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Abstract

The Bigeleisen–Mayer equation has been the theoretical corner-stone of stable isotope geochemistry for decades. It is nec-
essary to use harmonic frequencies to justify several of the approximations and the Teller–Redlich product rule employed
inside the Bigeleisen–Mayer equation. However, since the publication of the Bigeleisen–Mayer equation in 1947, many
researchers have ignored this important requirement. They either directly used experimentally observed fundamental frequen-
cies from vibrational spectra, which include anharmonicity contributions, or used harmonic frequencies from quantum chem-
ical calculations but improperly scaled the frequencies to fit the experimentally observed fundamentals. Such errors have
become one of the major error sources in the prediction of equilibrium isotopic fractionation. Moreover, many researchers
still use the Bigeleisen–Mayer equation to handle H/D exchange reactions, even though it has been established that the Bigel-
eisen–Mayer equation is not sufficient for dealing with H/D isotope exchange reactions. This mishandling could easily cause
several per mil errors in isotope fractionation factor.

Since quantum chemical calculations now play a central role in understanding stable isotope fractionation, it is necessary
to clarify these important issues. Several simple gaseous molecules are used as examples in this study to show how important it
is to use pure harmonic frequencies instead of experimental fundamentals within the Bigeleisen–Mayer equation and to use
theoretical methods beyond the Bigeleisen–Mayer equation when dealing with the H/D isotope exchange reactions. Adapting
the work of Richet et al. (1977), we also discussed a series of modified formalisms to include higher-order corrections to the
Bigeleisen–Mayer equation, such as anharmonicity, quantum mechanical rotation, centrifugal distortion, vibration–rotation
coupling, hindered internal rotation, etc. The issues and methods discussed in this study can help to improve the accuracy of
theoretical prediction of equilibrium stable isotope fractionation in geochemistry.
� 2010 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

Theoretical calculation of isotopic fractionations apply-
ing statistical mechanical methods was suggested almost
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one century ago (Lindemann, 1919; Lindemann and Aston,
1919; Urey and Rittenberg, 1933; Urey and Greiff, 1935).
Urey (1947) and Bigeleisen and Mayer (1947) indepen-
dently proposed a formalism to estimate the isotopic fracti-
onations without calculating the moments of inertia
through employing the Teller–Redlich product rule
(Redlich, 1935). In addition, Urey (1947) first brought up
the idea of using O isotopes as the paleothermometer which
immediately drew much attention of geologists and
triggered the formation of stable isotope geochemistry
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(Urey et al., 1951). For decades, this method (so-called
Bigeleisen–Mayer equation or the Urey model) has been
the theoretical corner-stone of stable isotope geochemistry.
The advantage of using this method is that it largely simpli-
fied the calculation procedure by cancelling out as many
identical energy terms as possible before the final numerical
calculation, concentrating on the vibrational frequency
shifts of the different isotopologues (Bigeleisen, 1965).

Theoretically, the Bigeleisen–Mayer equation needs pure
harmonic vibrational frequencies to justify the harmonic
oscillator and rigid rotator approximations and the
Teller–Redlich product rule used within it. Wilson et al.
(1955) have shown how to obtain the exact expression of
the Teller–Redlich product rule by employing harmonic
oscillator and rigid rotator approximations. However, this
requirement of using harmonic frequencies has been largely
ignored. One reason is that, except for diatomic molecules,
it is very difficult to obtain pure harmonic frequencies from
the experimental spectroscopic data, especially for poly-
atomic molecules with low symmetry. Therefore, many
researchers, who did not have any practical means to obtain
pure harmonic frequencies, chose to either use the experi-
mental fundamentals to build the harmonic force field or
even directly use the experimental fundamentals in the
Bigeleisen–Mayer equation, partly because the requirement
of accuracy was not as high as it is today.

The development of computational quantum chemistry
dramatically changed the scenario because it could easily
provide pure harmonic frequencies (e.g., Harris, 1995).
There are an increasing number of such studies in stable
isotope geochemistry field using quantum chemistry (e.g.,
Driesner and Seward, 2000; Oi, 2000; Oi and Yanase,
2001; Schauble et al., 2003, 2006; Jarzecki et al., 2004;
Schauble, 2004, 2007; Anbar et al., 2005; Liu and Tossell,
2005; Tossell, 2005; Zeebe, 2005; Seo et al., 2007; Rustad
and Bylaska, 2007; Domagal-Goldman and Kubicki, 2008;
Otake et al., 2008; Rustad and Zarzycki, 2008; Rustad
et al., 2008; Domagal-Goldman et al., 2009; Zeebe,
2009; Li et al., 2009). However, some researchers use scale
factors to scale the harmonic frequencies in order to
match experimental fundamentals. Usually, recommended
frequency scale factors include corrections for the inade-
quacy of the quantum chemistry theoretical method used
and the anharmonicity contribution. For example, the
scale factor typically used to match Hartree–Fock har-
monic vibrational frequencies to experimental fundamen-
tals is about 0.90, while that needed to match harmonic
frequencies for highly correlated methods (like QCISD
and CCSD) to experimental fundamentals is about 0.95
(Cramer, 2002, see Table 9.3). This suggests that correc-
tions for lower level methods like Hartree–Fock are on
the order of 5% and anharmonicity corrections are also
about 5%. The scaling for anharmonicity, however, is
not necessary for the requirement of using harmonic fre-
quencies in the Bigeleisen–Mayer equation. We note that
the method used in Liu and Tossell (2005) to calculate
the 11–10B fractionation factor between B(OH)3 and
BðOHÞ4�, uses a scale factor to match calculated har-
monic vibrational frequencies to experimental fundamen-
tals, probably an undesirable procedure.
In addition, Bigeleisen and Mayer (1947) have pointed
out that the harmonic approximation and rigid rotation is
not sufficient for H/D exchange. However, for a long time,
many researchers ignored this point, erroneously using the
Bigeleisen–Mayer equation in some H/D isotope exchange
reactions.

