模拟污水对碳酸盐岩的溶蚀作用 及其潜在的环境意义

张孝青^{1,2},连 宾¹,侯卫国^{1,2},曲 洋1,2

1. 中国科学院 地球化学研究所 环境地球化学国家重点实验室,贵阳 550002; 2. 中国科学院研究生院,北京 100049

摘 要:碳酸盐岩是个巨大的碳源和钙源,在地球表面分布极广。随着近年来污水排放量的增加,对地表碳酸盐岩的溶蚀产 生重大影响。为研究污水对碳酸盐岩的溶蚀作用及其环境效应,利用原子吸收分光光度计、pH 计、酸滴定法、扫描电子显微 镜-能量扩散 X 射线谱仪和 X-射线粉晶衍射等,分别测定反应体系中的金属离子浓度、pH 值、HCO3 浓度、碳酸盐岩被溶蚀 前后表面形态和组分变化等指标。研究发现,模拟污水(含有几种重金属离子、H₂PQ,、NH+、脲和土壤微生物等)对碳酸盐 岩的溶蚀结果有显著差异,如模拟污水对碳酸盐岩有强烈的溶蚀作用,使其释放更多的 Ca 和 C;低浓度 Pb(NO3)。溶液对碳 酸盐岩溶蚀表现为吸收 CO2;高浓度的 Pb(NO3)2、CuCl2、CuSO4 和土壤微生物扩增溶液对碳酸盐岩溶蚀表现为释放 CO2;重 金属盐溶液和复合污水对碳酸盐岩溶蚀后有次生矿物生成等。

键 词:碳酸盐岩溶蚀;模拟污水;CO2 源/汇;钙源 关

中图分类号:P588.24+5 文献标识码:A 文章编号:1007-2802(2011)03-0317-11

Corrosion of Carbonate Rock by Artificial Drainage and its Potential Effects to Environment

ZHANG Xiao-qing^{1,2}, LIAN Bin¹, HOU Wei-guo^{1,2}, QU Yang^{1,2}

1. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; 2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Abstract: Carbonate rocks, huge sources of carbon and calcium, cover a large area of the earth surface. More and more drainage are drained by mining industry and domestic life development recently. In order to study carbonate corrosion by drainage and its effects to the natural environment, we determined cation concentrations, pH values, HCO₃⁻ concentration and characteristics of rock surface and components induced by corrosion using atomic absorption spectrophotometer (AAS), pH meter, alkalinity-titrimetric method, SEM-EDX and XRD. The results showed that the parameters induced by corrosion were significantly different between the test groups and the controls. For example, carbonate rocks corrosion was much more intensely caused by drainage, thus more Ca and C were released from the carbonate rocks. We found that CO₂ was absobed when carbonate rocks were being corroded by solution of diluted heavy metal cations, but was released when the corrision solution contains high concentrations of $Pb(NO_3)_2$, CuCl₂, CuSO₄ and microbes. Additionally some epigenetic minerals were generated during carbonate rocks corrosion by complex drainage. We thought hydrochemical changes caused by the sewage and the principle of entropy increase could be used to interpret why drainage induces the carbonate rock intense corrosion.

Key words: carbonate corrosion; artificial drainage; CO₂ source/sink; Ca source

收稿日期:2011-01-12日 收到,04-23 改回

通讯作者:连宾,研究员. E-mail: bin2368@vip. 163. com.

基金项目:国家自然科学基金资助项目(40773069);国家自然科学基金委创优群体项目(41021062);中国科学院"百人计划"资助项目 第一作者简介:张孝青(1986-),男,硕士研究生,研究方向:环境生物地球化学.E-mail:zhang126yq@126.com.

碳酸盐岩在地表覆盖面积极广,如贵州省碳酸 盐岩出露面积 13 万 km^{2[1]},整个中国西南地区碳酸 盐岩出露面积超过 50 万 km^{2[2]}。岩溶环境系统是 由碳酸盐岩-土-水-大气-生物和能量构成的开放系 统[3],对其特点和类型的深入了解是进行岩溶环境 规划管理和治理的必要前提。而中国西南岩溶地区 分布众多矿山,开采矿山带来大量废弃物,其中含有 许多重金属离子,如 Pb²⁺、Cu²⁺、Cd²⁺、Zn²⁺等,造 成土壤污染。如:Pb²⁺的排放浓度甚至达到 700~ 1000 mg/L, Cu²⁺浓度从几十 mg/L 到 200 mg/L, 高者甚至达到 460 mg/L^[4~6],伴随地表径流必然 会导致水体污染;而生活污水中也含有大量的 N,P 等元素[7,8]。这些污水汇入河流后会影响水流对表 层碳酸盐岩的溶蚀,加之微生物的作用,使得碳酸盐 岩的溶蚀程度、溶蚀速率和溶蚀的最终结果都与由 纯水流造成的结果不尽相同。例如: 重金属离 子^[9,10]和微生物使水体 pH 值降低^[11,12],从而加速 碳酸盐岩的溶蚀;而 HCO; 在酸性溶液中会转化成 CO_2 释放到大气中:河流中多余的 Ca^{2+} 和 Mg^{2+} 随 着河流又汇入大海,造成沿海局部海域 Ca/Mg 失 调,这样会对沿海渔业和沿海海洋生物的生长繁殖 造成一定影响[13~16];同时沉淀下来的新重金属盐类 物质等也会改变污水流经区域的地表生态环境等。

研究表明^[17~19],矿物侵蚀速率受径流量和岩石 类型影响,矿物表面的溶解速率、离子扩散速率和 $H_2O + CO_2 = H^+ + HCO_3^-$ 反应速率是影响方解石 在 H_2O-CO_2 -矿物系统中溶解的三个限制性因素^[20]。

碳酸盐岩的溶蚀反应可描述如下:

 $CaCO_3 + CO_2 + H_2O \rightleftharpoons Ca^{2+} + 2HCO_3^{-} \not\equiv$ $CaMg (CO_3)_2 + 2CO_2 + 2H_2O \rightleftharpoons Ca^{2+} +$ $Mg^{2+} + 4HCO_3^{-}, \qquad (1)$

 $CaCO_3 + H^+ \longrightarrow Ca^{2+} + HCO_3^-$ 或

 $CaMg (CO_3)_2 + 2H^+ \longrightarrow Ca^{2+} + Mg^{2+} + 2HCO_3^-$ (2)

对碳酸盐岩溶蚀的环境效应多关注其对水土流 失和全球碳汇的作用^[21~24]。如研究发现全球水循 环造成的碳酸盐溶解是一个重要的碳汇^[25]。我国 西南喀斯特流域碳酸盐岩的侵蚀速率为 97 t/(km² · a),消耗 CO₂ 量为 25 t/(km² · a),而 硫酸对碳酸盐岩的风化造成 CO₂ 释放速率为 8.2 t/(km² · a),由此计算西南喀斯特地区由于硫 酸作用造成的 CO₂ 释放通量是该地区碳酸盐岩风 化消耗的 CO₂ 通量的 33%^[21]。贵州喀斯特地区乌 江源流域的水化学成分主要受碳酸盐岩的溶解控 制,而含碳和含硫的酸是造成碳酸盐岩溶解的主要 因素,其化学风化速率远远大于非喀斯特地区的多 数大河流^[2]。

