 样品的投点均落在岩浆水和大气降水之间、从早期 到晚期成矿流体的 δ^{18} O 值逐渐降低,并向大气降水 线方向漂移,指示了其可能的流体来源。然而,简单 的 S18O-SD 判别图解难以较准确地揭示成矿流体的 生成演化性质。成矿热液的 H、O 同位素组成, 与热 液原始水的类型、热液涂经岩石的成分和同位素组 成、水/岩交换时的温度及水/岩交换程度(W/R 比值 大小)等诸多因素有关[39]。为进一步厘定其来源、计 算了不同温度和 W/R 比之下岩浆水和大气降水与花 岗岩发生水岩作用后流体 H、O 同位素组成的理想 演化曲线(图 2)、初始参数参照西华山钨矿床的具体 情况设置,花岗岩、岩浆水和大气降水的 $\delta^{18}O$ 值分 别为 10%, 10.1%和-8.1% oD 值分别为-80%。 -68‰和-60‰^[31]。不难看出、纯粹的岩浆水与花岗 岩或纯粹的大气降水与花岗岩发生水-岩反应均难 以解释成矿流体同位素组成。而日单一流体来源很 难解释包裹体均一温度分布的双峰结构。由图 2 可 知,早期成矿流体以岩浆水为主,可能混入了少量 大气降水、随着流体的不断演化、混入的大气降水 不断增加。

4.2 冷却、沸腾和混合与矿物的 O 同位素演化

西华山钨矿床石英和黑钨矿δ¹⁸Ο值随热液体系 的演化而降低图 3),反映了O同位素组成的系统变 化。为了获知O同位素演化特征,采用温度函数定 量模拟了冷却、沸腾和混合过程的同位素效应,计 算了不同机制所沉淀形成的石英和黑钨矿O同位素 组成。

西华山钨矿床石英流体包裹体的均一温度为 140~360 ℃,则假定石英流体包裹体的均一温度 360 ℃

10	孤	12	3
----	---	----	---

	Table 1 H and O isotope data for quartz and wolframite from the Xihuashan tungsten deposit						
样 号	矿 物	成矿期次	$t(\mathbb{C})$	δ ¹⁸ O _{₹%} (‰-SMOW)	δ ¹⁸ O _* (%V- SMOW)	∂D (‰-SMOW)	资料来源
XHS-270-9	石英	П	320	13.2	7.0	-64.0	
XHS-538-10	石英	П	320	11.8	5.6	-66.0	
XHS-270-4	石英	ΠI	200	12.2	0.6	-53.0	
XHS-270-5	石英		220	12.0	1.6	-59.0	
XHS-270-10	石英		240	12.3	2.9	-52.0	
XHS-270-23	石英		220	12.1	1.7	-54.0	本研究
XHS-378-6	石英		200	11.6	0.0	-50.0	
XHS-378-11	石英		220	11.5	1.1	-60.0	
XHS-431-3	石英		200	12.6	1.0	-61.0	
XHS-431-4	石英	ΠI	220	11.8	1.4	-60.0	
XHS-431-5	石英		220	12.1	1.7	-63.0	
西 14	石英	I	301	11.8	5.0	-54.0	
西 0018a	石英	Ī	310	11.6	51		文献[24,29,30]
西 0018b	石革	I	290	12.1	10		
西 00259	石基	T.	330	10.7	4.9		
m 16	万英	I.	221	10.7	4.6	-57.0	
西 17	石英	T	295	10.4	4.0	57.0	
西 0535	石革	I	205	12.7	5.5		
西 023a	石英	I	331	12.7	6.9		
西 20	石英	I	348	13.0	7.6	-58.0	
西 19	石英	П	330	11.3	5.4		
西 2	石英	П	336	13.0	7.3	-43.0	
西 34	石英	П	330	12.9	7.0		
西 22	石英	ПІ	260	6.2	-2.2		
酉 11	石英	ΠI	255	11.5	2.8		
X-137	石英	ΠI	240	7.0	-2.4		
X-114	石英	П	240	7.0	-2.4	-52.1	
西 1	石英	ΓV	220	3.1	-7.3	-60.0	
西 9	石英	IV	210	2.3	-8.7		
西 14	黑钨矿	Ι	301	4.5	6.3		
西 16	黑钨矿	I	331	5.1	7.3		
19	黑钨矿	II	322	4.8	6.9		
6	黑钨矿	П	341	6.0	8.3		
23	黑钨矿	П	347	6.1	8.4	-54.9	
28A	黑钨矿	II	349	5.8	8.2		
12	黑钨矿	11	337	5.6	7.9		
21	黒尚切	11	318	5.6	7.6		
27	黑 尚 明 黑娘矿	11	325	4.9	/.0	-54.0	
25	黑 拍 9 黑 镇 矿	11	340	0.1	8.4	-34.9	
	黑钨矿		355	4.4	6.8	45.0	
	12 12 212		(0.0.0)		0.000		

表 1 西华山钨矿床 H、O 同位素组成 1. H and O jectore data for quartz and welffamile from the Xibuashan tunester

Geochimica Vol. 40 No. 1 pp. 45~55 Jan., 2011

图 2 西华山钨矿床岩浆水和大气降水与花岗岩交换过 程中的 H. O 同位素演化

Fig.2 The evolutional model of H and O isotopes compositions of magmatic and meteoric water during water/granite interactions in the Xihuashan tungsten deposit

图例 1~4 代表 I~IV 期石英; 5 代表黑钨矿。所有曲线上的数字代表 有效(W/R)%% 值。

1~4-quartz of different ore-forming stages; 5-wolframite. All the figures on the curves represents the (W/R)_{Quality} value.