This study shows the importance of using harmonic fre-
quencies in the Bigeleisen–Mayer equation. Then, by fol-
lowing the work of Richet et al. (1977), we provide a
series of modified formalisms to include higher-order cor-
rections to the Bigeleisen–Mayer equation, such as anhar-
monicity, quantum mechanical rotation, centrifugal
distortion, vibration–rotation coupling and hindered inter-
nal rotation corrections (other corrections such as nuclear
field shift effect, nuclear spin effect and pressure effect are
already well addressed and therefore not given in this study,
e.g., Bigeleisen (1996) and Polyakov and Kharlashina
(1994)). These corrections are important for the H/D iso-
tope exchange reactions. The principles illustrated in this
work will help to improve the accuracy of theoretical pre-
diction of stable isotope fractionation, which is a rapidly
growing field in geochemistry.

The importance of using harmonic frequencies in the
Bigeleisen–Mayer equation has recently been pointed out
by Rustad and Bylaska (2007) and Zeebe (2009). For the
B isotope fractionation between B(OH)3 and BðOHÞ4�,
Rustad and Bylaska (2007) found that anharmonic fre-
quencies gave a fractionation equilibrium constant of 0.86
while harmonic frequencies gave 1.028, in agreement with
the directly measured experimental value (Klochko et al.,
2006). Zeebe (2009) performed very demanding anhar-
monic frequency calculations for CO3

2�. . .water clusters
and established that anharmonic corrections were no more
than 2& for O isotope fractionation. However, his ap-
proach only corrects the frequencies for anharmonic effects
and ignores many other terms (like G0) which we discuss
below.

2. METHODS

2.1. Bigeleisen–Mayer equation

The Bigeleisen–Mayer equation (Bigeleisen and Mayer,
1947; Urey, 1947) is the method mainly used for determin-
ing the equilibrium isotope exchange constant K in stable
isotope geochemistry. There are several good reviews of this
method (e.g., Richet et al., 1977; O’Neil, 1986; Criss, 1991,
1999; Chacko et al., 2001; Schauble, 2004 and others).

For an isotope exchange reaction:

AX þ BX � $ AX � þ BX

where the “*” denotes the one with the heavier isotope. K

can be calculated from the isotope partition function ratios
of those two molecules:

K ¼
Q�tran�Q�rot �Q�vib �Q

�
elec ...

Qtran�Qrot �Qvib �Qelec ...

� �
AX

Q�tran�Q�rot �Q�vib �Q
�
elec ...

Qtran�Qrot �Qvib �Qelec ...

� �
BX

ð1Þ

Here, the partition function (Q) is given by (e.g., McQuarrie
and Simon, 1999)
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Q ¼
X

m

exp �Em

kT

� �
ð2Þ

where Em, k and T stand for the energy of state m, the
Boltzmann constant and the temperature in Kelvin,
respectively.

The Bigeleisen–Mayer equation uses harmonic oscillator
and rigid rotator approximations for vibrational and rota-
tional partition functions. The translational, rotational and
vibrational partition functions can be written as (e.g.,
McQuarrie and Simon, 1999)

Qtrans ¼ V
2pMkT

h2

� �3=2

ð3Þ

Qrot ¼
p1=2ð8p2kT Þ3=2ðIAIBICÞ1=2

sh3
ð4Þ

Qvib ¼
Y

i

expð�hcxi=2kT Þ
1� expð�hcxi=kT Þ ð5Þ

where V is the volume, M is the mass, IA is the moment of
inertia around axis A of rotation, h is the Planck constant, s

is the symmetry number of the molecule and xi is the har-
monic frequency of normal mode i in the unit of cm�1. Eqs.
(3) and (4) are in classical partition function forms while
Eq. (5) is in quantum mechanics form (Singh and Wolfs-
berg, 1975). This choice of partition functions is due to that
the translation and the rotation can be described already
quite accurately in classical forms at room temperature
and above.

If we further employ the Teller–Redlich product rule
(Redlich, 1935; Wilson et al., 1955):

I�AI�BI�C
IAIBIC

� �1=2 M�

M

� �3=2 m
m�

� �3n=2Y
i

ui

u�i
¼ 1 ð6Þ

then, the reduced isotope partition function ratio (RPFR)
or “(s*/s)f ” of an isotopologue pair (e.g., AX*/AX) can
be expressed in terms of normal-mode frequencies, xi, be-
fore and after isotope substitution (Bigeleisen and Mayer,
1947):

RPFRðAX �=AX Þ

¼ s�

s
f ¼

Y3n�6

i

uiðAX �Þ exp½�uiðAX �Þ=2� 1� exp½�uiðAX Þ�gf
uiðAX Þ exp½�uiðAX Þ=2� 1� exp½�uiðAX �Þ�gf

ð7Þ

where

ui ¼
hcxi

kT
ð8Þ

The equilibrium constant for a single-isotope-substitution
reaction is:

K ¼
s
s�

� �
AX

s
s�

� �
BX

RPFRðAX �=AX Þ
RPFRðBX �=BX Þ ð9Þ

Usually, the isotopic fractionation factor a is used by
geochemists instead of K. Consider a multiple-isotopes-ex-
change equilibrium:

a � AX m þ b � BX n�aX �a $ a � AX m�bX �b þ b � BX n
According to the definition of a, we have

aAX m�BX n ¼
RAX m

RBX n

¼ ½AX m�1X �� þ 2½AX m�2X �2� þ � � � þ m½AX �m�
½AX �m�1X � þ 2½AX �m�2X 2� þ � � � þ m½AX m�,
½BX n�1X �� þ 2½BX n�2X �2� þ � � � þ n½BX �n�
½BX �n�1X � þ 2½BX �n�2X 2� þ � � � þ n½BX n�

� ½AX �m�
½AX m�

� �1=m
,
½BX �n�
½BX n�

� �1=n

¼ K1=mn ð10Þ

if all the isotopes of interest are in the equivalent atom posi-
tions and fully substituted (i.e., a = n and b = m). Note that
a is equal to K1/mn only if we ignore the excess factors
(Richet et al., 1977). The excess factor results from the
deviation from the rule of geometric mean and is only
becoming meaningful when the concentrations of related
minor isotopologues (e.g., HD18O for water molecule, D2

for H2, etc.) become significant, which are unlikely situa-
tions in the majority of geological studies. For the partially
isotope substituted reaction (i.e., a < n and b < m), then

a ¼ s�

s

� �1=b

AX

,
s�

s

� �1=a

BX

" #
� K1=ab ð11Þ

When one molecule contains several non-equivalent atoms
of an element, more careful mathematic treatment should
be applied in the specific cases. Hereafter, we define b factor
as (when ignore the excess factor):

b AX m�1X �=AX mð Þ ¼ RPFR AX m�1X �=AX mð Þ

b AX m�bX �b=AX m

� �
¼ RPFR AX m�bX �b=AX m

� �1=b ð12Þ

Note that the ignored excess factors should be different for
the different isotopic pairs considered in the isotopic
equilibrium.