基于对以上现实问题和研究现状的分析,本文 将探讨含有重金属盐、N、P和土壤微生物的污水对 碳酸盐岩的溶蚀作用,并分析其潜在的环境效应。

1 材料与方法

1.1 材料

碳酸盐岩试样(石灰石,40~60 目,约含方解石 95.87%和白云石 4.13%,去离子水淘洗晾干后备 用)、脲(分析纯,纯度大于 99.0%,成都金山化学试 剂有限公司)、纯水(比电阻 18.25 MΩ·cm)、250 mL 三角瓶

土壤悬液制备:称 50 g 鲜土样(含水量约 40%),加入到 50 mL 灭菌超纯水中,在恒温摇床中 145~150 r/min 摇荡 24 h,取上清液(含有大量土 壤微生物)。土壤样采自中国科学院地球化学研究 所工作园区草坪柏树根际区域。

培养基: 蔗糖 10.0 g, 酵母膏 0.3 g, (NH₄)₂SO₄ 0.5 g, MgSO₄ • 7H₂O 1.0 g, K₂HPO₄ • 3H₂O 1.0 g, pH 值为 7.0~7.5, 蒸馏水 1.0 L。 该培养基既为土壤微生物扩增所用,同时也是土壤 微生物对石灰石的溶蚀液。

1.2 实验仪器

万分之一天平(上海民桥精密科学仪器有限公司,型号 FA1004N)、原子吸收分光光度计(AAS,型 号 AA800+ MHS-15)、pH 计(上海大普仪器有限 公司,型号 PHS-3C)、扫描电子显微镜一能量扩散 X 射线谱仪(SEM-EDX,型号 JEOL JSM-6460LV)、X 射线粉晶衍射设备(XRD,Rigaku Denki Co., Tokyo, Japan,型号 D/max-2200)、往返气 浴恒温振荡器(上海梅香仪器有限公司,型号 CHA-D)

1.3 方 法

本文选用几种典型的重金属盐作为研究目标, 并根据各地区污染程度的不同,设计不同浓度的重 金属盐使其作用碳酸盐岩试样,以使实验结果尽可 能的与实际情况相符。

1.3.1 单一重金属盐溶液对石灰石的溶蚀作用 Pb(NO₃)₂ 溶液对石灰石试样的溶蚀实验:称量 0.25g石灰石试样加入到250mL三角瓶中,按100 mL/瓶分别加入不同浓度(按Pb²⁺浓度设置100、 200、400、600、800mg/L)的Pb(NO₃)₂溶液,每个 浓度设3个重复。28~30℃、145~150r/min处理。 每个浓度处理分别在第 12、24、48、72、96 和 132 h 测定相关指标。

CuSO₄ 和 CuCl₂ 溶液对石灰石试样的溶蚀实验:均按 Cu²⁺浓度为 500 mg/L 的加入量,其它处理同上,分别在第 44 h 和 72 h 测定相关指标。每 组实验重复 3 次。

以上两组实验都以纯水对石灰石的溶蚀作用作 为对照。

1.3.2 复合污染物对石灰石的溶蚀作用 土壤微 生物扩增培养液对石灰石试样的溶蚀实验:将称量 好的石灰石颗粒(0.25 g/瓶)加至 250 mL 三角瓶 中,然后将培养基按 100 mL/瓶加入,再将土壤悬液 按 5 mL/瓶的接入量接入到上述三角瓶中,28~ 30℃、145~150 r/min处理。分别在第44h和72h 测定相关指标。每组实验重复 3 次。以纯水和灭菌 培养基对石灰石的溶蚀作用作为对照。

设计六因素五水平的正交试验即 $L_{25}(5^6)$,各因 素和水平见表 1,共 25 组试验,每组重复 3 次,其他 处理同 Pb(NO₃)₂ 溶液对石灰石的溶蚀实验处理, 10 d 后测定相关指标。

表 1 六因素五水平的正交试验 L₂₅ (5⁶)的 各因素和对应水平

Table 1The factors and their levels in the
orthogonal test $L_{25}(5^6)$ m

mg/L

因素和 水平	ZnCl ₂ (按 Zn ²⁺)	Pb(NO3)2 (按 Pb ²⁺)	CdCl ₂ • 21/2H ₂ O (按 Cd ²⁺)	KH₂PO₄ (按P)	乙酸铵 (按 NH ₄ +)	脲
1	0	0	0	0	0	0
2	0	1	0.15	1	10	4
3	0	5	0.75	5	50	20
4	0	25	3.75	25	250	100
5	0	125	18.75	125	1250	500
6	3	0	0.15	5	250	500
7	3	1	0.75	25	1250	0
8	3	5	3.75	125	0	4
<u>,</u> 9	3	25	18.75	0	10	20
10	3	125	0	1	50	100
11	15	0	0.75	125	10	100
12	15	1	3.75	0	50	500
13	15	5	18.75	1	250	0
14	15	25	0	5	1250	4
15	15	125	0.15	25	0	20
16	75	0	3.75	1	1250	20
17	75	1	18.75	5	0	100
18	75	5	0	25	10	500
19	75	25	0.15	125	50	0
20	75	125	0.75	0	250	4
21	375	0	18.75	25	50	4
22	375	1	0	125	250	20
23	375	5	0.15	0	1250	100
24	375	25	0.75	1	0	500
25	375	125	3.75	25	10	0

1.3.3 相关指标的测定和计算 用酸滴定法^[26]测 定溶液的碱度(发现只有 HCO₃);用 AAS 测定金 属离子;用 SEM-EDX 分析矿物溶蚀前后表面形态 变化;用 XRD 分析矿物组成。

利用 Phreeqc interactive 2.17.4799 软件^[27], 分析了反应后溶液中的离子状态,并计算了方解石 和 CO₂ 的饱和指数;用 SPSS13.0 软件进行所测数 据的方差分析;用 Excel2003 和 Sigmaplot 10.0 软 件模拟溶蚀动力学方程。

设溶液中溶解无机碳重(mg)为 M(包括石灰石 溶蚀释放的 C 和反应体系吸收空气中的 C,本实验 中用 HCO₃ 中的 C 代表 M),石灰石分解出的 C 重 (mg)为 m',石灰石的溶蚀率(%)为 w,以 m 来表示 每溶蚀 1.0 g 石灰石反应体系所吸收的 C(mg),则:

式中,w表示石灰石的溶蚀量占实验用石灰石的量 的百分比。

$$m = \frac{M - m'}{实验用石灰石的量(g) \times w}$$
 (b)

