文章编号: 0258-7106 (2011) 01-0001-10

赣南崇义淘锡坑钨矿床氢、氧、硫同位素 地球化学研究^{*}

宋生琼^{1,2},胡瑞忠¹,毕献武¹,魏文凤^{1,2},石少华^{1,2}

(1中国科学院地球化学研究所矿床地球化学国家重点实验室,贵州贵阳 550002;2中国科学院研究生院,北京 100049)

摘 要 赣南崇义县淘锡坑钨矿位于南岭东西向构造带东段与武夷山 NE-NNE 向构造带南段的复合部位,属 于以石英脉型黑钨矿为主的钨多金属矿床。文章通过氢、氧、硫同位素地球化学特征的研究,探讨了淘锡坑钨矿成 矿流体的来源及演化。研究结果显示: dD 值介于 -77‰~-45‰之间;石英矿物的 d¹⁸O 值介于 +7.3‰~+12.2‰ 之间,计算给出石英中水的 d¹⁸O_{H2}O值介于 -3.1‰~1.2‰之间。黄铁矿的 d³⁴S 值分布于 0.1‰~-2.1‰之间,黄 铜矿的 d³⁴S 值分布于 -1.3‰~-2.3‰,毒砂的 d³⁴S 值分布于 -1.4‰~-1.8‰之间。研究结果表明:淘锡坑钨 矿床主成矿期成矿流体显示两种流体混和的特征,成矿流体中的硫主要为岩浆来源。

关键词 地球化学;氢氧硫同位素组成;淘锡坑钨矿;赣南 中图分类号: P618.67; P597 **文献标志码:**A

Hydrogen, oxygen and sulfur isotope geochemical characteristics of Taoxikeng tungsten deposit in Chongyi County, Southern Jiangxi Province

SONG ShengQiong^{1,2}, HU RuiZhong¹, BI XianWu¹, WEI WenFeng^{1,2} and SHI ShaoHua^{1,2} (1 State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, Guizhou, China; 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

The Taoxikeng tungsten deposit in Chongyi County of southern Jiangxi Province is mainly a quartz veintype polymetallic tungsten deposit. Based on hydrogen, oxygen and sulfur isotopic characteristics, this paper studied the origin and evolution of the ore-forming fluid. The results show that δD values of fluids from fluid inclusions in quartz vary from -77% to -45%%, $\delta^{18}O$ values of quartz from the ore change from +7.3% to +12.2%, $\delta^{18}O_{H_{2}O}$ values range from -3.1% to 1.2%, $\delta^{34}S$ values of pyrite from the ore range from 0.1% to -2.1%, $\delta^{34}S$ values of chalcopyrite from the ore range from -1.3% to -2.3%, and $\delta^{34}S$ values of arsenopyrite from the ore range from -1.4% to -1.8%. Hydrogen and oxygen isotopic composition of the fluid inclusions in quartz of the major ore-forming stage indicates that the water was derived mainly from mixed meteoric and magmatic water, whereas sulfur isotopes in ore-forming fluid were derived mainly from the magma.

Key words: geochemistry, hydrogen, oxygen and sulfur isotopic compositions, Taoxikeng tungsten deposit, southern Jiangxi Province

^{*} 本文得到国家自然科学基金重点项目(40634020)和国家 973 项目(2007CB411408)的联合资助

第一作者简介 宋生琼, 女, 1983 生, 博士研究生, 地球化学专业。Email: jluedu06@126.com

通讯作者 胡瑞忠, 男, 1958 年生, 博士, 研究员, 从事大陆动力学与成矿关系、成矿作用地球化学等研究。Email: huruizhong@vip. gyig.ac. cn

收稿日期 2010-05-11; 改回日期 2010-11-01。李 岩编辑。

钨是中国的优势矿产资源,2008年中国矿山生 产的钨占世界总产量的四分之三(华仁民等,2010), 而赣南则是中国乃至世界最重要的钨矿产地。海锡 坑钨矿床位于江西省崇义县城西南 14.5 km 处,目 前已探明储量 5.26 万吨(吴至军等,2009),为大型 石英脉型矿床。该矿床深部有一隐伏花岗岩体,前 人研究发现该花岗岩体与成矿关系密切,是矿区钨 锡成矿物质来源的主要提供者(邹欣,2006;郭春丽 等,2007)。另外,郭春丽等(2007;2008)获得隐伏花 岗岩体的锆石结晶年龄为158~157 Ma;石英的 Rb-Sr 等时线年龄为 161~154 Ma; 白云母的 Ar-Ar 年 龄为155~152 Ma,陈郑辉等(2006)测得矿体辉钼 矿的 Re-Os 等时线年龄为 154 Ma,成岩与成矿时代 十分接近。尽管近年来有关淘锡坑钨矿床的成因研 究取得了一些重要的进展,但是至今对该矿床成矿 流体的性质、来源及演化等问题仍缺少相应的认识。 因此,本文拟通过氢、氧、硫同位素地球化学特征的 研究,探讨淘锡坑钨矿成矿流体的特征,这对深化对 该矿床成矿机制的认识具有重要的理论意义。

1 区域地质背景

矿区大地构造位于华夏板块的北西缘,武夷隆 起西侧,罗霄褶皱带中部。赣南地区处于南岭 EW 向构造带东段与武夷山 NNE 向隆起带南段西坡复 合部位。

区内广泛出露震旦系一奥陶系,另有少量泥盆 系、石炭系、二叠系、侏罗系、白垩系和第三系出露。 震旦一奥陶系经加里东运动褶皱隆起而成为本区基 底。泥盆系、石炭系和二叠系等呈角度不整合于基底 地层之上,以磨拉石建造开始,浅海碳酸盐岩建造鼎 盛,至陆相沼泽泥砂质含煤建造而告终。侏罗系、白 垩系和第三系等为断陷盆地沉积的红色碎屑岩系。