2.2. Anharmonic correction

Bigeleisen and Mayer (1947) noticed that the frequency
shifts for hydrogen isotope substitution were large and the
rotation of hydrogen-containing molecules did not quite
follow classical rotation. Later studies (e.g., Benedict
et al., 1956; Khachkuruzov, 1959) realized that these large
shifts of frequencies contain large contributions from
anharmonicity. At the harmonic level, the energy of vibra-
tion can be expressed as

En=hc ¼
X

i

xi ni þ
1

2

� �
ð13Þ

where ni is the quantum state of vibration (or vibrational
quantum number) of normal mode i. On the basis of Eq.
(2), the harmonic partition functions of vibrational ground
state and excited states are:

QhZPE ¼
Y

i

expð�ui=2Þ ð14Þ

QhEXC ¼
Y

i

1

1� expð�uiÞ
ð15Þ
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If including anharmonic corrections, the vibrational en-
ergy can be expressed as (e.g., Nielsen, 1951; Barone, 2004):

En=hc ¼ G0 þ
X

i

xi ni þ
1

2

� �

þ
X
i6j

xij ni þ
1

2

� �
nj þ

1

2

� �
ð16Þ

where G0 and xij are constants, both in units of cm�1. The
expression for G0 is very complicated and may not be com-
pletely identical in different publications (Shaffer and Schu-
man, 1944; Wolfsberg, 1969; Wolfsberg et al., 1970; Zhang
et al., 1993; Barone, 2005). We will use the expression of G0

suggested by Barone (2005) (as n0 in his paper) because it
has been used in the popular Gaussian 03 software package
(Frisch et al., 2004). It is given by:

G0 ¼
�h

128pc

X
i

F iiii

ki
� 7

9

X
i

F 2
iii

k2
i

þ 3
X
i–j

F 2
ijj

kjð4kj � kiÞ

(

� 16
X
i>j>k

F 2
ijk

Dijk
� 16

X
a¼x;y;z

l0
aa 1þ 2

X
i>j

ðfa
ijÞ

2

" #)
ð17Þ

where �h ¼ h=2p, ki, Fijk, Fiiii are the second, third and
fourth order normal coordinate force constants, l0

aa is the
element of the modified inverse inertia tensor, fa

ij is a Cori-
olis coupling constant. The relationship between harmonic
frequency (xi) and quadratic force constant (ki) at mode i is

xi ¼ k1=2
i =2pc ð18Þ

and

Dijk ¼ k2
i þ k2

j þ k2
k � 2½kikj þ kikk þ kjkk � ð19Þ

When n (quantum state of vibration) is zero, Eq. (16)
gives the energy of vibrational ground state as

E0=hc ¼ G0 þ
1

2

X
i

xi þ
1

4

X
i6j

xij ð20Þ

where xij is the anharmonic constant of coupling between
normal mode i and j, which also can be expressed in terms
of quadratic, cubic and quadric normal mode force con-
stants introduced above. According to Eqs. (16) and (20),
the partition functions corrected for harmonic vibrational
ground state and excited states can be given by the follow-
ing forms (Vojta, 1961; Wolfsberg, 1969):

QAnZPE ¼ expð�hcG0=kT Þ
Y
i6j

expð�hcxij=4kT Þ ð21Þ

QAnEXC ¼ 1� 2hc
kT

X
i

xii expðuiÞ
½expðuiÞ � 1�2

� hc
2kT

X
i<j

xij½expðuiÞ þ expðujÞ�
½expðuiÞ � 1�½expðujÞ � 1� ð22Þ

The counterpart of Eq. (22), which is using fundamental
frequencies instead of harmonic ones, is shown in Eq.
(26). Eq. (22) was further approximated by Richet et al.
(1977) into the Eq. (49) in their paper.
The fundamental frequency mi which is the main absorp-
tion line in IR or Raman spectrograph can be expressed as
a function of harmonic frequency (xi) and anharmonic con-
stant (xij) in theory (e.g., Barone, 2004):

mi ¼ xi þ 2xii þ
1

2

X
i–j

xij ð23Þ

If we represent the vibrational energy with fundamental fre-
quencies mi and anharmonic constants xij, the formula of
vibrational energy for excited state n will be (Pennington
and Kobe, 1954):

ðEn � E0Þ=hc ¼
X

i

mini þ
X

i

xiiniðni � 1Þ þ
X
i<j

xijninj

ð24Þ

Likewise, the partition function of vibrational excited states
can be expressed as the product of two parts similar to Eqs.
(15) and (22) (Stockmayer et al., 1944; Pennington and
Kobe, 1954; Bron et al., 1973):

Q0hEXC ¼
Y

i

1

1� expð�u0iÞ
ð25Þ

Q0AnEXC ¼ 1� 2hc
kT

X
i

xii

½expðu0iÞ � 1�2

� hc
kT

X
i<j

xij

½expðu0iÞ � 1�½expðu0jÞ � 1� ð26Þ

where u0i ¼ hcmi=kT by using fundamental frequencies.
Therefore, we can adopt the Q0 forms and rewrite the par-
tition function corrected for harmonic vibrational excited
states as

QAnEXC ¼
Q0hEXCQ0AnEXC

QhEXC

ð27Þ

This equation was used by Wolfsberg and co-workers (e.g.,
Bron et al., 1973; Goodson et al., 1982) and is considered as
a more accurate choice than Eq. (22) at low temperature.
Both Eqs. (22) and (26) are the results of mathematical
approximations (see Appendix A or Pennington and Kobe
(1954) and Vojta (1961) for details). Table A1 shows Eq.
(26) produces less numerical error than Eq. (22) at low tem-
perature. However, at extremely high temperatures, Eq.
(27) will occasionally produce weird results (see the
NH2D–NH3 case in Table A2 and Fig. 2).