图 3 西华山钨矿床不同成矿阶段石英和黑钨矿 δ¹⁸O值 Fig.3 A graph showing δ¹⁸O values of quartz and wolframite from the different stages of the Xihuashan tungsten deposit

即为初始平衡温度,各模型中成矿流体温度均逐步 递减。初始岩浆水 δ¹⁸O 值为10.1‰ 大气降水的 δ¹⁸O 值为-8.1‰。计算采用的石英-水^[37]、黑钨矿-水^[38] 平衡分馏方程分别为: $10^3 \ln \alpha_{\pi,\pi,\pi} = 3.34 \times 10^6 / T^2 - 3.31,$

 $10^3 \ln \alpha_{\text{MHS},\pi} = 3.13 \times 10^6 / T^2 - 6.42 \times 10^3 / T - 0.12$

低盐度流体沸腾时,气相和液相共存,它们之 间会发生同位素分馏作用,如果气相逃逸,则流体 的同位素发生变化^[40-41],由于轻同位素¹⁶〇优先分 配进入气相^[42],沸腾使得残余溶液越来越富集 δ¹⁸〇, 而且冷的残余热液将进一步加强该效应^[43],则矿物 δ¹⁸〇 值随演化而逐渐增大。¹⁸〇 富集程度取决于沸 腾路径和气体分离过程,如封闭体系或开放体系, 单阶段去气、多阶段去气或连续去气^[44]。Faure *et al.*^[45]和 Matsuhisa^[40]的研究表明封闭体系单阶段去 气的同位素效应最大,因此沸腾效应计算采用 Truesdell *et al.*^[44]的封闭体系单阶段去气模型,假定 初始温度 *T*,时水绝热沸腾到水蒸汽,而后在温度 *T*, 时分馏,则沸腾后液相中保留的质量分数表示为:

$$\eta = (H_{gs} - H_{wi})/(H_{gs} - H_{ws})$$

式中 H 为焓值, 下标 wi 和 ws 分别表示初始状态和 分馏时的液态水, gs 代表分馏时的水蒸汽, 则同位 素守恒表示为:

$$\delta^{18}\mathcal{O}_{wi} = \eta \delta^{18}\mathcal{O}_{ws} + (1 - \eta) \delta^{18}\mathcal{O}_{gs}$$

又 δ^{18} O_{ws} - δ^{18} O_{gs}=10³ ln α_{ws-gs} , 则 δ^{18} O_{ws}=(1 - η)10³ ln α_{ws-gs} + δ^{18} O_{wi},即

 $δ^{18}$ O sth⁼(1 - η)10³ ln a_{ws.g+} $δ^{18}$ O_{wi}+10³ ln a_{ws.g+} δ^{18} O_{wi}+10³ ln a_{ws.g+}, 根据上式,可对沸腾作用进行模拟。由于沸腾,假定流体冷却降温到 220 °C,液-气分馏计算采用 Horita et al.^[42]的方程,沸腾所形成的石英和黑钨矿的 O 同位素组成计算结果见表 2a。简单冷却(未沸腾)即温度降低使得流体与矿物间的分馏加强,根据上述计算方法,矿物 δ¹⁸O 值仅为温度函数,随演化而逐渐增大。冷却所形成的石英和黑钨矿的 O 同位素组成计算结果见表 2a。

混合模型假定岩浆水与大气降水是逐步混合的, 则混合时盐度和流体 δ¹⁸O减少量与等量加入的稀溶 液成正比^[43,46,47]。虽然混合时随组分发生变化的是 热焓而非温度^[48],但计算时为了简单起见,仍假定 混合流体的温度和组分呈线性关系^[43,46]。西华山矿 区成矿流体具有多期流体活动的特征,可能暗示曾 发生过多次流体混合,但计算时仍将其视为一个连 续过程。两种同位素组成不同的流体混合,O同位素 质量平衡由下式表示^[49]:

 $\delta^{18}\mathcal{O}_{M} = X_{A}\delta^{18}\mathcal{O}_{A} + X_{B}\delta^{18}\mathcal{O}_{B}$

 $δ^{18}O_A$ 、 $\delta^{18}O_B$ 和 $\delta^{18}O_M$ 分别为流体 A、B 和两者 混合的 O 同位素组成, X_A 和 X_B 为流体 A、B 在混合 流体中所占的氧原子摩尔分数, 假设 A 为大气降水, B 为岩浆水, X_B=1-X_A,则由混合作用所形成的流体 以及矿物的 O 同位素组成又可表示为:

 $\delta^{18}O_{\#\#} = X_A (\delta^{18}O_A - \delta^{18}O_B) + \delta^{18}O_B$ $\delta^{18}O_{\pi^{\#}} = X_A (\delta^{18}O_A - \delta^{18}O_B) + \delta^{18}O_B + 10^3 \ln \alpha_{\pi^{\#,\pi}}$ 温度大于 200 ℃时,流体盐度对 0 同位素分馏 系数有一定影响,但西华山热液体系的盐度很低,O 同位素液-气分馏的盐度效应可忽略不计^[50]。利用上 述公式可对大气降水和岩浆水之间的混合作用进行 模拟,计算出混合作用所形成的石英和黑钨矿的 O 同位素组成,结果见表 2b 及图 4。由图 4 可知,与 低 δ¹⁸O 流体的混合使得矿物 δ¹⁸O 值有规律地减小,