赣南地区钨矿床"构造控岩、岩体控矿"的成矿 规律明显,EW 向构造主要由一系列挤压性断裂带 和复式褶皱组成,伴生扭裂与张裂,并常伴 EW 向花 岗岩带和变质岩带,构成区域性构造-岩浆带(如古 亭-赤土构造-岩浆带),是最主要的控岩控矿构造。 NNE 向构造主要为燕山期形成的区域性断裂、断陷 盆地及其伴生配套与低序次派生断裂所组成,也包 括部分早期形成的弧后拉张裂隙。这些构造为本区 燕山期成矿岩体以及钨锡多金属矿床的形成提供了 有利的构造条件(图1)。

区内岩浆活动以加里东期和燕山期为主。加里 东早期阶段以中基性至酸性海底火山喷发为主,晚 期阶段表现为强烈的混合岩化和酸性岩浆侵入,燕 山早期主要为酸性岩浆侵入活动,间有少量基性岩 浆侵入。九龙脑岩体属燕山期"S"型花岗岩,呈岩基 状出露于矿田中部,受区域性 NNE 向与 EW 向构 造的复合控制,呈 NNE 向展布,往北和南隐伏。在 岩体的南北近、中和远 3 层接触带形成一大批钨锡 矿床。该岩体是矿田钨、锡、银、铅和锌的成矿母 岩[●]。

2 矿区地质特征

矿区钨矿体呈脉状,产于燕山期花岗岩外接触带的变质岩内,矿体的形成与隐伏花岗岩体的侵入 就位密切相关。表现为外带石英脉型黑钨矿化,按 脉组的空间展布位置,可分为:宝山、棋洞、烂埂子、 枫岭坑4大脉组,脉组的平面组合表现为向 NE 发 散,向 SE 收敛(图 2)。

矿区出露地层主要有震旦系中统老虎塘组;寒 武系下统牛角河组;奥陶系上统黄竹洞组;泥盆系上 统洋湖组、麻山组、嶂东组;泥盆系中统罗段组、中棚 组、云山组;石炭系中统马平组;石炭系上统杨家源 组;二叠系中统大棚组、乐平组;三叠系下统铁石组; 第四系全新统。矿脉主要赋存在震旦系中统老虎塘 组的变质岩系中。

隐伏花岗岩顶面标高约 50 m,最高 81 m,出露 面积约 0.5 km²,是隐伏岩体的顶峰地带,也是矿化 的中心地区。花岗岩主要为二长花岗岩、黑云母花 岗岩、钾长花岗岩、白云母花岗岩和二云母花岗岩。 由于深部隐伏花岗岩体侵入,在其外接触带的变质 岩中,已形成较为明显的热力蚀变晕圈,越接近花岗 岩体,变质越强,反之,则逐渐减弱。由花岗岩体顶 面往外,大致可分为 3 个强弱程度不同的蚀变带:角 岩蚀变带、强角岩化蚀变带、角岩化-弱角岩化蚀变带。

海锡坑钨矿床矿化面积约 2.6 km²,已发现矿脉 21 条。矿脉赋存于震旦系变质岩中,向下延伸至隐 伏花岗岩体内。矿脉地表出露长度 340~682 m,产 出标高为 690~-56 m,已控制最低标高-56 m 尚未

● 徐敏林,高贵荣,邹小平.2005. 江西省崇义县海锡坑矿区钨矿资源潜力评价报告.内部资料.

114°00

26° 40

湖

南

省

30km

116°00

画眉坳

米国

于 o

0沙地

赣州市

图 1 海锡坑区域地质简图(据徐敏林等,2005;吴至军等,2009修改)

1-第四系沉积物;2-三叠系粉砂岩;3-二叠系硅质岩和砂岩;4-石炭系灰岩和砂岩;5-泥盆系砂岩夹页岩;6-奥陶系粉砂质板岩; 7一寒武系杂砂岩和板岩;8一震旦系砂岩和板岩;9一晚侏罗世细粒斑状黑云母花岗岩;10一晚侏罗世中细粒斑状二云母花岗岩;11一晚 侏罗世中细粒斑状斑状黑云母花岗岩;12一中侏罗世中细粒斑状黑云母花岗岩;13一早志留世中粒含斑花岗闪长岩;14一断裂;15---钨锡 矿床

Fig. 1 The regional geological sketch map of the Taoxikeng tungsten deposit(Modified after Xu et al., 2005,

Wu et al., 2009)

1-Quaternary sediments; 2-Triassic siltstone; 3-Permian siliceous rock and sandstone; 4-Carboniferous limestone and sandstone; 5-Devonian sandstone interlayered with shale; 6-Ordovician silty slate; 7-Cambrian graywache and slate; 8-Sinian sandstone and slate; 9-Late Jurassic fine-grained biotite granite; 10-Late Jurassic porphyritic medium- and fine- grained two-mica granite; 11-Late Jurassic porphyritic medium- and fine- grained biotite granite; 12-Middle Jurassic porphyritic medium- and fine- grained biotite granite; 13-Early Silurian porphyritic medium-grained granite diorite; 14-Fault; 15-Tungsten and tin deposit

图 2 淘锡坑钨矿矿区地质简图 Fig. 2 Geological sketch map of the Taoxikeng tungsten deposit

尖灭。矿脉浅部钨品位较低,一般 0.5% 左右,356 中段以下开始变富,花岗岩接触面至其上 200 m 是 脉体较宽、品位最富的地段,个别主脉钨品位可达 3%~5%,其中出现厚板状黑钨矿晶体,大者可达数 十厘米。矿脉中矿化分层富集、分段富集的特点较 为明显。

矿石中主要金属矿物有黑钨矿、锡石、白钨矿、 黄铜矿、闪锌矿、辉钼矿、毒砂、黄铁矿和辉铋矿。非 金属矿物有石英、黄玉、萤石、白云母、铁锂云母、电 气石、方解石、叶腊石、绿泥石和绢云母等。次生矿 物主要有铜蓝、高岭石和褐铁矿。黑钨矿为主要工 业矿物,锡石、黄铜矿和辉钼矿为伴生工业矿物。