如果 *m* 为正值,则表示有空气中的 CO₂ 溶于反应体 系中; *m* 为负值,则表示石灰石分解出的 C 和溶蚀 作用吸收的 C 从反应体系中释放到大气中。

由此进一步计算单位时间 *t*(h)内石灰石溶蚀 率(%/h,表示石灰石的溶蚀速率)为:

$$v = \frac{w}{t}$$
. (c)

2 结果与分析

2.1 Pb(NO₃)₂ 溶液对石灰石的溶蚀作用

不同浓度的 Pb(NO₃)₂(按 Pb²⁺浓度设置梯度) 对石灰石溶蚀特征不同(图 1)。pH 值测定结果显 示,石灰石在 Pb²⁺浓度为 400、600 和 800 mg/L 的 溶液处理后,溶液的 pH 值维持在 5.0~5.5 之间 (图 1A);而经 Pb²⁺浓度为 100、200 mg/L 溶液和纯 水处理后,溶液的 pH 值在 8 左右,随时间变化,pH 值变动不大。HCO₃ 的测定结果显示(图 1B), Pb²⁺浓度为 100 和 200 mg/L 的溶液处理石灰石 后,体系中 HCO₃ 浓度从 1.0 mmol/L 上升到 2.5 mmol/L 左右; Pb²⁺浓度为 400、600 和 800 mg/L 的溶液处理石灰石后,体系中 HCO₃ 浓度从 0.75 mmol/L 上升到 1.50 mmol/L 左右;而石灰石在纯 水中处理后,其中的 HCO₃ 浓度维持在 1.0~1.5 mmol/L 之间波动,可能是由于纯水的缓冲能力很 低引起的。图 1C 为反应体系中 Ca²⁺浓度变化趋

势,其中石灰石经纯水处理后,溶液中的 Ca²⁺浓度 在 10 mg/L 左右, Pb(NO3)2 的溶液处理后,其 Ca²⁺离子浓为 30~70 mg/L,而且还随时间延续逐 渐增大;而溶液中 Pb²⁺离子却大幅度减少,100 mg/L和 200 mg/L Pb²⁺浓度的溶液处理石灰石后, 溶液中检测不到 Pb²⁺,Pb²⁺浓度为 400、600 和 800 mg/L的溶液与石灰石相互作用后,Pb²⁺浓度分别

减少了 95.27%、93.49%和 93.09%。石灰石的溶 蚀率变化趋势(图 1D)与 Ca²⁺的浓度变化趋势呈正 相关关系,与纯水处理的对照相比,Pb(NO₃)₂ 溶液 能加速石灰石的溶蚀,但石灰石的溶蚀率不随着溶液 中 Pb(NO₃)₂ 浓度的升高而增加,推测可能是高浓度 的 Pb²⁺被更多地吸附在石灰石表面,阻止了石灰石 的进一步溶蚀。

将不同浓度的 Pb(NO₃)₂ 溶液对石灰石的溶蚀 率叠加求平均,可推算出其溶蚀速率(图 2)。

石灰石在 Pb(NO₃)₂ 溶液的作用下,其平均溶 蚀率与时间呈线性关系,斜率为 0.0245(图 2A)。 而单位时间内,石灰石在 Pb(NO₃)2 作用下平均溶 蚀速率与时间呈幂关系,幂次为一0.7487(图 2B), 即随着时间的推移,石灰石的溶蚀速率在降低,原因 可能有:1)Pb²⁺与溶液中的阴离子形成新的沉淀附 着在石灰石表面,阻止其进一步溶蚀;2)随着石灰石 的溶蚀,溶液中的 Ca²⁺和 HCO3⁻等离子也在增多, 使碳酸盐岩的溶解沉淀平衡[方程(1)]向沉淀方向 进行。该实验是在封闭体系(三角瓶)中进行的。可 以设想,在野外条件下,碳酸盐岩溶解出的离子浓度 会随地表径流的稀释,而不会大量聚集,结果使方程 (1)的平衡向碳酸盐岩溶解的方向进行,从而加深了 碳酸盐岩的溶蚀程度。

不同浓度 Pb(NO₃)₂ 溶蚀 1.0 g 石灰石吸收的 C量与时间关系(图 3),其纵轴正值表示为吸收 C; 负值表示石灰石被溶蚀后,表现为反应体系中的C

320

- 100 mg/L

量减少了。推断是形成新的碳酸盐沉 淀和(或) HCO₃ 转化成 CO₂ 释放到大 气中[方程(3)]。其中 Pb²⁺浓度为 400、600 和 800 mg/L 时,处理结果的 曲线有波动性,推测可能是在处理过程 中,大气压的变动和高浓度 Pb²⁺造成溶 液 pH 值降低,影响到 CO₂ 在反应体系 中的溶解和释放的波动。

由方程(1)和(2)可知,理论上计算 1.0g碳酸钙溶解可吸收 0~120 mg C (这里 Me 主要是 Ca),产生可溶性无机 碳(HCO₃ 中的 C)120~240 mg,若溶 液 pH 值降低到使这些无机碳转化成 CO₂释放到大气中,即

HCO₃⁻ + H⁺ ⇒ CO₂ + H₂O (3) 则从理论上讲,溶蚀 1.0 g 碳酸钙可向大气净释放 0 ~120 mg C。图 3 显示了实际测定值与该理论计算 值相符。例如当 Pb²⁺ 为 100 mg/L 时,在第 132 h, 实测溶蚀 1.0 g 石灰石吸收了 116.70 mg C,这个结 果接近于理论值(120 mg C),可以认为是石灰石溶 解吸收 C 的饱和值(最高值);随着 Pb(NO₃)₂ 浓度 的提高,特别是当 Pb²⁺ 浓度提高到 600 mg/L 时, 其作用石灰石后表现为向释放 C 的方向进行。

从实验结果看,不同浓度的 Pb(NO₃)₂ 对石灰 石的溶蚀会造成碳的吸收或释放。通过 Phreeqc Interactive 软件的分析发现,吸收碳的实验,CO₂ 饱 和指数虽然小于 0,但都接近 0,当 pH 略微降低, CO₂ 饱和指数将增大到大于 0,表现为释放 CO₂。 2.2 CuSO₄ 溶液、CuCl₂ 溶液和土壤微生物扩增培

Fig. 3 The relationship between time and quantity of absorbed C for 1.0 g limestone being corroded by different concentrations of lead nitrate solutions