表 2a 冷却和沸腾所形成的石英和黑钨矿 O 同位素组成 Table 2a Calculated oxygen isotope composition of quartz and wolframite caused by cooling or boling

		沸腾			冷却	
t (°C)	δ ¹⁸ O _{&#</sub>
(‰-SMOW)</th><th>δ<sup>18</sup>O<sub>石英</sub>
(‰V-SMOW)</th><th>δ<sup>18</sup>O<sub>###</sub>
(%V-SMOW)</th><th>δ<sup>18</sup>O<sub>86</sub>
(%V-SMOW)</th><th>δ<sup>18</sup>O<sub>石東</sub>
(%V-SMOW)</th><th>δ<sup>18</sup>O<sub>###</sub>
(‰-SMOW)</th></tr><tr><td>360</td><td>10.1</td><td>15.1</td><td>7.6</td><td>10.1</td><td>15.1</td><td>7.6</td></tr><tr><td>350</td><td>10.1</td><td>15.4</td><td>7.8</td><td>10.1</td><td>15.4</td><td>7.7</td></tr><tr><td>340</td><td>10.2</td><td>15.7</td><td>7.9</td><td>10.1</td><td>15.7</td><td>7.8</td></tr><tr><td>330</td><td>10.2</td><td>16.1</td><td>8.1</td><td>10.1</td><td>16.0</td><td>7.9</td></tr><tr><td>320</td><td>10.2</td><td>16.4</td><td>8.2</td><td>10.1</td><td>16.3</td><td>8.1</td></tr><tr><td>310</td><td>10.3</td><td>16.8</td><td>8.4</td><td>10.1</td><td>16.6</td><td>8.2</td></tr><tr><td>300</td><td>10.3</td><td>17.2</td><td>8.5</td><td>10.1</td><td>17.0</td><td>8.3</td></tr><tr><td>290</td><td>10.4</td><td>17.6</td><td>8.7</td><td>10.1</td><td>17.3</td><td>8.5</td></tr><tr><td>280</td><td>10.5</td><td>18.1</td><td>9.0</td><td>10.1</td><td>17.7</td><td>8.6</td></tr><tr><td>270</td><td>10.5</td><td>18.5</td><td>9.2</td><td>10.1</td><td>18.1</td><td>8.8</td></tr><tr><td>260</td><td>10.6</td><td>19.0</td><td>9.4</td><td>10.1</td><td>18.5</td><td>9.0</td></tr><tr><td>250</td><td>10.7</td><td>19.6</td><td>9.7</td><td>10.1</td><td>19.0</td><td>9.1</td></tr><tr><td>240</td><td>10.8</td><td>20.1</td><td>10.0</td><td>10.1</td><td>19.5</td><td>9.4</td></tr><tr><td>230</td><td>10.8</td><td>20.7</td><td>10.3</td><td>10.1</td><td>20.0</td><td>9.6</td></tr><tr><td>220</td><td>10.9</td><td>21.4</td><td>10.7</td><td>10.1</td><td>20.5</td><td>9.8</td></tr></tbody></table>}					

表 2b 岩浆流体与大气降水混合作用所形成的石英和黑钨矿 O 同位素组成

$X_{\mathbb{A}}$	$t_{\min x}$ (°C)	$\delta^{18}O_{\mathfrak{K}^{44}}$ (%V-SMOW)	$\delta^{18}O_{\overline{lpha}}$ (%V-SMOW)	δ ¹⁸ O≞⊕φ (%₩-SMOW)
0.00	360	10.1	15.1	7.6
0.05	353	9.2	14.4	6.8
0.10	346	8.3	13.7	6.0
0.15	339	7.4	13.0	5.1
0.20	332	6.5	12.3	4.3
0.25	325	5.6	11.6	3.4
0.30	318	4.6	10.9	2.6
0.35	311	3.7	10.2	1.8
0.40	304	2.8	9.5	1.0
0.45	297	1.9	8.9	0.2
0.50	290	1.0	8.2	-0.6
0.55	283	0.1	7.6	-1.5
0.60	276	-0.8	7.0	-2.2
0.65	269	-1.7	6.3	-3.0
0.70	262	-2.6	5.7	-3.8
0.75	255	-3.6	5.1	-4.6
0.80	248	-4.5	4.5	-5.4
0.85	241	-5.4	4.0	-6.1
0.90	234	-6.3	3.4	-6.9
0.95	227	-7.2	2.9	-7.6
1.00	220	-8.1	2.3	-8.4

Geochimica Vol. 40 No. 1 pp. 45~55 Jan., 2011

(a) (b) 沸腾 20 冷却 60 °C 8 16 4 X = 0.8140°C 5¹⁸O_{服钨矿} (‰) 60 9 5¹⁸O_{石集}(‰) 12 0 =0.8 140 8 100°C -4 100 °C 1809 180° 混合 4 -8 混合 220°C 01 4 2 ♦ 3 ▲ 4 0 60 -12 120 180 300 360 60 120 180 240 300 360 240 t (°C) t(°C)

図例 1~4 代表 I~Ⅳ期石英; 混合线为大气降水在 220 ℃、180 ℃、140 ℃、100 ℃和 60 ℃混合时矿物的 O 同位素演化曲线。 1~4 - quartz of different ore-forming stages; Mixing lines were calculated for temperatures of the meteoric water of 220 ℃, 180 ℃, 140 ℃, 100 ℃ and 60 ℃, respectively.