3 样品采集及分析方法

用于氢、氧同位素分析测试的石英样品均采自 与黑钨矿密切共生的棋洞组 056、156、206 和 256 中 段,烂埂子组 206 和 256 中段,宝山组 056 和 156 中 段,枫岭坑组 306 和 356 中段,均为主成矿期石英大 脉样品。所有样品先人工选取新鲜部分经粉碎、粗 选和蒸馏水冲洗后,在显微镜下精心挑选 40~60 目 纯净石英单颗粒;且单矿物纯度达 99%以上,样品经 清洗以后,低温下(100~200℃)烘干 8 h 左右去吸附 水和次生包裹体,再采用加热爆破法从样品中提取 原生流体包裹体中的 H₂O 和 CO₂,将提取的包裹体 H₂O 与 Zn 反应制取 H,测定 H₂O 中的 δD 值。石英 的氧同位素测定采用 BrF₅ 分析方法。氢、氧同位素 分析测试在中国地质科学院矿产资源研究所 MAT 253 EM 质谱仪上完成,以 SMOW 为标准,氧同位素的分析精度为±0.2‰,氢同位素的分析精度为±2‰。

硫同位素分析测试样品均采自宝山、棋洞、烂埂 子和枫岭坑4个脉组的地下坑道中,且从056中段 到356中段的样品均有采集,样品新鲜。在野外观 察和室内研究的基础上,选取有代表性的矿石标本, 从矿石标本中挑选硫化物,共32件样品,其中4件 毒砂、8件黄铜矿和20件黄铁矿,单矿物中的硫同位 素测试分析在中国科学院地球化学研究所 MAT252 型质谱仪上进行,测定方法为 SO₂法,标样为 CDT, 分析精度为±0.2‰。

4 测试结果

4.1 氢、氧同位素组成测试结果

测试结果(表 1)显示,石英中包裹体水的 ðD 值 介于 - 77‰ ~ -45‰ 之间,极差 32‰,均值为 -57‰;石英矿物的 δ^{18} O值介于 7.3‰ ~ 12.2‰之 间,极差 4.9‰,均值为 10.4‰。结合流体包裹体均 一温度及 Clayton(1972)平衡方程,计算获得与石英达 到平衡时成矿流体的 δ^{18} O_{H2}o值,计算的 δ^{18} O_{H2}o值和 石英中的流体包裹体水的 δ D 值代表了石英圈闭时成 矿流体的氢、氧同位素组成(申萍等,2004)。均一温度 通过对用于氢、氧同位素分析的相同样品的流体包裹 体分析测试获得。获得均一温度变化范围为 150~ 385℃,峰值在 200~220℃之间,个别样品温度稍高。 根据 Chayton 等(1972)的石英-水的分馏方程计算得 出石英中水的 δ^{18} O_{H2}o变化范围为 - 3.11‰ ~ 1.2‰, 极差 4.31‰,变化范围较窄,均值为 - 0.65‰。

4.2 硫同位素组成测试结果

硫同位素测试结果(表 2)显示,20件黄铁矿的 δ^{34} S值介于 0.1~-2.1‰之间,均值:-1.2‰,极 差:2.2‰;8件黄铜矿的 δ^{34} S 值介于 -1.3~ -2.3‰之间,均值:-1.8‰,极差:1‰;4件毒砂的 δ^{34} S值介于 -1.4~-1.8‰之间,均值:-1.6‰,极 差:0.4‰。这些数据说明,硫化物的 δ^{34} S值变化范 围较小,为较小的负值,其变化范围在 0.1‰~ -2.3‰之间,平均值为 -1.4‰,偏离零值一般小于 0.1‰,最大不超过 2.3‰; δ^{34} S值频数分布比较集 中,具有近零为中心的塔式分布特征(图 3),说明主 成矿阶段硫化物在稳定的物理-化学条件下形成,并

Table 1	Table 1 Hydrogen and oxygen isotope determinations of quartz from faoxikeng tungsten deposit				
	矿物名称	δD _{v-SMOW} /‰	δ ¹⁸ O _{v-SMOW} /‰	t _h /C	$\delta^{18}O_{H_2O}$ /‰
TF-356-33-1	石英	- 54	10.9	210	-0.7
TF-306-30-1	石英	- 59	11.1	220	0.1
TF-306-7-2	石英	- 77	12.2	220	1.2
TB-156-17-3	石英	- 63	11.6	210	0
TB-056-17-3	石英	- 53	10.5	190	-2.4
TL-206-3-1	石英	- 48	11.4	220	0.4
TL-256-3-1	石英	- 60	9.4	220	-1.6
TL-256-5-1	石英	- 57	7.9	220	-3.1
TL-256-5-2	石英	- 55	10.4	220	-0.6
TQ-056-18-2	石英	- 61	7.3	240	-2.6
TQ-156-23-5	石英	- 64	10.2	260	1.2
TQ-206-18-4	石英	- 47	11.0	220	0.0
TQ-256-23-1	石英	- 45	11.9	200	-0.3

表 1 淘锡坑钨矿石英氢、氧同位素组成

测试单位:中国地质科学院矿产资源研究所;仪器:MAT 253 M 质谱仪;氧同位素分析精度:±0.2‰。氢同位素分析精度:±2‰。计算公式:1000 lnα_{石类,}=3.38×10⁶T⁻²-2.9。