2.3. Vibration–rotation coupling correction

In the Bigeleisen–Mayer equation, the rotational parti-
tion function arises as a result of classical rigid rotator
approximation. In this paper, we add three correction fac-
tors to reduce errors from this approximation. First, we
consider the coupling between vibration and rotation. The
rotational constant around axis B in the vibrational state
n is given by (e.g., Pennington and Kobe, 1954; Barone,
2005)

Bn ¼ Be �
X

i

aB;iðni þ 1=2Þ ð28Þ

where Be is equilibrium rotational constant around axis B,
aB;i is vibration–rotation coupling constant between axis B
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and normal mode i. The expressions of rotational constants
at state n around axis A and C are similar to that for B axis.
When n = 0, we have the rotational constant around axis B

in vibrational ground state as

B0 ¼ Be �
X

i

aB;i=2 ð29Þ

Thus, the partition functions of vibration–rotation coupling
corrected for ZPE and vibrational excited states (e.g., Pen-
nington and Kobe, 1954; Vojta, 1960; Bron et al., 1973; Ri-
chet et al., 1977) are given by

QVrZPE ¼
Y

r

re

r0

� �1=2

¼ Ae

A0

Be

B0

Ce

C0

� �1=2

ð30Þ

QVrEXC ¼ 1þ 1

2

X
i

di

expðu0iÞ � 1
ð31Þ

where r means the rotation axis A, B and C, and

di ¼
X

r

ar;i=r0 ð32Þ
2.4. Quantum mechanical correction to rotation

Second, the quantum mechanical correction to the clas-
sical partition function of rotation is taken into consider-
ation by using this factor (e.g., Stripp and Kirkwood,
1951; Richet et al., 1977):

QQmCorr ¼ 1þ 1

12

� hc
kT

2A0 þ 2B0 þ 2C0 �
B0C0

A0

� A0C0

B0

� A0B0

C0

� �
ð33Þ

where A0, B0, C0 are defined as rotational constants around
axes A, B and C at vibrational ground state.

2.5. Centrifugal distortion correction

Third, the effect due to the centrifugal distortion during
rotation can be included (Wilson, 1936; Kivelson and Wil-
son, 1952; Barone, 2005):

QCenDist ¼ 1� hckT

4�h4
3saaaaI2

A þ 3sbbbbI2
B þ 3sccccI2

C

�
þ 2sbbaaIBIA þ 2sccbbICIB þ 2sccaaICIAÞ ð34Þ

in which s is the quartic centrifugal distortion constant in
units of cm�1, Ir is the principal moment of inertia around
axis r (i.e., A, B or C axis). Note that here hcsaaaa is equal to
the s0aaaa defined in Kivelson and Wilson (1952).

2.6. Hindered internal rotation correction

Hindered internal rotation (torsion) is one of the major
sources of errors for the harmonic approximation. It is actu-
ally a type of vibrational mode which is inherent in many
molecules when there is one part of a molecule which rotates
with respect to another. At low temperature and/or when the
potential barrier height for the hindered rotation is large
compared to the energy, the torsion mode behaves more har-
monically; at high temperature and/or when the barrier
height is small, it rotates more freely. At present, the theory
of hindered internal rotation has been fully developed but
the calculation procedure is still cumbersome.

There are two common methods for evaluating the ef-
fects of hindered internal rotations. The first one is called
Pitzer–Gwinn approximation (Pitzer and Gwinn, 1942).
The partition function is given by

QPG
Tor ¼

Y
i

ð2pkT Þ1=2

si�h
I1=2

i

QHO
Quantðxtor

i Þ
QHO

Classðxtor
i Þ

" #

� expð�W i=2kT ÞI0ðW i=2kT Þ ð35Þ

where s is the symmetry number of torsional mode which can
be ignored in isotope fractionation calculations (see discus-
sion in Section 3.3), I is the moment of inertia for hindered
internal rotor, W is the barrier height of the potential, I0 is
a zeroth-order modified Bessel function. QHO

Quant and QHO
Class

are harmonic oscillator partition functions of the quantum
mechanical and classical form for torsional mode:

QHO
Quant xtor

i

� �
¼ expð�hcxtor

i =2kT Þ
1� expð�hcxtor

i =kT Þ ð36Þ

QHO
Class xtor

i

� �
¼ kT

hcxtor
i

ð37Þ

where xtor
i is the harmonic frequency of the ith torsional

mode.
The second method was developed by Truhlar (1991) by

interpolating a smooth approximation from harmonic
oscillator to free rotor, and the partition function of tor-
sional mode can be expressed as

QT
Tor ¼

Y
i

QHO
Quant xtor

i

� �
tanh

QFRðI iÞ
QHO

Class xtor
ið Þ

� �
ð38Þ

with

QFRðI iÞ ¼
ð2pkT Þ1=2

si�h
I1=2

i ð39Þ

Considering that the expression of Pitzer–Gwinn approxi-
mation seems to be generally more accurate (McClurg
et al., 1997; Knyazev, 1998; Ellingson et al., 2007), we rec-
ommend the correction factor from hindered internal rota-
tion to the harmonic partition function of vibration as:

QHIR ¼
Y

i

ð2pkT Þ1=2

si�h
I1=2

i

� expð�W i=2kT ÞI0ðW i=2kT Þ=QHO
Classðxtor

i Þ ð40Þ

Reader should keep in mind that the above formulas pres-
ent no consideration of the coupling between different tor-
sional modes which actually exists.

3. RESULTS

3.1. Calculated fundamental frequency vs. experimental

fundamental

We use the MP2 method (Møller and Plesset, 1934) with
the aug-cc-pVTZ basis set (Schmidt et al., 1993) for



Fig. 1. The least-squares fitting of calculated fundamentals vs. experimental fundamentals. The regression line has a slope of 1.0024.