而低于 140 ℃时微弱增大。这是因为该混合模拟中, 岩浆水与大气降水(轻同位素)的混合导致成矿流体 δ¹⁸O 值逐渐减小,但低温时成矿流体与沉淀矿物间 的 O 同位素分馏效应显著,这在一定程度上补偿了 低 δ¹⁸O 大气降水对矿物 O 同位素组成的影响,即便 流体 δ¹⁸O 值因混合而降低,从该流体中沉淀的矿物 δ¹⁸O 值也随温度降低而略微增大。

不同机制下石英、黑钨矿 δ^{18} O 值随流体包裹 体捕获温度的理想演化曲线(图 4)显示,冷却、沸 腾和混合作用所沉积的矿物 O 同位素组成明显不 同。与低 δ¹⁸O 流体的混合使得矿物 δ¹⁸O 值有规律 地减小(低于 140 ℃微弱增大), 而沸腾和冷却则 导致矿物 δ¹⁸O 值随演化而有规律地增大, 这与西 华山钨矿床同位素测试分析结果明显不符。该矿床 中矿物 δ¹⁸O 值没有明显增大、因此排除了冷却和 沸腾在黑钨矿沉淀中的作用。相比之下, 岩浆水与 大气降水的混合则合理解释了所观测到的脉石矿 物和矿石矿物 δ^{18} O 值。如图 4 所示、不同矿化阶 段石英和黑钨矿 O 同位素值的投影点, 与冷却和 沸腾演化曲线相差甚远,而与混合演化曲线比较 吻合。从成矿早期至晚期, XA 值逐渐增大, 早期投 影点主要落在 0.2 附近、晚期则在 0.6~0.8 附近、其 至接近 1、即早期阶段已有相当比例(约 20%)的大 气降水混入岩浆流体中, 而晚阶段则可能主要是 大气降水。

5 讨 论

5.1 成矿流体来源

西华山 H、O 同位素组成表明,成矿流体为岩 浆水和大气降水的混合流体,早期以岩浆水为主, 混入了部分大气降水,晚期则以大气降水为主。不 同机制形成的矿物 O 同位素模拟亦表明石英和黑钨 矿的形成很可能是大气降水和岩浆流体混合作用的 结果,早期成矿流体可能为混入了约 20%大气降水 的花岗岩浆热液。流体包裹体研究亦表明流体盐度 和温度随演化而降低^[51],也表征了岩浆水与冷的、 低盐度、低 δ⁸O 大气降水间的混合。

5.2 矿石沉淀机制

计算和实验研究表明, 热液体系中钨溶解度在 酸性、含盐、还原的热水溶液中最大^[52]。由于钨溶 液化学性质较为复杂以及受高温溶液热力学数据的 限制, 钨在热液中以含氟或含氯络合物形式迁移的 问题迄今尚未解决^[33]。在 NaC1-HC1-H₂O 热液体系 中, 钨主要以简单钨酸(H₂WO₄、HWO₄、WO²)和 碱性钨酸盐离子对(KHWO⁴₄、NaHWO⁴₄、KWO₄、 NaWO₄)形式迁移^[52]。因此黑钨矿沉淀可能是由 f_{o} , 增加、温度和配位体离子活度降低以及 pH 增加 引起的。钨沉淀的机制可能包括冷却、沸腾、成矿 流体与围岩的反应、压力降低、不同组分或不同性 质的流体间的混合或上述机制的综合作用。

近年来研究表明,单纯的冷却可能不是矿质沉 淀的最有效机制,压力降低也并不一定引起矿物溶 解度减小与沉淀^[22]。西华山是一个石英大脉型热液 充填黑钨矿床,而非交代矿床,矿脉与围岩界限清 晰,流体-岩石相互作用微弱;尽管矿石沉淀时的流 体-岩石相互作用导致石英脉侧发生围岩蚀变,但进 人围岩进行物质交换的溶液很少^[54],蚀变程度有限, 对流体 pH 值影响不大,故并不影响成矿。而前人研 究表明部分蚀变增强了流体酸性^[24],导致钨溶解度 增大,并不利于黑钨矿沉淀。Heinrich 的研究也认为 围岩蚀变并非引起黑钨矿沉淀的主要机制^[21]。