Table 2 Sulfur isotope composition of Taoxikeng tungsten deposit						
	测试矿物	δ ³⁴ S _{CDT} /‰	样品编号	测试矿物	$\delta^{34}S_{CDT}$ /‰	
TB-156-17-3	黄铁矿	-0.4	TF-306-30-1	黄铁矿	0.0	
TB-106-11	黄铁矿	~ 2.1	TF-306-7-2	黄铁矿	-1.6	
TB-156-17-1	黄铁矿	~ 1.4	TF-356-33-1	黄铁矿	-1.4	
TB-106-10	黄铁矿	-1.4	TF-306-30-2	黄铁矿	-1.7	
TXK-1	黄铁矿	-1.3	TF-306-37	黄铜矿	-2.3	
TXK-4	黄铁矿	-1.0	TB-106-11	黄铜矿	-1.7	
TQ-256-23	黄铁矿	- 1.6	TQ-156-23	黄铜矿	-1.6	
TQ-256-18-1	黄铁矿	-1.9	TB-156-17	黄铜矿	-1.6	
TQ-256-18-2	黄铁矿	-2.1	TB-156-14-2	黄铜矿	-2.0	
TQ-206-18	黄铁矿	-1.5	TQ-256-18	黄铜矿	-1.4	
TQ-156-23	黄铁矿	~0.8	TB-056-17	黄铜矿	-1.3	
TL-206-2	黄铁矿	-1.1	TQ-056-18	黄铜矿	-2.1	
TL-206-3-1	黄铁矿	-0.8	TF-356-30-1	毒砂	-1.5	
TL-206-3-2	黄铁矿	-0.5	TF-356-30-2	毒砂	-1.4	
TL-256-5-1	黄铁矿	0.1	TF-356-30-3	毒砂	-1.8	
TL-256-5-2	黄铁矿	-1.6	TF-356-30-4	毒砂	-1.5	

表 2 淘锡坑钨矿硫同位素组成

测试单位:中国科学院地球化学研究,测试仪器:MAT252型质谱仪。分析精度:±0.2‰。

且硫的来源比较均一(张理刚等,1981;张国新等, 1997;潘家永等,2000;王守旭等,2007),8³⁴S在横向 和纵向上没有明显的规律性变化。

5 讨 论

5.1 流体包裹体特征

对淘锡坑钨矿主成矿期的脉石英流体包裹体研究显示,流体包裹体类型为气液两相包裹体、纯气相 包裹体、纯液相包裹体、含子矿物包裹体和含 CO₂ 三 相流体包裹体。气液两相包裹体主要呈椭圆形、圆 形、三角形、不规则状,孤立分布,气相分数约占 5% ~45%,且多为10%~20%,长轴长约5~30 μm,以 10~20 μm 为主,这类包裹体数量最多,约占流体包 裹体总数的95%。实验中主要测试这类包裹体,测 试结果显示均一温度为150~385℃,主要温度范围 为200~220℃,盐度 $w(NaCl_{eq})$ 为1.64%~6.76%, 平均4.25%,密度为0.70~0.97 g/cm³,平均0.89 g/cm³,液相成分以H₂O为主,气相成分为CO₂和 CH₄,获得其流体性质为低盐度和中等密度的NaCl-H₂O-CO₂-CH₄ 热液。

5.2 成矿流体来源

应用氢氧同位素示踪成矿流体来源,是热液矿 床地球化学研究的主要方法之一,不同来源的水具

有不同的氢、氧同位素组成。本区脉石英的氢、氧同 位素组成为: δD 值变化范围为 - 77‰~-45‰, 为 正常岩浆水范围(-80‰~-50‰,郑永飞等, 2000),均值为-57‰,δ¹⁸O_{H,O}的变化范围为-3.1‰ ~1.2‰,均值为-0.7‰。在 àD-à¹⁸O_{HO}图解中 (Taylor et al., 1997)(图 3),含矿热水溶液氢、氧同 位素的投影点既没有落入典型的岩浆水区,也没有 落入典型的大气降水区,而是在这两者的过渡区。 已有研究表明,影响成矿流体氢、氧同位素组成的因 素很多(如成矿温度、水的种类、水岩交换时的 W/R 比值等)。而且在高温、低 W/R 比值条件下,大气降 水也可能演化成与岩浆水相似的氢、氧同位素组成 (谢巧勤等,2001)。那成矿流体中是否有岩浆水参 与?如果有,两者之间在成矿过程中是一个什么样 的关系呢?由于淘锡坑钨矿床缺乏围岩与隐伏花岗 岩及中生代大气降水的氢、氧同位素值,因而探讨矿 区具体的水-岩反应模式比较困难。但是,我们知道 石英属于含氧矿物,容易与它所包含的水发生同位 素平衡再交换反应,造成所测定的包裹体的氧同位 素组成不能完全反映原始含矿溶液的δ¹⁸O_{H,O}值,而 石英中几乎不含氢原子,所以交换作用对流体包裹 体的氢同位素组成造成的影响很小(丁悌平,1980)。 矿区的赋矿围岩为浅变质岩,虽然也有含氢矿物,但 含氢矿物占岩石比例很低,若发生水岩交换反应,交

换后流体的氢同位素组成也不会发生很大的变化, 即这种变化是可以忽略不计的(真允庆,1998),因 此,氢同位素组成代表了原始溶液的组成。矿区出 露隐伏花岗岩体,且成岩成矿时代相近,所以推测原 始热液主要来自该区的隐伏花岗岩岩浆水。 δ¹⁸O_{H2}o值偏离正常岩浆水值,发生了明显的"氧漂 移",产生这种现象的原因可能是由于大气降水的加 人,造成了氧同位素向大气降水的漂移。以上研究 表明,主成矿期成矿流体为岩浆水与大气降水混和 形成。