Fig. 2. The temperature dependences of AnEXC and VrEXC corrections of the NH2D–NH3 exchange reaction. AnEXC(H) is using Eq. (22)
and AnEXC(F) is using Eq. (27). VrEXC(H) is using harmonic frequencies and VrEXC(F) is using fundamental frequencies.
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geometry optimizations, harmonic frequencies and second
order perturbation analyses in this study. To check the
accuracy of this level of theory, calculated fundamental fre-
quencies from Eq. (23) are compared with the experimental
ones (Shimanouchi, 1972, 1977) for a variety of molecules
(Table 1). All calculations are performed by using the
Gaussian 03 program package (Frisch et al., 2004).

The calculated fundamental frequencies are generally in
good agreement with observations (Table 1). However,
small differences still exist between all the experimental
fundamentals and the calculated ones. They are either
caused by the inadequacy of the theoretical level we used
or by small perturbations introduced by the experiment
study. It is usually difficult to measure a single molecule’s
IR or Raman spectra without any other experimental aids,
such as using a condensed vapor or trapping the molecule
in inert matrices. Such situations are different from the sin-
gle molecule in vacuum used for the theoretical calculation.
Fig. 1 illustrates the linear fitting of calculated fundamen-
tals vs. experimental fundamentals with the slope of
1.0024 and R-squared value of 0.9998. We find that MP2/
aug-cc-pVTZ level accurately predicts the low frequencies
which are often mishandled by many other theoretical
methods. We feel our results at the MP2/aug-cc-pVTZ level
are quite accurate and that we do not need any frequency
scale factor to match experimental frequencies.

3.2. Molecular constants

For the final calculation of various high order correc-
tions to Bigeleisen–Mayer equation, many molecular con-
stants are needed for producing specific partition function
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Table 1
Comparison of fundamental frequencies of some gaseous molecules
calculated at MP2/aug-cc-pVTZ with those determined spectro-
scopically.

Fundamental frequency (cm�1)

Calc. Exp. Calc. Exp.

H2O HDO
3657 3657 3716 3707
1577 1595 2724 2727
3771 3756 1388 1402

H2O* H2S
3650 3650 2678 2615
1571 1588 1184 1183
3756 3742 2695 2626

SO2 NH3

1086 1151 3357 3337
489 518 959 950
1289 1362 3481 3444

SO�2

3481 3444

1039 1101
1622 1627

469 497
1622 1627

1247 1318

Note. O* denotes 18O.
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ratios. Table 2 only shows molecular constants for the tri-
atomic molecules, since the molecular constants for larger
molecules can only be stored in lengthy data files.

Isotopic substitution occurring at equivalent structural
positions does not produce a different isotopologue. For
example, DOH and HOD are the identical isotopologue.
Their molecular constants should be identical. However,
according to our experience, B3LYP methods built in
Gaussian 03 often produce weird high order molecular con-
stants for equivalent isotopologues. This may be caused by
the deficiency of these methods for the second order pertur-
bation analyses or numerical errors in anharmonic level cal-
culations. We recommend using other methods (e.g., MP2)
to produce these high order molecular constants. For our
MP2/aug-cc-pVTZ level calculation results (Table 3), the
numerical error could reach a maximum value of about
0.01 cm�1 in the ZPE calculation for each different run,
resulting in a change up to 0.01% to partition function ratio
at room temperature. In view of this numerical uncertainty,
we actually have calculated all equivalent isotopologues for
each molecule but used the average result to reduce possible
numerical errors.

The MP2 method probably is the only accurate and
practical method we can afford right now for analyses be-
yond the harmonic approximation. A few studies have em-
ployed even more time-consuming method such as
CCSD(T) (Barone, 2004; Carbonniere and Barone, 2004).
When using the outputs of Gaussian 03 to calculate the cor-
rection of anharmonic zero-point energy, we actually use
the following equation rather than Eq. (21):

QAnZPE ¼ exp½�ZPEðtotÞ=kT �= exp½�ZPEðharmÞ=kT � ð41Þ

where ZPE(tot) means the total ZPE in the Gaussian 03
output which has included the full anharmonic contribution
(i.e., Eq. (20)) and ZPE(harm) means the harmonic ZPE:



Table 3
The calculated b values and the higher-order corrections to them for a number of polyatomic gas-phase molecules at temperature of 300 K.a

T = 300 K b(H) b(F) b(UB) CG AnZPE AnEXC VrZPE VrEXC QmCorr CenDist Totalb CPFRc D(H)d D(F) D(UB)

H2O*/H2O 1.0657 1.0593 1.0661 0.9998 0.9976 1.0000 1.0000 1.0000 0.9999 1.0000 0.9975 1.0631 0.0026 0.0038 0.0030
HDO/H2O 13.1707 10.8955 1.0421 0.9122 1.0001 0.9961 1.0000 0.9955 1.0009 0.9055 11.9255 1.2452 1.0300
D2O/H2O 13.4101 10.9057 11.6536 0.9960 0.9161 1.0002 0.9990 1.0000 0.9965 1.0000 0.9121 12.2309 1.1791 1.3253 0.5773
H2S*/H2S 1.0118 1.0109 1.0116 1.0000 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 1.0114 0.0003 0.0005 0.0002
HDS/H2S 6.0110 5.3578 1.0323 0.9447 1.0003 0.9968 0.9999 0.9976 1.0011 0.9407 5.6542 0.3567 0.2964
D2S/H2S 6.0675 5.4019 5.6186 0.9988 0.9496 1.0004 0.9987 0.9999 0.9982 1.0000 0.9469 5.7455 0.3220 0.3436 0.1269
S*O2/SO2 1.0423 1.0409 1.0436 1.0001 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000 0.9994 1.0417 0.0006 0.0008 0.0019
SOO*/SO2 1.0827 1.0802 1.0004 0.9990 1.0001 1.0000 1.0000 1.0000 1.0000 0.9989 1.0816 0.0011 0.0014
SO�2/SO2 1.0827 1.0802 1.0790 1.0002 0.9990 1.0001 1.0000 1.0000 1.0000 1.0000 0.9990 1.0816 0.0011 0.0014 0.0026
N*H3/NH3 1.0685 1.0615 1.0736 0.9986 0.9970 1.0001 0.9999 1.0000 1.0000 1.0000 0.9970 1.0653 0.0032 0.0037 0.0083
NH2D/NH3 13.8401 11.6910 0.9950 0.9205 1.0008 0.9983 1.0000 0.9977 1.0001 0.9176 12.6997 1.1404 1.0087
ND3/NH3 14.2338 11.4760 12.4695 0.9995 0.9137 1.0010 0.9988 1.0001 0.9984 0.9999 0.9120 12.9817 1.2521 1.5057 0.5122