数值模拟[55]和实验研究[56]已证实了流体沸腾 是大多数执拗矿床矿质沉淀的重要过程。在燕山期 西华山矿区内控矿的断裂构造由压扭性转换为张扭 性, 该构造开启引起减压去气作用, 亦即导致了流 体的沸腾、矿物组合中含有冰长石以及流体包裹体 研究也表明流体发生了沸腾。由于酸性挥发分逸失, 促使成矿流体温度降低, pH 值显著增加, 可能导致 黑钨矿沉淀[55]。但是在一些矿床研究中研究人员夸 大了沸腾的作用[57], 西华山钨矿床中富气流体包裹 体非常罕见,因此,如果沸腾发生在主成矿期,其 程度是有限的, 日沸腾作用持续的时间短, 难以形 成大规模矿化。鉴于西华山花岗岩复式岩体在浅部 侵位以及流体包裹体盐度较低,不可能仅仅是由岩 浆水的沸腾作用引起,可能很大程度上缘于岩浆水 和大气降水的混合。由于挤压体制向伸展体制的转 变,各种断裂构造抬升到较浅的构造层次,为大气, 降水的地下循环提供了通道 向上运移的岩浆水中 逐渐有大量大气降水混入。该矿床的矿物组合中含 有重晶石以及冷的稀薄流体广泛分布(盐度接近 0%)、 流体盐度和温度随演化而降低亦表明有大气降水混 入。岩浆流体与低 δ¹⁸O 值大气降水的混合模型可合 理解释观测到的该矿床中黑钨矿和石英的δ¹⁸Ο值随 演化而减小。假定没有足够的时间使得大气降水与 围岩达到完全平衡,则其可能比岩浆流体更冷且更 易被氧化^[43]。络合物流体-花岗岩平衡的数值模拟计 算表明, 随温度降低, 低盐度水溶液更易被氧化^[58]。 因此, 大气降水与含钨岩浆流体混合氧化了流体体 系, pH 值增大, 温度和配位体活度降低, 从而破坏 了钨络合物的稳定性而导致西华山黑钨矿沉淀。热 化学模拟计算亦表明大气降水和岩浆水的混合作用 导致了黑钨矿沉淀,而沸腾作用对黑钨矿沉淀并无 显著影响^[59-60]。

6 结 论

西华山钨矿床早期成矿流体以岩浆水为主, 混 人了约 20%大气降水,晚期以大气降水为主。计算 模拟表明流体δ¹⁸O值随演化而减小是由流体混合引 起的,冷却和沸腾使得δ¹⁸O值随演化而增大。冷却 或沸腾均不能合理解释所观测到的西华山钨矿床流 体包裹体均一温度与石英、黑钨矿的δ¹⁸O值间的关 系。尽管流体包裹体研究表明西华山钨矿床成矿流 体发生了沸腾作用,但沸腾并非流体演化的主要过 程,流体混合可能才是钨矿化的主因,这对认识钨 矿化具有重要意义。

黑钨矿沉淀可能主要是由成矿流体氧化态显著 增大、pH值增加、温度和络合物活性降低引起的。 由于挤压体制向伸展体制的转变,各种断裂构造抬 升到较浅的构造层次,为大气降水的地下循环提供 了通道,向上运移的岩浆水中逐渐有大量大气降水 混入。岩浆水与冷的、氧化性大气降水混合可能导 至了黑钨矿的沉淀。

野外工作得到了西华山钨矿有限公司各级领导 和洪应龙、温龙辉两位工程师的大力协助; 测试分 析得到了李延河、万德芳、罗续荣三位老师的帮助; 在与刘琪博士和原杰博士的讨论中得到了很大启发; 成文过程得到了武丽艳博士的倾心相助; 两位审稿 专家提出的修改意见使作者受益匪浅,在此表示衷 心的感谢!

参考文献(References):

- Beuchat S, Moritz R, Pettke T. Fluid evolution in the W-Cu-Zn-Pb San Cristobal vein, Peru: Fluid inclusion and stable isotope evidence[J]. Chem Geol, 2004, 210(1-4): 201-224.
- [2] Morishita Y. Fluid evolution and geobarometry on the Ohtani and Kaneuchi tungsten-quartz vein deposits, Japan: Oxygen and carbon isotopic evidence[J]. Miner Deposita, 1991, 26(1): 40-50.
- [3] So C S, Yun S T. Origin and evolution of W-Mo-producing fluids in a granitic hydrothermal system: Geochemical studies of quartz vein deposits around the Susan Granite, Hwanggangri District, Republic of Korea[J]. Econ Geol, 1994, 89(2): 246–267.

- [4] Rice C M, Harmon R S, Boyce A J, Fallick A E. Assessment of grid-based whole-rock δD surveys in exploration: Boulder County epithermal tungsten deposit, Colorado[J]. Econ Geol, 2001, 96(1): 133–143.
- [5] Rios F J, Villas R N, Fuzikawa K. Fluid evolution in the Pedra Preta wolframite ore deposit, Paleoproterozoic Musa granite, eastern Amazon craton, Brazil[J]. J South Am Earth Sci, 2003, 15(7): 787–802.
- [6] 王旭东,倪培,蒋少潘,赵葵东,王天刚. 江西漂塘钨矿成 矿流体来源的 He 和 Ar 同位素证据[J]. 科学通报, 2009, 54(21): 3338-3344. Wang Xudong, Ni Pei, Jiang Shaoyong, Zhao Kuidong, Wang Tiangang. Origin of ore-forming fluid in the Piaotang tungsten deposit in Jiangxi Province: Evidence from helium and argon isotopes[J]. Chinese Sci Bull, 2009, 54(21): 3338-3344 (in Chinese).
- [7] O'Reilly C, Gallagher V, Feely M. Fluid inclusion study of the Ballinglen W-Sn-sulphide mineralization, SE Ireland[J]. Miner Deposita, 1997, 32(6): 569–580.
- [8] Ramboz C, Schnapper D, Dubessy J. The evolution of H₂O-CO₂-CH₄-bearing fluid in a wolframite vein: Reconstruction from fluid inclusion studies[J]. Geochim Cosmochim Acta, 1985, 49(1): 205–219.
- [9] Samson I M. Fluid evolution and mineralization in a subvolcanic granite stock: The Mount Pleasant W-Mo-Sn deposits, New Brunswick, Canada[J]. Econ Geol, 1990, 85(1): 145–163.
- [10] Seal R R, Clark A H, Morrissy C J. Stockwork tungsten (scheelite)-molybdenum mineralization, Lake George, southwestern New Brunswick[J]. Econ Geol, 1987, 82(5): 1259–1282.
- [11] 曹晓峰, 吕新彪, 何谋春, 牛宏, 杜保峰, 梅徽, 共生黑鴾 矿与石英中流体包裹体红外显微对比研究——以瑶岗仙石 英脉型钨矿床为例[J]. 矿床地质, 2009, 28(5): 611-620. Cao Xiao-feng, Lū Xin-biao, He Mou-chun, Niu Hong, Du Bao-feng, Mei Wei. An infrared microscope investigation of fluid inclusions in coexisting quartz and wolframite: A case study of Yaogangxian quartz-vein wolframite deposit[J]. Mineral Deposit, 2009, 28(5): 611-620 (in Chinese with English abstract).
- [12] Clark A H, Kontak D J, Farrar E. The San Judas Tadeo W (-Mo, Au) deposit: Permian lithophile mineralization in southeastern Peru[J]. Econ Geol, 1990, 85(7): 1651–1668.
- [13] 龚庆杰,於崇文,张荣华. 神竹國钨多金属矿床形成机制 的物理化学分析[J]. 地学前缘, 2004, 11(4): 617-625. Gong Qing-jie, Yu Chong-wen, Zhang Rong-hua. Physical chemistry study on the ore-forming process of Shizhuyuan tungsten-polymetallic deposit[J]. Earth Sci Front, 2004, 11(4): 617-625 (in Chinese with English abstract).
- [14] Jackson N J, Willis-Richards J, Manning D A C, Sams M S. Evolution of the Cornubian ore field, Southwest England: Part II. Mineral deposits and ore-forming processes[J]. Econ Geol,