5.3 成矿物质来源

淘锡坑钨矿床中的金属矿物主要为黑钨矿、黄 铁矿、黄铜矿、磁黄铁矿、毒砂和闪锌矿等,硫化物种 类较多,因此,研究其成矿流体中硫的来源非常重 要。硫是大多数矿床中最重要的成矿元素之一,对 硫来源的研究可以为矿床的成因提供重要依据。根 据硫的高价态化合物相对于低价态化合物普遍富集 重同位素的规律,δ³⁴S值应该出现黄铁矿>黄铜矿 >毒砂的矿物富集顺序,而本区样品的 δ^{34} S呈黄铁 矿>毒砂>黄铜矿的递减顺序富集。毒砂出现了少 许的差异,造成这种现象的原因可能是样品采集导 致的,毒砂样品均采自枫岭坑 356 中段的 30 号脉, 这条脉体接近地表,可能是遭受到后期含有较高 δ34 S的大气降水淋滤而发生了硫同位素分馏。热力学 和实验研究证实,在硫同位素分馏达到平衡条件时, 硫化物中富集δ³⁴S的顺序为黄铁矿>闪锌矿(磁黄 铁矿)>黄铜矿>方铅矿(魏菊英等,1988),本次研 究的黄铁矿和黄铜矿在各个中段和矿脉均有采集, 对整个矿山具有代表性,因此,从黄铜矿和黄铁矿的 硫同位素值来看,分馏是达到平衡的。

研究区石英脉中硫化物的 δ^{34} S 值变化范围非 常狭窄,这种紧密的 δ^{34} S 值范围表明成矿热液中沉 淀的硫化物硫源单一,且这种成矿热液以 H₂S 占绝 对优势,或者具有独特狭窄的物理化学条件〔如 t、 pH、 $f(O_2)$ 、 $f(S_2)$ 值等〕范围。极小的 δ^{34} S 值变化 范围,实际上表明氧化物-硅酸盐阶段的成矿热液 中,含硫原子团主要是 H₂S,而且矿床主要含硫矿物 为黄铁矿和黄铜矿等硫化物,很少见硫酸盐矿物,且 毒砂的出现进一步证实了这种推测(张理刚,1985; 张国新等,1997)。在判断硫来源时,必须依据硫化 物沉淀期间热液的总硫同位素组成(δ^{34} S₂)(Ohmoto,1972;1979;聂桂平等,2007)。当热液体系中以 H₂S占优势时,在平衡条件下,δ³⁴S_Σ≈δ³⁴S_{H₂O}≈ δ³⁴S_{黄铁矿}(吴永乐等,1987)。因此,淘锡坑钨矿床矿 化热液的δ³⁴S₂≈黄铁矿的δ³⁴S≈-1.2‰。天然 成矿 热液的总硫同位素组成一般可分为4组: ①δ³⁴S₂≈0‰;②δ³⁴S₂≈5‰~15‰;③δ³⁴S₂≈ 20‰;④δ³⁴S₂为较大的负值,其中δ³⁴S₂接近零值 的矿床其硫为火成来源,包括岩浆释放的硫和从火 成岩硫化物中淋滤出来的硫(张生等,1997)。本区 黄铁矿、黄铜矿和毒砂的硫同位素值均在零附近,且 黄铁矿、黄铜矿和毒砂的硫同位素值均在零附近,且 黄铁矿的硫值代表了成矿溶液的总硫值,该区又出 露有隐伏花岗岩体,且成岩成矿时代相近,说明成矿 流体主要与该隐伏花岗岩体有关。

5.4 与西华山、漂塘钨矿床的对比研究

对西华山、漂塘和淘锡坑钨矿床进行了主要地 质特征的对比研究,结果列于表3。从表3中可以看 出,无论是在矿物组合、矿化年龄、围岩蚀变、矿脉产 状和硫的来源上,3个矿床都具有一定的相似性,但 在赋矿围岩、矿体与花岗岩的关系、成矿流体来源上 存在着一定的差异。从赋矿围岩来看,淘锡坑为浅 变质砂板岩,西华山为花岗岩体,漂塘为浅变质砂页 岩。从矿体与花岗岩的关系来看,西华山的矿体产在 花岗岩体内,漂塘与淘锡坑的花岗岩隐伏在矿体下 部,即西华山的矿脉呈内接触型,而漂塘和淘锡坑的 矿脉呈外接触型。无论西华山钨矿床还是漂塘与淘 锡坑钨矿床,它们的主成矿期都在150~160 Ma,具有 相似的成矿构造背景,但从流体来源上看,西华山的 主成矿期成矿流体为较为均一的岩浆水,漂塘与淘锡 坑钨矿床的主成矿期流体为岩浆水与大气降水混合。 因此,本文将通过对比3个矿床的氢、氧、硫同位素组 成和相关的地质特征来探讨产生这种现象的原因。 5.4.1 氢、氧同位素组成对比研究

从 δD-δ¹⁸O_{Ho}O图(西华山与漂塘的数据来源于 张理刚等,1981)(图 3)中可以看到,西华山的氢、氧 同位素值完全落入岩浆区内,而漂塘的氢、氧同位素 值有几个样品落入岩浆区内,其他则落到了岩浆区 外与大气降水之间。淘锡坑的氢、氧同位素值均在 岩浆区与大气降水之间。淘锡坑钨矿床明显与西华 山钨矿床在流体来源上有着明显的差异,造成这种 差异的原因可能是西华山花岗岩的顶部变质岩和各 期次岩体界面构成了一个严密的遮盖层,形成良好 的封闭系统(王泽华等,1981),使得深部的初始岩浆 水只能经蚀变交代作用后或同时直接充填于封闭裂 隙体系中(张理刚等,1981),而不受外界流体的影响 或受影响很小,因此,成流体来源较为均一。漂塘钨 矿床的主成矿阶段主要为岩浆水与大气降水的混和 (张理刚等,1981),本次的研究结果也表明,淘锡坑