养液对石灰石的溶蚀作用

图 4 为未处理石灰石与用 CuSO₄ 溶液和土壤 悬液分别处理 72 h 的石灰石表面形态 SEM 结果。 与未处理石灰石矿物表面特征(A)相比,CuSO₄ 溶 液处理的石灰石表面(B)显得凸凹不平,表现出明 显的被溶蚀后的结构,经 EDX 检测,发现其上胶结 着一层致密的 Cu 化合物,推测可能是碱式碳酸铜 [CuCO₃ • Cu (OH)₂ • xH₂O]或磷酸铜 [Cu₃ (PO₄)₂ • 3H₂O];土壤悬液对石灰石的溶蚀程度较 前两者处理的深(C),原因可能是土壤悬液中含有 多种微生物和矿物质,而微生物活动对石灰石造成 物理和化学破碎,又对石灰石中的矿物离子吸附吸 收,都加剧其溶解碎裂过程^[12],这些应该是石灰石 溶蚀作用加强的重要原因。

A. 未处理的石灰石的结果; B. CuSO4 溶液处理 72 h 的结果; C. 土壤微生物扩增培养液处理 72 h 的结果 A. SEM pictures of surface shapes of the limestone unprocessed; B. corroded for 72 h by copper sulfate;

C. and by soil solution containing microbes

图 4 CuSO4 溶液和土壤微生物扩增培养液处理石灰石 72 h 的 SEM 图片

Fig. 4 SEM pictures of surface shapes of the limestone, which has been corroded for 72 h by copper sulfate or soil solution containing microbes

表 2 为 CuSO₄ 溶液、CuCl₂ 溶液、土壤微生物扩增 培养液、培养基和纯水作用石灰石 44 h 和 72 h 后 的有关指标。经 SPSS 软件方差分析(LSD 法,0.05 水平),CuSO₄、CuCl₂ 溶液和土壤微生物扩增培养 液对石灰石作用后,溶液 pH 值都显著低于培养基 和纯水处理的,而石灰石溶解释放的 Ca²⁺ 量都显著 高于培养基和纯水处理的。在 C 的转化方面,前三 者处理的结果表现为反应体系中的 C 少于石灰石 溶解释放出的 C,即反应体系中的 C 释放到了大气 中;而培养基和纯水处理的结果表现为反应体系中 的 C 多于石灰石溶解释放出的 C,即有更多的外界 C 溶入反应体系中。而 CuSO4 溶液和 CuCl₂ 溶液 对石灰石溶蚀效果不尽相同,原因可能是 SO²⁻和 Cl⁻ 在反应体系中的浓度和性质不同造成的。

表 2 CuSO4 溶液、CuCl2 溶液、土壤微生物扩增培养液、培养基和纯水作用石灰石后两个时间段的有关指标 Table 2 The results of limestone being corroded for 44 h and 72 h by copper sulfate, copper chloride, soil solution containing microbes, culture medium and purified water

		44	h		72 h			
因 素	pН	HCO_3^- /mmol • L^{-1}	Ca^{2+} /mg • L ⁻¹	M-m'®	pH	HCO_3^- /mmol • L ⁻¹	Ca^{2+} /mg • L ⁻¹	M-m ^{'D}
CuSO ₄	4.27	0.75	80.09	—3. 90	4.39	0.80	93.96	-4.68
CuCl ₂	4.09	0.98	41.74	-1.32	4.13	1.01	43.43	-1.39
土壤微生物扩增培养液	4.47	2.45	260.60		4.99	4.28	376.48	
培养基	7.23	3.15	5.25	3.47	7.26	3.30	5.65	3.62
清水	8.15	1.37	15.32	0.73	8.08	1.18	13.69	0.60

注:①为公式(b)中的 M-m',其中正值表示吸收的 C 量(mg),负值表示释放的 C 量(mg)

由表 2 和图 4 的结果推断,反应体系 C 量减少 的可能原因有:1)重金属离子(Cu²⁺)和微生物的代 谢作用使溶液显酸性(pH 在 4 左右),HCO₃ 转化 成了 CO₂,即方程(3);2)HCO₃ 与重金属离子 Cu²⁺形成新的碳酸盐类。而反应体系 C 量增加的原 因可能是方程(1)的反应在反应体系中起主导作用。 利用 SPSS 软件,比较各个试验对石灰石的溶蚀率 显著性(LSD法,0.05水平),第 20、22、23、24 和 25 组试验对石灰石的溶蚀率最大,这些试验中 Zn²⁺浓 度为第五个水平,即 375 mg/L;第 5、10、16、17、18、 19 和 21 组次之,这些试验中,Zn²⁺、Pb²⁺、Cd²⁺浓 度高,P浓度低。即不同的污水及其不同的浓度对 石灰石试样的溶蚀效果不尽相同。

2.3 复合污染物对石灰石的溶蚀作用

复合污水对石灰石的溶蚀率结果如图 5 所示。

Fig. 5 The corrosion rate of limestone being corroded by compound drainage in the orthogonal test

复合污染物对石灰石的溶蚀率正交试验结果表 明, $T_a > T_d > T_b > T_c > T_e > T_f$,说明 a 因素即 ZnCl₂ 对 石 灰 石 的 溶 蚀 率 影 响 最 大,其 次 是 KH₂PO₄ 和 Pb(NO₃)₂,而脲(有机氮)对石灰石的 溶蚀率影响最小(表 3)。在该试验设定的浓度范围 内,对于 ZnCl₂和 Pb(NO₃)₂,浓度越大,其对石灰石 的溶蚀率影响越大;而对于 KH₂PO₄,在 P 浓度为 0 ~25 mg/L 范围内,浓度越大,其对石灰石的溶蚀率 影响越小,P 在 25~125 mg/L 范围内,浓度越大, 其对石灰石的溶蚀率影响越大,但差别不是很明显; 对于 CdCl₂ · 1/2H₂O,当 Cd²⁺浓度为 0~0.75 mg/L时,其对石灰石的溶蚀率随浓度增高而增大, 当 Cd²⁺浓度为 0.75~18.75 mg/L 时,其对石灰石 的溶蚀率随浓度增大而降低。

表 3 复合污染物对石灰石试样的溶蚀率正交试验处理结果 Table 3 The result of proportion of limestone corrosion quantity by compound drainage in the orthogonal test

水 平	a ZnCl ₂	<i>b</i> Pb(NO ₃) ₂	c CdCl ₂ • 21/2H ₂ O	d KH2PO4	e乙酸铵	
$/mg \cdot L^{-1}$	Zn^{2+}	Pb ²⁺	Cd ²⁺	TP(总磷)	无机氮	有机氮
1	0	0	0	0	0	0
2	3	1	0.15	1	10	4
3	15	5	0.75	5	50	20
4	75	25	3.75	25	250	100
5	375	125	18.75	125	1250	500
	$I_{a} = 6.41$	I _b =15.94	$I_{c} = 22.87$	I _d =44.57	$I_{e} = 25.98$	$I_{f} = 27.29$
	∏ _a =8.53	∐ _b =19.15	∏ _c =31.14	∏ _d =34.17	∏ _c =24.81	∏ _f =28.19
试验	∭ _a = 6.13	<u>∏</u> _b =28.71	∭ _c =41.83	∭ _d =25.96	∭ _e =18.50	∭ _f =22.56
结果	$N_a = 36.30$	$W_{b} = 28.49$	$IV_{c} = 29.06$	[V _d =13.26	$W_{e} = 33.43$	[V _f =33.73
处埋	$V_a = 81.62$	$V_{b} = 46.71$	V _c =14.10	$V_d = 21.04$	$V_{e} = 36.28$	$V_f = 27.22$
	$T_a = 75.49$	$T_b = 30.77$	$T_c = 27.73$	$T_d = 31.31$	$T_{e} = 17.78$	$T_f = 11.17$