1989, 84(5): 1101-1133.

- [15] Landis G P, Rye R O. Geologic, fluid inclusion, and stable isotope studies of the Pasto Buena tungsten-base metal ore deposit, Northern Peru[J]. Econ Geol, 1974, 69(7): 1025-1059.
- [16] 席斌斌,张德会,周利敏,张文准,王成. 江西省全南县大 吉山钨矿成矿流体演化特征[J]. 地质学报, 2008, 82(7): 956-966.

Xi Bin-bin, Zhang De-hui, Zhou Li-min, Zhang Wen-huai, Wang Cheng. Characteristics of ore-forming fluid evolution in Dajishan tungsten deposit, Quannan county, Jiangxi[J]. Acta Geol Sinica, 2008, 82(7): 956–966 (in Chinese with English abstract).

- [17] Giamello M, Protano G, Riccobono F, Sabatini G. The W-Mo deposit of Perda Majori (SE Sardinia, Italy): A fluid inclusion study of ore and gangue minerals[J]. Eur J Mineral, 1992, 4(5): 1079–1084.
- [18] Graupner T, Kempe U, Dombon E, Påold O, Leeder O, Spooner E T C. Fluid regime and ore formation in the tungsten(-yttrium) deposits of Kyzyltau (Mongolian Altai): Evidence for fluid variability in tungsten-tin ore systems[J]. Chem Geol, 1999, 154(1-4): 21-58.
- [19] Lynch J V G. Hydrothermal alteration, veining, and fluid-inclusion characteristics of the Kalzas wolframite deposit, Yukon[J]. Can J Earth Sci, 1989, 26(10): 2106-2115.
- [20] Polya D A. Chemistry of the main-stage ore-forming fluids of the Panasqueira W-Cu(Ag)-Sn deposit, Portugal: Implications for models of ore genesis[J]. Econ Geol, 1989, 84(5): 1134-1152.
- [21] Heinrich C A. The chemistry of hydrothermal tin(-tungsten) ore deposition[J]. Econ Geol, 1990, 85(3): 457-481.
- [22] 张德会. 流体的沸腾和混合在热液成矿中的意义[J]. 地球 科学进展, 1997, 12(5): 546-552. Zhang De-lui. Some new advances in ore-forming fluid geochemistry on boiling and mixing of fluids during the processes of hydrothermal deposits[J]. Adv Earth Sci, 1997, 12(6): 546-552 (in Chinese with English abstract).
- [23] McKee E H, Rytuba J J, Xu Keqin, Giuliani G. Geochronology of the Xihuashan composite granitic body and tungsten mineralization, Jiangxi Province, South China[J]. Econ Geol, 1987, 82(1): 218–223.
- [24] 吴永乐、梅勇文、刘鹏程、蔡常良、卢同衎、西华山钨矿地 质[M].北京:地质出版社,1987:1-317. Wu Yong-le, Mei Yong-wen, Liu Peng-cheng, Cai Chang-liang, Lu Tong-yan. Geology of the Xihuashan Tungsten Ore Field[M]. Beijing: Geological Publishing House, 1987:1-317 (in Chinese).
- [25] 刘家远,西华山钨矿的花岗岩组成及与成矿的关系[J],地 质找矿论丛,2005,20(1):1-7. Liu Jia-yuan. Composition of Xihuashan granites and its relationship to tungsten metallogenesis[J]. Contrib Geol Mineral Resour Res, 2005, 20(1): 1-7 (in Chinese with

English abstract).