Table 5 Comparison of printery characteristics between Annuastian, Flaotang and Faoxikeng tungsten deposits							
特征	西华山	漂塘	淘锡坑				
主要组成矿物	锡石、黑钨矿、辉钼矿、黄铁矿、黄 铜矿、毒砂、白云母、长石、石英	辉钼矿、黑钨矿、黄铁矿、磁黄铁 矿、黄铜矿、闪锌矿、方铅矿、石 榴石、阳起石、萤石、方解石、白 云母、石英	黑钨矿、锡石、黄铜矿、闪锌矿、辉 钼矿、毒砂、黄铁矿、石英、黄玉、 萤石、白云母、铁锂云母、电气 石、方解石、叶腊石、绿泥石、绢 云母				
赋矿围岩	花岗岩	浅变质砂页岩	浅变质砂板岩				
矿体与花岗岩的关系	内接触带型	外接触带型	外接触带型				
矿化年龄	160 Ma	152 Ma	152~155 Ma				
主要的围岩蚀变	云英岩化、绢云母化、碳酸盐化、硅 化	阳起石化、黑云母化、钠长石化、云 英岩化、绿泥石化、碳酸盐化	云英岩化、白云母化、绿泥石化、硅 化、黄铁矿化				
矿脉产状	早期大脉,呈群出现,后期为稀疏 中小脉	Ⅰ、Ⅱ阶段为网脉、稀疏小脉,Ⅲ、 Ⅳ为稀疏大脉,Ⅴ细脉带,Ⅵ多 数与细脉带呈复脉,Ⅲ稀疏中小脉	早期大脉、晚期为稀疏中小脉				
水的来源	早期:岩浆水 晚期:大气降水	早期:岩浆水 中期:岩浆水与大气降水混和 晚期:大气降水	主成矿期:岩浆水与大气降水混合				
硫的来源	岩浆的	岩浆的	岩浆的				

表 3 西华山、漂塘和淘锡坑钨矿床主要特征对比 n of primary characteristics between Viburghan Directory and Travilians turner

注:资料据张理刚等(1981)及本文资料整理。西华山的矿化年龄为云母 K-Ar 年龄,漂塘的矿化年龄为白云母 Ar-Ar 年龄(张文兰等,2009), 淘锡坑为白云母 Ar-Ar 年龄。

钨矿床的主成矿期成矿热液主要为岩浆水与大气 降水的混和物,漂塘与淘锡坑钨矿床主成矿期的流 体有一定的相似性,这种相似性的原因是矿体深部 均出露有隐伏花岗岩体,且都赋存在浅变质岩中,构 造断层或裂隙控制了燕山期隐伏花岗岩的峰部,为 脉状钨锡矿床的充填提供了有利的空间条件(徐敏 林等,2006;王旭东等,2008;Wang et al., 2010)。说 明成矿时环境为开放体系,这就使得大量从地表裂 隙向下贯入或受热深部循环的雨水、地下水参与成 矿作用成为可能,因此,淘锡坑与漂塘钨矿床主成矿 期就是在这样一个相对开放的成矿环境体系中两种 流体混和形成的。淘锡坑与漂塘稍有不同的是淘锡 坑氧同位素组成明显向大气降水漂移,这种漂移比 漂塘更明显,可能是淘锡坑钨矿受到大气降水的影 响较漂塘严重,或当时大气降水的氧同位素组成较 漂塘的要低。因此,成矿环境体系的开放与封闭不 同,可能是造成淘锡坑成矿流体氢、氧同位素与西华 山不同而与漂塘相似的原因。

5.4.2 硫同位素组成对比研究

从图 4 可以看出,3 个矿床的硫同位素组成有相 似之处也有不同之处。相似之处在于 3 个矿床的 δ^{34} S值都分布在零值附近,变化范围都很窄,3 个矿 床的 δ^{34} S值最大为 2.5‰,最小 – 3.5‰,说明这 3 个 矿床主要成矿期成矿流体中沉淀硫化物的硫来源单 一,且都来自深源岩浆。不同之处在于,西华山钨矿 床的 δ^{34} S值集中在 – 1.0‰ ~ – 0.5‰,漂塘钨矿床 的 δ^{34} S值集中在 – 3.0‰ ~ – 2.5‰,淘锡坑钨矿的

图 4 海锡坑-西华山-漂塘钨矿硫同位素直方图 (数据来源张理刚等,1981)

δ³⁴S值集中在-1.5‰~-1.0‰。虽然3个矿床的 差异不大,但是可以看出西华山的δ³⁴S值更靠近零, 而淘锡坑钨矿床的δ³⁴S值要稍微偏离零值,漂塘钨 矿床距离岩浆硫值更远一些。从西华山来看,硫值 与氢、氧同位素组成是相匹配的,而淘锡坑与漂塘的 这种匹配性较差,原因可能是西华山主成矿期为单 一硫源,而淘锡坑与漂塘都受到后期大气降水的混 和作用。

6 结 论

(1) 黄铁矿、黄铜矿和毒砂的硫同位素研究表 明淘锡坑钨矿床成矿流体主要与该区隐伏花岗岩体 有关。

(2)与黑钨矿共生的石英氢氧同位素组成研究 揭示淘锡坑钨矿床主成矿期成矿流体显示岩浆水与 大气降水混和的特征。

(3)通过与西华山和漂塘钨矿床对比研究发现,尽管3个矿床形成于相似的地质背景,但由于成 矿环境体系的开放与封闭不同,3个矿床呈现出不同的特点。

志 谢 野外矿山实地考察和坑道调查工作得 到淘锡坑钨矿矿长钟瑞光、副矿长黄泽祥,生产技术 科地质组刘小林、骆小毅、李荣辉,矿行办主任肖晓 东等人的大力支持和帮助。成文后,中国科学院地 球化学研究所彭建堂研究员、刘桑研究员审阅了初 稿,并给予了悉心的指导,在此一并感谢。

References

- Clayton R N, O'Neil J R and Mayeda T K. 1972. Oxygen isotope exchange between quartz and water[J]. J. Geophysical Research, 77 (17): 3057-3067.
- Chen Z H, Wang D H, Qu W J, Chen Y C, Wang P A, Xu J X, Zhang J J and Xu M L. 2006. Geological characteristics and mineralization age of the Taoxikeng tungsten deposit in Chongyi County, southern Jiangxi Province, China[J]. Geol. Bull. China, 25(4): 496-501(in Chinese with English abstract).
- Ding T P. 1980. Hydrogen and oxygen isotope geochemistry[M]. Beijing: Geol. Pub. House. 1-184(in Chinese).
- Guo C L, Wang D H, Chen Y C, Wang Y B, Chen Z H and Liu S B. 2007. Precise zircon SHRIMP U-Pb and quartz vein Rb-Sr dating of Mesozoic Taoxikeng tungsten polymetallic deposit in southern Jiangxi [J]. Mineral Deposits, 26(4): 432-442(in Chinese with English

abstract).