注: I、II、II、II、II和 V分别为对应列因素的 1、2、3、4 和 5 水平对应试验结果之和,其值越大,表示此因素的该水平对试验结果影响越大; T 为对应列的 I、II、II、II 、II ↓ V 中最大值和最小值之差,其值越大,说明该因素对试验结果影响最大,在这个正交试验中是影响试验结果的主要 因素。

挑选几个溶蚀程度不同的的试验组合,用 XRD 观测其残余物的矿物组成,其中 19 号处理结果为: 方解石 94.67%,白云石 3.45%,伊利石 0.60%,角 闪石 0.71%,石膏 0.32%,勃姆石 0.25%;20 号处 理结果为:方解石 97.58%,白云石 2.42%;25 号处 理结果为:方解石 96.22%,白云石 3.21%,高岭石 0.66%,伊利石少许。这些不同于原矿的成分(如伊 利石、角闪石、石膏、勃姆石和高岭石),可以认为是 复合污水与碳酸盐岩作用后形成的次生矿物。

复合污染物对石灰石的作用 10 d 后各个试验 组有关指标如表 4。结果显示,只有第 17、24 和 25 号试验结果中的 C 减少了,其余的都表现为反应体 系吸收外界的 C。对贵州喀斯特地区河流研究显 示,HCO₃ 是河水中最主要的阴离子,其中乌江水 系 HCO₃ 变化范围为 2.1~4.1 mmol /L,沅江水 系河水 HCO₃ 变化范围 0.3~5.0 mmol /L^[28]。本 研究显示,含有高浓度乙酸铵的污水对石灰石处理 后,反应体系的 HCO₃ 浓度大多比上述调查的结果 要高数倍甚至十几倍,而其它溶液中的 HCO₃ 浓度 与上述结果非常接近。

3 污水对碳酸盐岩的溶蚀机理和环境 效应分析

3.1 污水对碳酸盐岩的溶蚀机理

关于碳酸盐岩溶蚀的机理,有选择性吸附和溶 蚀假说^[29],即方解石具有特殊的晶体结构,其表面 存在部分悬空键,为降低表面能,需与外来的元素结 合成稳定化学键,而台阶、空位、阶梯部位处于高表 面能状态;这些表面化学活性强的部位也是选择性 溶蚀的部位,因为这些部位也是与外部环境作用最 强的部位。按此机理推断,碳酸盐岩的溶蚀作用是 碳酸盐岩的特定部位主动吸附外来离子,而外来的 微生物也会主动附着在这些部位,这些被吸附的离 子或者微生物可再对碳酸盐岩进行溶蚀作用。微生 物对碳酸盐岩风化机理包括其生长的机械作用力和 生理代谢作用^[11,30],前者使碳酸盐岩成分松动剥落 和增加其风化表面积,后者包括从碳酸盐岩表面吸 收养分和分泌代谢产物间接作用等。Bennett 等^[31]

实验 pH 序号	HCO ₃	- Ca ²⁺ 浓度 L ⁻¹ /mg・L ⁻¹	Mg ²⁺ 浓度 /mg・L ⁻¹	$M-m^{'\oplus}$	Cd ²⁺ 减	Zn ²⁺ 减 少率(%)	Pb ²⁺ 减 少率(%)	
	$/mmol \cdot L^{-1}$				少率(%)			
1	8.37	1.46	8.20	0.07	1.25	×	×	×
2	7.81	1.85	9.83	0.08	1.62	71.05	×	100.00
3	7.98	2.66	10.14	0.06	2.58	86.34	×	100,00
4	7.74	11.21	10.98	0.08	12.79	63.39	×	100.00
5	6.99	53.63	26.04	0.26	62.81	90.13	×	100.00
6	7.66	10.44	6.56	0.04	12.15	61.31	68.54	×
7	6.48	47.51	14.77	0.10	56.15	35.08	37.81	100.00
8	6.65	2.21	5.03	0.12	2.34	56.43	92.50	100.00
9	7.73	2.06	8.20	0.07	1.98	94.68	57.08	100.00
10	7.58	3.06	51.62	0.11	0.57	×	59.43	100.00
11	7.23	2.82	9.09	0.15	2.83	100.00	99.53	×
12	7.98	4.06	11.48	0.08	4.18	62.23	85.16	100.00
13	6.84	11.10	9.82	0.09	12.74	36.28	34.68	100.00
14	6.99	54.96	18.06	0.10	64.91	×	21.12	100.00
15	7.51	1.08	13.72	0.12	0.47	100.00	99.53	100.00
16	6.52	54.62	71.24	0.19	61.31	5.17	4.88	×
17	7.71	1.63	32.88	0.09	-0.02	44.19	72.72	100.00
18	7.87	1.92	28.82	0.10	0.57	×	99.46	100.00
19	7.32	2.71	48.36	0.13	0.34	100.00	99.50	100.00
20	7.57	12.00	187.19	0.29	3.16	31.51	88.91	100.00
21	6.97	3.72	65.54	0.18	0.52	35.87	40.96	×
22	8.30	7.67	124.23	0.35	1.73	×	98.88	100.00
23	7.18	53.82	236.51	0.45	50.41	21.91	67.03	61.48
24	7.67	1.80	202.64	0.36	-10.03	65.75	99.37	100.00
25	7,17	1.80	199 03	0.33	-9.80	7.96	85 14	100.00

表 4 复合污染物对石灰石的溶蚀作用 10 d 后各个试验组有关指标

4 The results of limestone corrosion by artificial compound drainage after 10 d in the orthogonal test

注:×表示处理前后该离子浓度均为0 mg/L;①为公式(b)中的 M-m',其中正值表示吸收的 C 量(mg),负值表示释放的 C 量(mg)

提出矿物的风化速率取决于其痕量的营养成分和微 生物生态;而 Ehrlich^[32]和 Barker 等^[33]则指出微生 物风化作用机制主要是其新陈代谢的产物和分泌的 化学物质腐蚀作用或(和)通过氧化或还原岩石组分 或使其发生成岩变化等作用。而以下两点可能与污 水对碳酸盐岩溶蚀的作用机理有关。

3.1.1 水化学性质改变 矿石中的硫或硫化物是 矿山酸水形成的核心因素^[9,10],但 Pb(NO₃)₂ 和 CuCl₂ 溶液,虽然没有 S,但都表现为酸性。重金属 盐造成水溶液的 pH 值降低的原因可用下列方程式 解释:

 $Hm^{2+} + HCO_3^- \Longrightarrow HmCO_3 + H^+$, (4)

 $Hm^{2+} + 2H_2O \implies Hm(OH)_2 + 2H^+$ 。 (5) 其中, Hm^{2+} 表示二价重金属离子。碳酸盐岩在这 些酸性溶液中(pH < 5.6),很容易被分解,释放出其 中的组成成分。

另外,在相同条件下,难溶盐的溶度积常数 K_{sp} 不同,如:{CaCO₃(2.8×10⁻⁹),MgCO₃(3.5×10⁻⁸)}>CuCO₃(2.34×10⁻¹⁰)>ZnCO₃(1.4×10⁻¹¹)>CdCO₃(5.2×10⁻¹²)>PbCO₃(7.4× 10⁻¹⁴)>Pb(OH)₂(1.2×10⁻¹⁵)>Cu(OH)₂(4.8× 10⁻²⁰),溶度积越小,表明该金属化合物越难溶解。 这样在含有重金属离子的碳酸盐岩溶蚀体系中,首 先重金属离子与碳酸盐岩中的 Ca 和 Mg 发生置换 作用,然后形成新的重金属化合物沉淀与碳酸盐岩 发生胶结作用(图 4),这样重金属离子的参与,破坏 碳酸盐岩的溶解沉淀平衡(方程 1),加上 pH 值的 降低,使碳酸盐岩向溶解的方向进行,促进其溶蚀。 3.1.2 熵增原理 熵增原理告诉我们,在自然条件 下,物质总趋向于向熵增的方向(即零乱度大的方 向)发展。故可以说,碳酸盐岩的溶蚀是自然条件下 的趋势,当有外界物质(如含有重金属盐的污水)的 参与,其溶蚀程度和速率会被改变。

若外界物质促使其溶蚀加快和程度加深,即熵 增加,则该溶蚀系统就必然会有其它物质向熵减的 方向发展,如形成新的沉淀或次生矿物或伴随着碳 酸盐岩-水-气界面中气体(如 CO₂)的溶解,如图 4B 显示 CuSO₄ 溶液对石灰石的溶蚀表现为有新的铜 盐沉淀;有重金属离子参与下,碳酸盐岩溶解沉淀方 程(1)向溶解方向进行。 若外界物质抑制碳酸盐岩的溶蚀,即熵减小,该 溶蚀系统的其它物质则向熵增加的方向发展,例如: 在封闭系统中,随着碳酸盐岩的逐渐溶蚀,溶液中的 阴阳离子趋于饱和的情况下,方程(1)向形成碳酸盐 沉淀的方向进行,而碳酸盐岩-水-气界面中 HCO₃ 则转化成 CO₂ 和 H₂O。

3.2 污水对碳酸盐岩溶蚀的环境效应

重金属盐(Pb(NO₃)₂、CuSO₄等)能强烈刺激 碳酸盐岩的溶蚀。石灰石在 Pb(NO₃)₂ 溶液作用 下,第132 h时,其溶蚀率达到 6.68%。我们认为, 虽然实验所用碳酸盐岩颗粒大小和反应条件等与实 际相比有差异,即使这样,重金属盐溶液对碳酸盐岩 的溶蚀作用还是不能被低估的。

表 2 结果显示,高浓度 Cu²⁺ 对石灰石溶蚀后表 现为溶液 HCO₃ 浓度的减少和释放 CO₂,这时碳酸 盐岩溶蚀成为一个碳源。而图 3 显示低浓度 Pb(NO₃)₂作用石灰石造成其溶蚀,表现为吸收空气 中的 CO₂,这时碳酸盐岩溶蚀却成为一个碳汇;当重 金属盐浓度保持不变,随着时间进行,石灰石的溶蚀 作为碳汇的强度在逐渐增大(在一定 pH 值范围 内)。另外,复合污水对石灰石作用 10 天后,其溶液 pH 大都维持在微碱性(表 4),这可能是复合污水对 石灰石的溶蚀促使大气中更多的 CO₂ 溶解而变成 HCO₃,pH 值略有升高。但是应该认识到碳酸盐 岩溶蚀作为碳汇是暂时的,如果有微生物或更多的 重金属盐等参与到该反应系统中,又会造成溶液的 pH 值降低,HCO₃ 会转化成 CO₂ 而又被释放到大 气中。

含有重金属盐和土壤悬液的污水对石灰石作用 后,造成其分解而释放出大量的 Ca²⁺ (图 1C,表 2 和表 4),该释放量是纯水处理的数倍到几十倍。韩 贵琳等调查也发现[29],除了纯水江等几个流经硅酸 盐碎屑岩的河水具有较低的总阳离子浓度外,喀斯 特地区的大多数河流水样的总阳离子浓度平均值 (4.14 meq/L)远高于世界河水平均值(1.25 meq/ L^[34]),而且也高于长江水样的总阳离子浓度(平均 为 2.8 meq /L^[34])。如果碳酸盐岩溶蚀释放的大量 Ca²⁺随着地表径流汇人大海后,会造成河流入海口 的沿海局部区域 Ca2+离子浓度升高,从而改变该区 域的 Ca/Mg 比例。有研究表明[13~16],海洋生物生 长需要特定的 Ca/Mg 比例,当沿海 Ca/Mg 比例失 调时,势必会对沿海海洋生物正常的生长繁殖和沿 海渔业造成一定的影响。另外, Ca²⁺ 是藻类(如蓝 藻等)生长必需的矿质营养物质,当其浓度为 9.80

mg/L 藻类生长最好^[35,36]。当有大量 Ca²⁺ 流入大海后,对沿海的蓝藻生长要么有抑制作用,要么有促进作用,这在一定程度上会影响赤潮的发生和发展。

碳酸盐岩经含有重金属盐的污水溶蚀后,又有 新的重金属盐胶结在碳酸盐岩表面(图 4)。这种现 象若发生在喀斯特地区,则原来的碳酸盐岩表面胶 结着重金属化合物,这样势必会对该地区的生态环 境造成影响,而不仅仅是荒漠化的问题。

4 结 论

(1)重金属盐溶液(如 Pb(NO)₂、CuCl₂、CuSO₄ 溶液等)和土壤微生物扩增培养液均能加速石灰石 的溶蚀,使大量 Ca²⁺得以释放。

(2)低 Pb²⁺浓度(小于 200 mg/L)的 Pb(NO)₂ 溶液对石灰石的溶蚀表现为吸收外界的 C;高浓度 的 Pb(NO)₂、CuCl₂、CuSO₄ 溶液和土壤微生物扩增 培养液使反应体系的 pH 降低,对石灰石的溶蚀最 终表现为释放 CO₂。

(3)含有重金属离子的污水对石灰石溶蚀后,重 金属离子结合反应体系中的 HCO₃ 等阴离子,形成 新的重金属盐类胶结在石灰石表面。另外,复合重 金属盐溶液对石灰石溶蚀后,有次生矿物生成。

考虑到实验用的石灰石纯度较高、其被作用的 比表面积较大、所用污水的污染物浓度偏高和冲刷 石灰石速率较快,现实条件下碳酸盐岩的溶蚀程度 和造成的结果可能不同于实验值。但现实中污水成 分可能更复杂,故该研究中含有重金属离子和(或) 微生物的污水对石灰石溶蚀的数据具有一定的参考 价值。

致 谢:本实验室博士研究生莫彬彬、姚敏杰等 在实验方法方面提供了不少帮助,特此致以衷心的 感谢!