[26] 黄惠兰,常海亮,付建明,汪雄武,李桃叶,西华山脉钨矿 床的形成压力及有关花岗岩的侵位深度[J].矿床地质, 2006,25(5):562-571. Huang Hui-lan, Chang Hai-liang, Fu Jian-ming, Wang Xiong-wu, Li Tao-ye. Formation pressure of wolframite-vein deposits and emplacement depth of related granite in Xihuashan, Jianexi ProvinceJJ. Mineral Deposit, 2006, 25(5):

562-571 (in Chinese with English abstract).
[27] 常海亮,汪雄武,王晓地,刘家齐,黄惠兰.西华山黑钨矿-石英脉绿柱石中熔融包裹体的成分[J].岩石矿物学杂志,2007,26(3):259-268.

Chang Hai-liang, Wang Xiong-wu, Wang Xiao-di, Liu Jia-qi, Huang Hui-lan. The composition of melt inclusions in beryl from wolframite-quartz veins in Xihuashan, Jiangxi Province[J]. Acta Petrol Mineral, 2007, 26(3): 259–268 (in Chinese with English abstract).

- [28] 赫英.西华山花岗岩体的稀土模式及有关成因问题[J].地 球化学,1992,21(1):49-54. He Ying. The origin of the Xihuashan granite stock with special reference to REE patterns[J]. Geochimica, 1992,21(1): 49-54 (in Chinese with English abstract).
- [29] 穆治国,黄福生,陈成业,郑淑蕙,潘素兰,刘大任.漂塘-西华山石英脉型钨矿床碳、氢和氧同位素研究[C]//余鸿彰. 钨矿地质讨论会论文集.北京:地质出版社,1984:153-169. Mu Zhi-guo, Huang Fu-sheng, Chen Cheng-ye, Zheng Shu-hui, Pan Su-lan, Liu Da-ren. Study on the C, H and O isotopes of Piaotang-Xihuashan quartz-vein wolframite deposits[C]//Yu Hong-zhang. Proceedings of Symposium on Tungsten Geology. Beijing: Geological Publishing House, 1984: 153-169 (in Chinese).
- [30] 张理刚,庄龙池,钱雅倩,郭英顺,瞿平.江西西华山-漂 塘地区花岗岩及其钨锡矿床的稳定同位素地球化学[C]//余 鸿彩.钨矿地质讨论会论文集.北京:地质出版社,1984: 325-338.

Zhang Li-gang, Zhuang Long-chi, Qian Ya-qian, Guo Ying-shun, Qu Ping. Stable isotope geochemistry of granites and tungsten-tin deposits in Xihuashan-Piaotang area, Jiangxi Province, China[C]/Yu Hong-zhang. Proceedings of Symposium on Tungsten Geology[C]. Beijing: Geological Publishing House, 1984: 325–338 (in Chinese).

[31] 陈振胜,张理刚. 蚀变围岩氢氧同位素组成的系统变化及 其地质意义: 以西华山钨矿为例[J]. 地质找矿论丛, 1990, 5(4): 69-79.

Chen Zhen-sheng, Zhang Li-gang. Hydrogen and oxygen study on altered rocks and it's geological significance with the example of Xihuashan tungsten ore deposit[J]. Contrib Geol Mineral Resour Res, 1990, 5(4): 69–79 (in Chinese with English abstract).

[32] 刘家齐, 汪雄武, 曾贻善, 王晓地. 西华山花岗岩及钨锡铍 矿田成矿流体演化[J]. 华南地质与矿产, 2002 (3): 91-96. Liu Jia-qi, Wang Xiong-wu, Zeng Yi-shan, Wang Xiao-di. Xihuashan granite and evolution of ore-forming fluid of tungsten-tin-beryllium ore field[J]. Geol Mineral Resour South China, 2002 (3): 91–96 (in Chinese with English abstract).

[33] 谢明璜,王定生,陆思明.江西西华山钨矿西南区找矿潜 力分析[J].东华理工大学学报(自然科学版),2008,31(3): 201-206.

Xie Ming-huang, Wang Ding-sheng, Lu Si-ming. Prospecting potential of tungsten ore in southwest of Xihuashan moutain in Jiangxi province[J]. J East China Inst Technol (Nat Sci), 2008, 31(3): 201–206 (in Chinese with English abstract).

- [34] Turekian K K, Wedepohl K H. Distribution of the elements in some major units of the earth's crust[J]. GSA Bull, 1961, 72(2): 175–192.
- [35] Wang R C, Fontan F, Chen X M, Hu H, Liu C S, Xu S J, De Parseval P. Accesory minerals in the Xihuashan Y-enriched granitic complex, Southern China: A pecord of magmatic and hydrothermal stages of evolution[J]. Can Mineral, 2003, 41(3): 727–748.
- [36] Clayton R N, Mayeda T K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis[J]. Geochim Cosmochim Acta, 1963, 27(1): 43-52.
- [37] Matsuhisa Y, Goldsmith J R, Clayton R N. Oxygen isotopic fractionation in the system quartz-albite-anorthite-water[J]. Geochim Cosmochim Acta, 1979, 43(7): 1131–1140.
- [38] Zhang Ligang, Liu Jingxiu, Chen Zhensheng, Zhou Huanbo. Experimental investigations of oxygen isotope fractionation in cassiterite and wolframite[J]. Econ Geol, 1994, 89(1): 150–157.
- [39] 翟建平,胡凯,陆建军,应用氢氧同位素研充矿床成因的 一些问题探讨[J]. 地质科学,1996,31(3):229-237. Zhai Jian-ping, Hu Kai, Lu Jian-jun. Discussions on the applications of hydrogen and oxygen isotopes to the problems of ore genesis[J]. Sci Geol Sinica, 1996, 31(3): 229-237 (in Chinese with English abstract).
- [40] Matsuhisa Y. Effect of mixing and boiling of fluids on isotopic compositions of quartz and calcite from epithermal deposits[J]. Mining Geol, 1986, 36(6): 487–493.
- [41] Lynch J V G, Longstaffe F J, Nesbitt B E. Stable isotopic and fluid inclusion indications of large-scale hydrothermal paleoflow, boiling, and fluid mixing in the Keno Hill Ag-Pb-Zn district, Yukon Territory, Canada[J]. Geochim Cosmochim Acta, 1990, 54(4): 1045–1059.
- [42] Horita J, Wesolowski D J. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature[J]. Geochim Cosmochim Acta, 1994, 58(16): 3425-3437.
- [43] Wagner T, Mlynarczyk M S J, Williams-Jones A E, Boyce A J. Stable isotope constraints on ore formation at the San Rafael tin-copper deposit, Southeast Peru[J]. Econ Geol, 2009, 104(2): 223–248.