- Guo C L, Lin Z Y, Wang D H, Chen W, Zhang Y, Feng C Y, Chen Z H, Zen Z L and Cai R F. 2008. Petrologic characteristics of the granites and greisens and muscovite ⁴⁰ Ar/³⁹ Ar dating in the Taoxikeng tungsten polymetallic deposit, Southern Jiangxi Province [J]. Acta Geologica Sinica, 82(9): 1274-1284 (in Chinese with English abstract).
- Hua R M, Li G L, Zhang W L, Hu D Q, Chen P R, Chen W F and Wang X D. 2010. A tentative discussion on differences between large-scale tungsten and tin mineralization in South China [J]. Mineral Deposits, 29(1): 9-23(in Chinese with English abstract).
- Nie G P, Liu L G, Xu Z W, Gao G, Yang X N and Li H Y. 2007. Gold bearing property and sulfur isotopic compositions of ore rocks at Chaoshan gold deposit, Anhui[J]. Jiangsu Geol., 31(3): 200-205 (in Chinese with English abstract).
- Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Econ. Geol., 67(5): 551-578.
- Ohmoto H and Rye R O. 1979. Isotopes of sulfur and carbon[A]. In: Barnes H L, ed. Geochemistry of hydrothermal ore deposits [C]. 2nd ed. New York: John Wiley & Sons. 509-567.
- Pan J Y, Zhang Q, Ma D S and Li C Y. 2000. Stable isotope geochemical characteristics of the Yangla copper deposit in Western Yunnan Province[J]. Acta Mineralogica Sinica, 20(4): 385-389(in Chinese with English abstract).
- Shen P, Shen Y C, Li G M, Liu T B and Zen Q D. 2004. Ore-forming fluid inclusions of Kuoerzhengkuola gold deposit, Xinjiang[J]. Acta Petrologica Sinica, 20(4): 969-976 (in Chinese with English abstract).
- Taylor H P. 1997. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits[A]. In: Barnes H L, ed. Geochemistry of hydrothermal ore deposits[C]. New York: John Wiley & Sons. 229-302.
- Wang S X, Zhang X C, Leng C B and Qin C J. A tentative study of ore geochemistry and ore-forming mechanism of Pulang porphyry copper deposit in Zhongdian, northwestern Yunnan[J]. Mineral Deposits, 26(3): 277-288(in Chinese with English abstract).
- Wang X D, Ni P, Jiang S Y, Huang J B and Sun L Q. 2008. Fluid inclusion study on the Piaotang tungsten deposit, southern Jiangxi Province, China[J]. Acta Petrologica Sinica, 24(9): 2163-2170(in Chinese with English abstract).
- Wang X D, Ni P, Jiang S Y, Zhao K D and Wang T G. 2010. Origin of ore-forming fluid in the Piaotang tungsten deposit in Jiangxi Province: Evidence from helium and argon isotopes[J]. Chinese Sci. Bull., 55 (7): 628-634.
- Wang Z H and Zhou Y Z. 1981. Two layers of mineralization characteristics and mineralization models of Xihuashan tungsten deposit[A].
 Proceeding of symposium on tungsten geology[C]. Beijing: Geol.
 Pub. House. 197-205(in Chinese).
- Wei J Y and Wang Y G. 1988. Isotopic geochemistry [M]. Beijing: Geol. Pub. House. 153-155(in Chinese).

Wu Y L, Mei Y W, Liu P C, Cai C L and Lu T Y. 1987. Geology of

the Xihuashan tungsten ore field [M]. Beijing: Geol. Pub. House. 1-280(in Chinese).

- Wu Z J, Xu M L, Zhao L, Luo X H and Wu S T. 2009. The structural ore-controlled mechanism of the large-scaled Taoxikeng tungsten ore [J]. China Tungsten Industry, 24(1): 16-20(in Chinese with English abstract).
- Xie Q Q, Xu X C and Yue S C. 2001. Isotopic geochemistry of hydrogen, oxygen and helium, and ore-forming fluid sources of Laowan gold deposit in Tongbai, Henan Province[J]. Chinese J. Geol., 36 (1): 36-42(in Chinese with English abstract).
- Xu M L, Feng W D, Zhang F T, Li J D and Luo X H. 2006. Metallogenic characteristics of Taoxikeng wolfram deposit, Chongyi [J].
 Resources Survey & Environment, 27(2): 159-163 (in Chinese with English abstract).
- Zhang G X, Xie Y N, Yu F J and Zhang H B. 1997. Stable isotope geochemistry of distinct metallogenic stages of tungsten deposits in Dajishan Mine, Jiangxi[J]. Acta Geoscientia Sinica, 18(Supp.): 197-199 (in Chinese with English abstract).
- Zhang L G. 1985. Geological application for the stable isotope: The hydrothermal mineralization of metal activation and it's prospecting [M]. Xi'an: Shaanxi Sci. & Techn. Pub. House. 1-250(in Chinese).
- Zhang L G, Zhuang L C, Qian Y Q, Guo Y S and Zhe P. 1981. Stable isotope geochemistry of granite and W, Sn deposit in Xihuashan-Piaotang, Jiangxi Province[A]. Proceeding of symposium on tungsten geology[C]. Beijing: Geol. Pub. House. 325-338 (in Chinese).
- Zhang S, Li T J and Wang L K. 1997. Sulfur isotopic geochemistry of Changkeng gold silver deposit in Guangdong Province[J]. Geochimica. 26(4): 78-85(in Chinese with English abstract).
- Zhang W L, Hua R M, Wang R C, Li H M, Qu W J and Ji J Q. 2009. New dating of the Piaotang granite and related tungsten mineralization in southern Jiangxi[J]. Acta Geologica Sinica, 83(5): 659-670 (in Chinese with English abstract).
- Zhen Y F and Chen J F. 2000. Stable isotope geochemistry [M]. Beijing: Sci. Press. 1-316(in Chinese).
- Zou X. 2006. The research on the geochemical characteristic and genesis of tungsten deposit in Taoxikeng, Jiangxi (dissertation for Master degree)[D]. Supervisor: Xiao R G. Beijing: China Univ. Geosci. 9-64(in Chinese with English abstract).
- Zhen Y Q. 1998. Stable isotope geochemistry of the copper deposits in the Zhongtiao rift area[J]. J. Guilin Institute of Technology, 18 (3): 215-227(in Chinese with English abstract).