a Hereafter, O*, S* and N* denote 18O, 34S, 15N, respectively. b(H) or b(F) means b factor calculated from pure harmonic or fundamental frequencies. b(UB) means the b factor calculated from
the frequencies generated by Urey–Bradley force field. AnZPE, AnEXC, VrZPE, VrEXC, QmCorr and CenDist are correction factors to partition function ratio. Each correction is expressed as a
quotient of corrections of different isotopologues (e.g., AnZPE=Q�AnZPE/QAnZPE). AnZPE is the anharmonic correction for the zero-point energy, AnEXC is the anharmonic correction for the
vibrational excited states, VrZPE is the Vib–Rot coupling correction for the zero-point energy part, VrEXC is the Vib–Rot coupling correction for the vibrational excited states part, QmCorr is a
correction for quantum mechanical rotation, and CenDist is the centrifugal distortion correction arising from rotation–vibration interaction. CG means the corrections from the G0 term which is a
part of AnZPE and is used to see how G0 term affects partition function ratios.

b TOTAL means the total correction factors to b(H) not including CG.
c CPFR means the corrected partition function ratios which is equal to b(H) times the TOTAL factor.
d D(H)/D(F)/D(UB) means the difference between b(H)/b(F)/b(UB) and CPRF.
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ZPEðharmÞ ¼ 1

2

X
i

hcxi ð42Þ

This treatment is used because the anharmonic constants
printed out by standard versions of Gaussian 03 are only to
the third digit after the decimal. They are less accurate than
the ZPE energies given. For other corrections, we directly
use anharmonic constants in the output of Gaussian 03.
For corrections for vibrational excited states, we round off
the numbers of harmonic and fundamental frequencies to in-
clude the third digit after the decimal only (e.g.,
111.333 cm�1). For the RPFR calculation, the harmonic fre-
quencies are given to the forth digit after the decimal (e.g.,
111.4444 cm�1). In Eq. (34) we choose to use the relationship
of moments of inertia and rotational constants to obtain the
needed moments of inertia around the three rotational axes
rather than directly using them in the output of Gaussian 03:

IB ¼ h=8p2cB0 ð43Þ

We note that there are differences between our theoreti-
cally calculated molecular constants and those from exper-
iments (Richet et al., 1977). Most of differences are small
and could only bring very small difference of the final cor-
rections to the Bigeleisen–Mayer equation. The largest dif-
ference found between our results and those of Richet et al.
(1977) is the anharmonic constants of HDS (e.g., x13 is
�1.787 in this study and �67.96 in Richet et al. (1977)).
We notice that the anharmonic constants of HDS in Richet
et al. (1977) were calculated by an empirical method
(Darling–Dennison rule (Darling and Dennison, 1940),
i.e., x0ij ¼ xijx0ix

0
j=xixj) rather than using the experimental

spectra data because the vibration of HDS was poorly
known at that time. Furthermore, HDO and HDS are quite
similar cases. The results of HDS and HDO in this study
are in accordance with each other. However, the results
of HDS and HDO in Richet et al. (1977) are different
largely. Therefore, we feel the calculated molecular con-
stants in this study are more reasonable.

3.3. Isotope partition function ratios for corrections beyond

harmonic level

Table 3 shows the calculated reduced isotope partition
function ratios (or b values) and their higher-order correc-
tions of a number of polyatomic gas-phase molecules at
temperature of 300 K for singly or fully isotopic substitu-
tions. The correction of hindered internal rotation to b fac-
tor (hereafter, HIR) is not given in tables for following
reasons. We tested the HIR of ethane by Gaussian 03 pro-
gram and found it is equal to the unity (means no correc-
tion). The same result was also obtained by many other
researchers with similar methods (e.g., Lynch et al., 2005;
Ellingson et al., 2006). The general treatment of these meth-
ods is to relate the barrier height, the effective moment of
inertia and the frequency of torsional mode as

W ¼ 8p2c2x2
torI=s2 ð44Þ

Because the barrier heights of the isotopologues are treated
as the same based on Born–Oppenheimer approximation
(using the bottom of the well as the reference energy), the
correction of hindered internal rotation of these methods
then contributes no effect to the harmonic isotopic partition
function ratio:

HIR ¼
Y

i

f ðW iÞ=f ðW iÞ ¼ 1 ð45Þ

where f(Wi) means the function of Wi.
For the case of ethane, including C2H6, CH3–C*H3,

CH3–CH2D and CH3–CD3 situations, if we consider the
torsional mode as a free rotor, it will be temperature-inde-
pendent for the isotopic partition function ratio. The HIR
corrections will be 1 for b(CH3–C*H3/C2H6), 0.989 for
b(CH3–CH2D/C2H6), 0.992 for b(CH3–CD3/C2H6) at
300 K, and the corrections will become smaller when the
temperature is higher. Because the free rotor is a classical
approximation at high-temperature limit, the exact correc-
tion should be smaller than the given ones. McClurg
et al. (1997) derived an equation to describe the correction
of hindered internal rotor to the harmonic partition func-
tion for one torsional mode based on the large barrier limit
at low temperature:

QHIR¼ exp
u2

16 W
kT

� �
1þ exp �uþ u2

4 W
kT

� �
� expð�uÞ

� 	
when u� 1

ð46Þ

when u	 1 (i.e., at high temperature), Eq. (40) is recom-
mended instead (McClurg et al., 1997; Knyazev, 1999).
According to the Eqs. (46) and (40), the HIR should be
0.9954 to b(CH3–CH2D/C2H6) and 0.9951 to b(CH3–
CD3/C2H6) at 300 K and will attenuate to 1 with the in-
crease of temperature.