参考文献 (References):

- [1] 白占国,万国江.贵州碳酸盐岩区域的侵蚀速率及环境效应研究[J]. 土壤侵蚀与水土保持学报,1998,4 (1):1-7,46.
 Bai Zhanguo, Wan Guojiang. Study on watershed erosion rate and its environmental effects in Guizhou Karst region[J]. Journal of Soil Erosion and Soil and Water Conservation, 1998,4 (1):1-7,46. (in Chinese with English abstract)
- [2] Han G, Liu C. Water geochemistry controlled by carbonate dissolution: A study of the river waters draining Karst-dominated terrain Guizhou Province, China[J]. Chemical Geology, 2004, 204(1/2):1-21.

[3] 袁道先.论岩溶环境系统[J].中国岩溶,1998,7(3):179-186.

Yuan Daoxian. On the Karst environment system[J]. Carsologica Sinica,1998,7(3):179-186. (in Chinese with English abstract)

- [4] 吴迪,李存雄,邓琴,秦樊鑫,吴坤. 贵州省典型铅锌矿区土壤重 金属污染状况评价[J]. 贵州农业科学,2010,38(1):92-94.
 Wu Di, Li Cunxiong, Deng Qin, Qin Fanxin, Wu Kun. Evaluation on soil heavy metal pollution around typical lead and zinc mining areas in Guizhou[J]. Guizhou Agricultural Sciences, 2010,38(1):92-94. (in Chinese with English abstract)
- [5] 罗海波,刘方,龙健,吴永贵,朱建.贵州山区煤矸石堆场重金属 迁移对水稻土质量的影响及评价[J].水土保持学报,2010,24 (3);71-74,79.

Luo Haibo, Liu Fang, Long Jian, Wu Yonggui, Zhu Jian. Impacts of heavy metal migration from gangue yard on paddy soil quality in hilly areas of Guizhou Province and its evaluation [J]. Journal of Soil and Water Conservation, 2010, 24(3); 2010,24(3);71-74,79. (in Chinese with English abstract)

[6] 吴志强,顾尚义,李海英,吴红.贵州黔西北铅锌矿区土壤重金
 属污染及生物有效性研究[J].安全与环境工程,2009,16(3):1
 -5,17.

Wu Zhiqiang, Gu Shangyi, Li Haiying, Wu Hong. Research on the heavy metal contamination and bioavailability of contaminated soils in Pb-Zn mining areas of northwestern Guizhou Province[J]. Safety and Environmental Engineering, 2009, 16 (3):1-5,17. (in Chinese with English abstract)

- [7] 郭怀成,孙延枫. 滇池水体富营养化特征分析及控制对策探讨
 [J]. 地理科学进展,2002,21(5):500-506.
 Guo Huaicheng, Sun Yanfeng. Characteristic analysis and control strategies for the eutrophicated problem of the Lake Dianchi[J]. Progress in Geography,2002,21(5):500-506. (in Chinese with English abstract)
- [8] 冯太国,万新南.富营养化对湖泊的危害及修复技术探讨[J]. 水土保持研究,2006,13(2):145-146,161.
 Feng Taiguo, Wan Xinnan. The harms of eutrophication and analysis of restoration method to Lake[J]. Research of Soil and Water Conservation,2006,13(2):145-146,161. (in Chinese
- [9] 王柱强,胡巍.矿山酸水成因分析及治理技术评价[J].中国矿 业,2010,19(5):37-40.

with English abstract)

Wang Zhuqiang, Hu Wei. Causal analysis of acid mine drainage and evaluation of some control techniques [J]. China Mining Magazine, 2010, 19(5); 37-40. (in Chinese with English abstract)

- [10] Akabzaa T M, Armah T E K, Baneong-Yakubo B K. Prediction of acid mine drainage generation potential in selected mines in the Ashanti metallogenic belt using static geochemical methods[J]. Environmental Geology, 2007, 52:957-964.
- [11] 连宾.碳酸盐岩风化成土过程中的微生物作用[J].矿物岩石
 地球化学通报,2010,29(1):52-56.
 Lian Bin. Microbial roles in the genesis of soil from carbonate

rock weathering [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2010, 29(1); 52-56. (in Chinese with English abstract)

- [12] 窦传伟,连宾. 一株岩生真菌对方解石的风化作用[J]. 矿物学报,2009,29(3);387-392.
 Dou Chuanwei, Lian Bin. Microbial weathering of calcite by rock-inhabiting fungi[J]. Acta Mineralogica Snica, 2009, 29 (3);387-392.
- [13] 陈昌生,纪德华,王兴标,陈政强. Ca²⁺、Mg²⁺对凡纳滨对虾存活及生长的影响[J]. 水产学报,2004,28(4):413-418.
 Chen Changsheng, Ji Dehua, Wang Xingbiao, Chen Zhengqiang. Effects of Ca²⁺ and Mg²⁺ on survival and growth of Penaeus vannamei[J]. Journal of Fisheries of China,2004, 28(4):413-418. (in Chinese with English abstract)
- [14] 王茂林,张秀梅,黄国强,张沛东,李君丰.不同钙、镁浓度对褐 牙鲆幼鱼生长及 SOD 和 CAT 酶活力的影响[J]. 渔业科学进 展,2010,31(3):29-36.

Wang Maolin, Zhang Xiumei, Huang Guoqiang, Zhang Peidong, Li Junfeng. Effects of Ca²⁺ and Mg²⁺ concentrations on growth, SOD and CAT enzymatic activity of juvenile Paralichthys olivaceus[J]. Progress in Fishery Sciences, 2010, 31(3); 29-36. (in Chinese with English abstract)

[15] 张树林,邢克智,吴士顺,郭立,阚伟兵. Mg²⁺/Ca²⁺ 值对河餐 大眼幼体育成Ⅲ期仔餐的影响[J].水产科学,2002,21(5):1 -3.

> Zhang Shulin, Xing Kezhi, Wu Shishun, Guo Li, Kan Weibing. The effects of proportion of ion Mg^{2+} and Ca^{2+} on Eriocheir sinensis from megalopa to juvenile $\prod [J]$. 2002,21(5):1 -3. (in Chinese with English abstract)

[16] 刘存妓,刘丽静,王军霞,张亚娟.盐碱地渗水钙镁离子对凡纳 滨对虾酶活力的影响[J].动物学杂志,2007,42(2):129-133.