- [44] Truesdell A H, Nathenson M, Rye R O. The effects of subsurface boiling and dilution on the isotopic compositions of Yellowstone thermal waters[J]. J Geophys Res, 1977, 82(26): 3694–3704.
- [45] Faure K, Matsuhisa Y, Metsugi H, Mizota C, Hayashi S. The Hishikari Au-Ag epithermal deposit, Japan: Oxygen and hydrogen isotope evidence in determining the source of paleohydrothermal fluids[J]. Econ Geol, 2002, 97(3): 481-498.
- [46] Matsuhisa Y, Morishita Y, Sato T. Oxygen and carbon isotope variations in gold-bearing hydrothermal veins in the Kushikino mining area, southern Kyushu, Japan[J]. Econ Geol, 1985, 80(2): 283-293.
- [47] Wagner T, Williams-Jones A E, Boyce A J. Stable isotope-based modeling of the origin and genesis of an unusual Au-Ag-Sn-W epithermal system at Cirotan, Indonesia[J]. Chem Geol, 2005, 219(1-4): 237-260.
- [48] Dubessy J, Derome D, Sausse J. Numerical modelling of fluid mixings in the H₂O-NaCl system application to the North Caramal U prospect (Australia)[J]. Chem Geol, 2003, 194(1-3): 25–39.
- [49] Criss R. Principles of stable isotope distribution[M]. New York: Oxford University Press, 1999: 34.
- [50] Horita J, Cole D R, Wesolowski D J. The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: III. Vapor-liquid water equilibration of NaCl solutions to 350°C[J]. Geochim Cosmochim Acta, 1995, 59(6): 1139-1151.
- [51] Giuliani G, Li Y D, Sheng T F. Fluid inclusion study of Xihuashan tungsten deposit in the southern Jiangxi Province, China[J]. Miner Deposita, 1988, 23(1): 24–33.
- [52] Wood S A, Samson I M. The Hydrothermal geochemistry of tungsten in granitoid environments: I. Relative solubilities of ferberite and scheelite as a function of T, P, pH, and m_{Niacl}[J]. Econ Geol, 2000, 95(1): 143-182.

- [53] 马东升. 钨的地球化学研究进展[J]. 高校地质学报, 2009, 15(1): 19-34. Ma Dong-sheng. Progress in research on geochemistry of tungsten[J]. Geol J China Univ, 2009, 15(1): 19-34 (in Chinese with Enelish abstract).
- [54] 赵妙琴,卢志明,柳志青.华南脉钨矿床中黑钨矿石英脉 形成时成矿热液的对流循环运动[J]. 有色金属矿产与勘查, 1998, 7(5): 272-276. Zhao Miao-qin, Lu Zhi-ming, Liu Zhi-qing. Circulation of ore-forming fluid in the filling of wolffamite-bearing quartz veins in the tungsten deposit, southern China[J]. Geol Explor Non-ferrous Metal, 1998, 7(5): 272-276 (in Chinese with Enclish abstract)
- [55] Drummond S E, Ohmoto H. Chemical evolution and mineral deposition in boiling hydrothermal systems[J]. Econ Geol, 1985, 80(1): 126–147.
- [56] Sondergeld C H, Turcotte D L. A laboratory study of mineral deposition in a boiling environment[J]. Econ Geol, 1979, 74(1): 109-115.
- [57] Hayba D O. Environment of ore deposition in the Creede mining district, San Juan Mountains, Colorado: Part V. Epithermal mineralization from fluid mixing in the OH Vein[J]. Econ Geol, 1997, 92(1): 29–44.
- [58] Dolejs D, Wagner T. Thermodynamic modeling of non-ideal mineral-fluid equilibria in the system Si-Al-Fe-Mg-Ca-Na-K-H-O-Cl at elevated temperatures and pressures: Implications for hydrothermal mass transfer in granitic rocks[J]. Geochim Cosmochim Acta, 2008, 72(2): 526–553.
- [59] Bychkov A, Matveeva S. Thermodynamic model of the formation of ore bodies at the Akchatau wolframite greisen-vein deposit[J]. Geochem Int, 2008, 46(9): 867–886.
- [60] Sushchevskaya T M, Bychkov A J. Thermodynamic modeling of cassiterite-wolframite ore formation at the Iultin Sn-W deposit[J]. Geochim Cosmochim Acta, 2009, 73(13): A1296-A1296.