Ellingson et al. (2006) calculated the torsional partition
function ratio for D2O2/H2O2 by using several approxima-
tions. They suggested that the Wigner–Kirkwood approxi-
mation (Vojta and Zylka, 1993) best described the studied
isotope effects which gave the HIR for b(D2O2/H2O2) as
about 0.990 at 300 K. If this value is correct, then the hin-
dered internal rotation should be much less important than
the anharmonicity of ZPE to b factor which is about 0.903
based on our calculation (the shift of total ZPEs in our cal-
culation is very similar to the accurate value from Koput
et al. (2001), both are about 1400 cm�1). Unfortunately,
there is no good experimental way to precisely determine
the isotopic effects of hindered internal rotation. Even with
accurate torsional potentials for the simple molecules (e.g.,
H2O2 and ethane), there is no good experimental HIR re-
sults of them. Therefore, it is hard right now to compare
the calculated HIR results to a “true” value. However, we
at least know the “true” value should lie in between 1 and
the correction of free rotor to b factor.

From Table 3, except for the anharmonic correction to
the zero-point energy (AnZPE), all other high order correc-
tions do not have any noticeable contribution to non-H/D
exchange reactions at 300 K (e.g., the O isotope exchange
between H2O* and H2O). On the contrary, in H/D ex-
change reactions almost all the corrections are important.
Furthermore, AnZPE takes the largest share at the total
correction (several percent for H/D exchange reac-
tions). VrZPE and QmCorr could be the second biggest
corrections at 300 K. VrZPE gives a correction of about



Table 4
The temperature dependence of corrections to b factors for various studied gas-phase molecules (see more in Supplementary file).

T(�C) HDO/H2O

b(H) CG AnZPE AnEXC(H)a AnEXC(F)b VrZPE VrEXC(H)c VrEXC(F)d QmCorr CenDist TOTAL(H)e TOTAL(F)f CPFR(H)g CPFR(F)h

0 17.7316 1.0464 0.9040 1.0001 1.0001 0.9961 1.0000 1.0000 0.9951 1.0008 0.8968 0.8968 15.9021 15.9021
10 15.7681 1.0447 0.9072 1.0001 1.0001 0.9961 1.0000 1.0000 0.9952 1.0009 0.9002 0.9002 14.1947 14.1947
20 14.1351 1.0432 0.9103 1.0001 1.0001 0.9961 1.0000 1.0000 0.9954 1.0009 0.9034 0.9034 12.7695 12.7696
30 12.7633 1.0417 0.9131 1.0001 1.0001 0.9961 1.0000 1.0000 0.9956 1.0009 0.9064 0.9064 11.5683 11.5683
40 11.6003 1.0403 0.9157 1.0001 1.0001 0.9961 1.0000 1.0000 0.9957 1.0010 0.9092 0.9092 10.5467 10.5467
50 10.6062 1.0391 0.9182 1.0001 1.0002 0.9961 1.0000 0.9999 0.9958 1.0010 0.9118 0.9118 9.6708 9.6709
75 8.6720 1.0362 0.9239 1.0002 1.0002 0.9961 0.9999 0.9999 0.9961 1.0011 0.9178 0.9178 7.9590 7.9590

100 7.2859 1.0337 0.9288 1.0003 1.0003 0.9961 0.9999 0.9999 0.9964 1.0011 0.9230 0.9230 6.7249 6.7249
125 6.2581 1.0316 0.9331 1.0003 1.0003 0.9961 0.9999 0.9999 0.9966 1.0012 0.9276 0.9276 5.8050 5.8050
150 5.4740 1.0297 0.9369 1.0004 1.0004 0.9961 0.9998 0.9998 0.9968 1.0013 0.9317 0.9317 5.1001 5.1001
175 4.8613 1.0280 0.9404 1.0005 1.0005 0.9961 0.9998 0.9998 0.9970 1.0014 0.9353 0.9353 4.5470 4.5470
200 4.3727 1.0265 0.9434 1.0005 1.0006 0.9961 0.9997 0.9997 0.9971 1.0014 0.9386 0.9386 4.1044 4.1044
250 3.6495 1.0240 0.9487 1.0007 1.0007 0.9961 0.9996 0.9996 0.9974 1.0016 0.9443 0.9443 3.4463 3.4464
300 3.1463 1.0218 0.9530 1.0009 1.0009 0.9961 0.9995 0.9995 0.9976 1.0017 0.9491 0.9491 2.9861 2.9861
350 2.7803 1.0201 0.9567 1.0010 1.0010 0.9961 0.9994 0.9994 0.9978 1.0019 0.9531 0.9531 2.6500 2.6500
400 2.5045 1.0186 0.9599 1.0012 1.0012 0.9961 0.9993 0.9993 0.9980 1.0020 0.9566 0.9566 2.3958 2.3959
450 2.2908 1.0173 0.9626 1.0014 1.0014 0.9961 0.9992 0.9992 0.9981 1.0022 0.9597 0.9597 2.1983 2.1984
500 2.1212 1.0161 0.9650 1.0015 1.0016 0.9961 0.9991 0.9991 0.9982 1.0023 0.9623 0.9624 2.0414 2.0414
600 1.8716 1.0143 0.9689 1.0019 1.0019 0.9961 0.9989 0.9989 0.9984 1.0026 0.9669 0.9669 1.8096 1.8097
700 1.6987 1.0128 0.9721 1.0022 1.0023 0.9961 0.9987 0.9987 0.9986 1.0029 0.9706 0.9707 1.6488 1.6489
800 1.5734 1.0116 0.9746 1.0025 1.0026 0.9961 0.9985 0.9985 0.9987 1.0032 0.9737 0.9738 1.5321 1.5322
900 1.4795 1.0106 0.9768 1.0027 1.0028 0.9961 0.9984 0.9984 0.9988 1.0035 0.9763 0.9764 1.4445 1.4446