Liu Cunqi, Liu Lijing, Wang Junxia, Zhang Yajuan. Effects of Ca^{2+} , Mg^{2+} in brackish water from saline-alkaline area on enzymatic activities of American white shrimp[J]. Chinese Journal of Zoology, 2007, 42(2); 129–133. (in Chinese with English abstract)

- [17] 邱冬生,庄大方,胡云锋,姚锐.中国岩石风化作用所致的碳汇 能力估算[J].地球科学,2004,29(2):177-182,190.
 Qiu Dongsheng,Zhuang Dafang,Hu Yunfeng,Yao Rui. Estimation of carbon sink capacity caused by rock weathering in China[J]. Earth Science,2004,29(2):177-182,190. (in Chinese with English abstract)
- Probst J L, Amiotte S P, Tardy Y. Global continental erosion and fluctuations of atmospheric CO₂ consumed during the last 100 years [A]. Kharaka, Y K, Maest A. Proc. 7th Int. Symp [C]. W. R. I., Park City, Utah, U. S. A., July 13-18, 1992, Balkema, Rotterdam, 483-486.
- [19] Amiotte S, Probst J L. Flux de CO₂ consommé par altération chimique continentale; Influences du drainage et de la lithologie[J]. Comptes Rendus de l'Academie des Sciences Paris, 1993 (317);615-622.
- [20] Dreybrodt W, Lauckner J, Liu Z, Svensson U, Buhmann D. The kinetics of the reaction CO₂ + H₂O→H⁺ + HCO₃⁻ as one of the rate limiting steps for the dissolution of calcite in the system H₂O-CO₂-CaCO₃ [J]. Geochim. Cosmochim. Acta,

1996,60(18):3375-3381.

[21] 刘丛强,蒋颖魁,陶发祥,郎赟超,李思亮.西南喀斯特流域碳 酸盐岩的硫酸侵蚀与碳循环[J].地球化学,2008,37(4):404 -414.

> Liu Congqiang, Jiang Yingkui, Tao Faxiang, Lang Yunchao, Li Siliang. Chemical weathering of carbonate rocks by sulfuric acid and the carbon cycling in Southwest China[J]. Geochimica, 2008, 37 (4):404-414.

- [22] 袁道先.碳循环与全球岩溶[J].第四纪研究,1993,1:1-6. Yuan Daoxian. Carbon cycle and global Karst[J]. Quaternary Sciences,2007,42(2):129-133. (in Chinese with English abstract)
- [23] 徐胜友,蒋忠诚. 我国岩溶作用与大气温室气体 CO2 源汇关系的初步估算[J]. 科学通报,1997,42(9):953-956.
 Xu Shengyou, Jiang Zhongcheng. Preliminary estimates of the relationship between Karstification and the greenhouse gas CO2 in China[J]. Chinese Science Bulletin, 1997, 42(9):953-956. (in Chinese)
- [24] Singh A K, Mondal G C, Singh P K, Singh S, Singh T B, Tewary B K. Hydrochemistry of reservoirs of Damodar River basin, India: weathering processes and water quality assessment [J]. Environmental Geology, 2005, 48, 1014-1028.
- [25] Liu Z, Dreybrodt W, Wang H. A new direction in effective accounting for the atmospheric CO₂ budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms [J]. Earth-Science Reviews, 2010, 99:162-172.
- [26] 中华人民共和国行业标准.碱度(总碱度、重碳酸盐和碳酸盐) 的测定(酸滴定法)[S]. SL 83-1994.
 Determination of alkalinity, bicarbonate and carbonate(Acid titration method)[S]. SL 83-1994. (in Chinese)
- [27] Parkhurst D L, Appelo C A J. User's guide to Phreeqc (version 2)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[A]. Water-Resources Investigations Report[Z]. Denver, Colorado, U. S. 1999:1-312.
- [28] 韩贵琳,刘丛强.贵州喀斯特地区河流的研究——碳酸盐岩溶 解控制的水文地球化学特征[J].地球科学进展,2005,20 (4);394-406.

Han Guilin, Liu Congqiang. Hydrogeochemistry of rivers in

Guizhou Province, China; Constraints on crustal weathering in Karst terrain[J]. Advances in Earth Science, 2005, 20 (4): 394-406. (in Chinese with English abstract)

- [29] 朱立军,李景阳.碳酸盐岩风化成土作用及其环境效应[M].
 北京:地质出版社,2004:93-96.
 Zhu Lijun, Li Jingyang. Carbonate rock weathering, soil formation and environmental effects [M]. Beijing; Geological Publishing House,2004:93-96 (in Chinese).
- [30] 连宾,陈烨,朱立军,杨瑞东. 微生物对碳酸盐岩的风化作用
 [J]. 地学前缘,2008,15(6):90-99.
 Lian Bin,Chen Ye,Zhu Lijun,Yang Ruidong. Progress in the study of the weathering of carbonate rock by microbes[J].
 Earth Science Frontiers, 2008, 15(6):90-99. (in Chinese with English abstract)
- [31] Bennett P C, Rogers J R, Choi W J, Hiebert F K. Silicates, silicate weathering, and microbial ecology [J]. Geomicrobiology Journal, 2001, 18:3-19.
- [32] Ehrlich H L. Geomicrobiology: Its significance for geology[J]. Earth-Science Reviews, 1998, 45, 45-60.
- [33] Barker W W, Welch S A, Chu S, Banfield J F. Experimental observations of the effects of bacteria on aluminosilicate weathering [J]. American Mineralogist, 1998, 83, 1551 – 1563.
- [34] Meybeck M. Pathways of major elements from land to ocean through rivers[A]. Martin J M, Burton J D, Eisma D. River inputs to ocean systems [C]. New York: United Nations Press, 1981, 18-30.
- [35] 宦海琳,韩岚,李建宏,翁永萍. 五株微囊藻毒素降解菌的分离 与鉴定[J]. 湖泊科学,2006,18 (2):184-188.
 Huan Hailin, Han Lan, Li Jianhong, Weng Yongping. Isolation and identification of five microcystin degrading bacterial strains[J]. Journal of Lake Sciences,2006,18 (2):184-188.
 (in Chinese with English abstract)
- [36] 潘欣,李建宏,戴传超,浩云涛,马字翔,王雪锋.小球藻异养培养的研究[J].食品科学,2002,23 (4):28-33.
 Pan Xin,Li Jianhong,Dai Chuanchao,Hao Yuntao,Ma Yuxiang,Wang Xuefeng. Study on heterotrophic growth of Chlorella ellipsoidea[J]. Food Science, 2002,23 (4):28-33. (in Chinese with English abstract)