附中文参考文献

- 陈郑辉,王登红,屈文俊,陈毓川,王平安,许建祥,张家菁,许敏 林. 2006. 赣南崇义地区淘锡坑钨矿的地质特征与成矿时代 [J]. 地质通报, 25(4): 496-501.
- 丁悌平. 1980. 氢氧同位素地球化学[M]. 北京: 地质出版社. 1-184.

- 郭春丽,王登红,陈毓川,王彦斌,陈郑辉,刘善宝. 2007. 赣南中 生代海锡坑钨矿区花岗岩锆石 SHRIMP 年龄及石英脉 Rb-Sr 年 龄测定[1]. 矿床地质、26(4): 432-442.
- 郭春丽, 蔺志水, 王登红, 陈 文, 张 彦, 丰成友, 陈郑辉, 曾载 淋, 蔡汝青. 2008. 赣南淘锡坑钨多金属矿床花岗岩和云英岩岩 石特征及云英岩中白云母⁴⁰Ar/³⁹Ar 定年[J]. 地质学报, 82(9): 1274-1284.
- 华仁民,李光来,张文兰,胡东泉,陈培荣,陈卫锋,王旭东.2010. 华南钨和锡大规模成矿作用的差异及其原因初探[J].矿床地 质,29(1):9-23.
- 聂桂平,良 根,徐兆文,高 庚,杨小男,李海勇.2007.安徽朝 山金矿床矿石含金性和硫同位素研究[J].江苏地质,31(3): 200-205.
- 潘家永,张 乾,马东升,李朝阳. 2000. 滇西羊拉铜矿床稳定同位 素地球化学研究[J]. 矿物学报, 20(4): 385-389.
- 申 萍, 沈远超, 李光明, 刘铁兵, 曾庆栋. 2004. 新疆阔尔真阔腊 金矿床成矿流体包裹体研究[J]. 岩石学报, 20(04): 969-976.
- 王守旭,张兴春,冷成彪,秦朝建. 2007. 滇西北中旬普朗斑岩铜矿 床地球化学与成矿机理初探[J]. 矿床地质, 26(3): 277-288.
- 王旭东,倪 培,蒋少涌,黄建宝,孙立强. 2008. 赣南漂塘钨矿流体包裹体研究[J]. 岩石学报, 24(9): 2163-2170.
- 王泽华,周玉振. 1981. 西华山矿床两层矿化特征及成矿模式[A]. 矿床地质讨论会论文集[C]. 北京: 地质出版社. 197-205.
- 魏菊英, 王玉关. 1988. 同位素地球化学[M]. 北京: 地质出版社. 153-155.
- 吴永乐,梅勇文,刘鹏程,蔡常良,卢同衍. 1987. 西华山钨矿地质

[M]. 北京: 地质出版社. 1-280.

- 吴至军,徐敏林,赵 磊,罗仙华,邬思涛. 2009. 江西海锡坑大型 钨矿构造控矿机制探讨[J]. 中国钨业, 24(1): 16-20.
- 谢巧勤,徐晓春,岳书仓.2001.河南桐柏老湾金矿床氢氧氦同位素 地球化学及成矿流体来源[J].地质科学,36(1):36-42.
- 徐敏林,冯卫东,张凤荣,李江东,罗仙华. 2006. 崇义淘锡坑钨矿 成矿地质特征[J]. 资源调查与环境, 27(2): 159-163.
- 张国新,谢越宁,虞福基,张鸿斌. 1997. 江西大吉山钨矿床不同成 矿阶段稳定同位素地球化学[J].地球学报,18(增刊):197-199.
- 张理刚, 庄龙池, 钱雅倩, 郭英顺, 翟 平. 1981. 江西西华山-漂塘 地区花岗岩及其钨锡矿床的稳定同位素地球化学[A]. 钨矿地 质讨论会论文集[C]. 北京: 地质出版社. 325-338.
- 张理刚. 1985. 稳定同位素在地质科学中的应用——金属活化热液 成矿作用及找矿[M]. 西安: 陕西科学技术出版社. 1-250.
- 张 生,李统锦,王联魁. 1997. 广东长坑金银矿床的成矿地球化学 ——硫同位素研究[J]. 地球化学, 26(4): 78-85.
- 张文兰,华仁民,王汝成,李惠民,屈文俊,季建清.2009. 赣南漂 塘钨矿花岗岩成岩年龄与成矿年龄的精确测定[J]. 地质学报, 83(5):659-670.
- 郑永飞,陈江峰. 2000. 稳定同位素地球化学[M]. 北京:科学出版 社. 1-316.
- 邹 欣. 2006. 江西淘锡坑钨矿地球化学特征及成因研究(硕士论 文)[D]. 导师: 肖荣阁. 北京: 中国地质大学. 9-64.
- 真允庆. 1998. 中条裂谷铜矿床稳定同位素地球化学[J]. 桂林工学 院学报, 18(3): 215-227.