1000 1.4072 1.0098 0.9786 1.0029 1.0030 0.9961 0.9982 0.9982 0.9989 1.0038 0.9785 0.9786 1.3770 1.3771

a AnEXC(H) means using Eq. (22) to calculate the correction from anharmonicity of vibrational excited states.
b AnEXC(F) means using Eq. (27) to calculate the correction from anharmonicity of vibrational excited states.
c VrEXC(H) means using Eq. (31) but harmonic frequencies within to calculate the correction from Vib–Rot coupling of vibrational excited states.
d VrEXC(F) means using Eq. (31) but fundamental frequencies within to calculate the correction from Vib–Rot coupling of vibrational excited states.
e TOTAL(H) means the total correction to b factor which is equal to the product of AnZPE, AnEXC(H), VrZPE, VrEXC(H), QmCorr and CenDist.
f TOTAL(F) also means the total correction to b factor but using AnEXC(F) and VrEXC(F) instead of AnEXC(H) and VrEXC(H).
g CPFR(H)/CPFR(F) means the product of b(H) and TOTAL(H)/TOTAL(F).
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0.2–0.4% and QmCorr gives about 0.2–0.5% to the total
partition function ratios for H/D exchange reactions. The
contributions from the other three corrections are even
smaller.

Generally, at 300 K, partition function ratios calculated
at the harmonic level are quite accurate for the non-H/D ex-
change reactions but very bad for H/D exchange. One
strange thing is that reduced partition function ratios calcu-
lated from fundamental frequencies are better than those cal-
culated from harmonic frequencies for the H/D exchange
reactions (Table 3). For example, for the NH2D/NH3 case,
D(H) is much larger than D(F) (1.1404 vs. 1.0087).

Table 4 shows the temperature dependences of those
high order corrections by using water vapor in H/D isoto-
pic exchange reactions as an example (see Supplementary
file, for other studied molecules). At low temperature, An-
EXC(H) and AnEXC(F) give the same corrections, and
so do VrEXC(H) and VrEXC(F); at high temperate up to
1000 �C, there is only slight difference between them. From
0 to 1000 �C, AnZPE and QmCorr contributions decrease
with increase of temperature, while AnEXC, VrEXC and
CenDist contributions increase with temperature. Because
TOTAL is mainly affected by AnZPE, it decreases as tem-
perature increases.

3.4. Equilibrium constant K with corrections beyond

harmonic level

By applying the higher-order corrections mentioned
above, we calculate several equilibrium constants of H/D
exchange reactions with well-known experimental results
and compare them with those of previous theoretical calcu-
lations (Table 5). The results without the G0 terms of Richet
et al. (1977) are actually calculated by us using the molecu-
lar constants listed in their paper. The difference between
our work and the previous theoretical calculations is that
our molecular constants are from quantum chemistry calcu-
lations but theirs were from experiments.

For the water vapor internal equilibrium reaction:
H2O + D2O = 2HDO, large deviations were found be-
tween theoretical studies and experiments (Pyper et al.,
1967; Pyper and Newbury, 1970; Pyper and Christensen,
Table 5
The comparison of equilibrium constant K calculated from this study and
(1977) and experiments.

Wolfsberg et al. (1970) and Bron
et al. (1973)

Ric

T (K) With G0 Wit

H2O + D2O M 2HDO 273 3.83 3.23
296 3.29
298 3.85 3.30

H2S + D2S M 2HDS 273 3.91 3.86
298 3.93 3.88

H2O + HDS M HDO + H2S 273
300 2.20

Note. The experimental data are from: (a) Friedman and Shiner(1966); (b
Richet et al. (1977); (e) Bron et al. (1973).
1975). Wolfsberg (1969) showed that it was not sufficiently
accurate to add anharmonic corrections without the con-
tributions of G0 terms to partition function ratios. This
point was reiterated in the same issue of the journal by
Hulston (1969). This was partly a response to the surpris-
ing result that using more accurate calculations (i.e., add-
ing the anharmonic corrections but without G0 term) gave
poorer agreement with experiment than using the Bigelei-
sen–Mayer equation for some isotope exchange reactions
(Hulston, 1969). Later, it was pointed out that other cor-
rections to partition function ratios (e.g., correction for
Vib–Rot coupling) should also be considered (Wolfsberg
et al., 1970). Our results with G0 terms for the water vapor
internal equilibrium are in good agreement with experi-
ments. The ones without G0 are significantly different from
experiments. We note that our result for this reaction is
somewhat different from the value of Simonson (1990)
which is 3.85 for the gas-phase at 298.15 K. However, in
Simonson (1990), the equilibrium constant for the liquid
water calculated from this gas-phase K value was 3.87 at
298.15 K which did not match their reference value 3.82
for the liquid water. It means either the standard gas-phase
equilibrium constant K or the relationship between gas-
phase equilibrium constant and the liquid-phase one needs
to be refined. If the “true” value of the self-equilibrium
constant in liquid water is about 3.82 at 298.15 K, the
one for gas-phase should be less. Considering the reported
K value for gas-phase is near 3.80 at 298.15 K (see Table
5), our results seem slightly better than those of the previ-
ous calculations.

For the internal equilibrium: H2S + D2S = 2HDS, our
results with G0 terms are very close to experiment and again
quite different from the ones without G0 terms. Surpris-
ingly, even without G0 terms, the results of Richet et al.
(1977) match the experiment very well. It is worth to point
out that the anharmonic constants (e.g., x13) of the isotopo-
logues of H2S are produced by the empirical Darling–
Dennison rule in Richet et al. (1977), resulting in a large
difference between their anharmonic constants and ours.
Because there is no G0 data of HDS provided in Richet
et al. (1977), we cannot calculate their result with G0 term
using their molecular constants.
those from Wolfsberg et al. (1970), Bron et al. (1973), Richet et al.

het et al. (1977) This study Experiments

hout G0 With G0 Without G0 With G0

3.82 3.41 3.77 3.74 ± 0.02a

3.47 3.80 3.82 ± 0.06b

3.85 3.47 3.80 3.76 ± 0.02a

3.58 3.85
3.62 3.87 3.88 ± 0.03 at 297Kc

2.26 2.25 2.27 �2.28d

2.10 2.09 2.11 �2.10d/2.17e

) Pyper and Christensen (1975); (c) Pyper and Newbury (1970); (d)
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For the isotope exchange reaction H2O + HDS = H-
DO + H2S, our results show the contribution of G0 terms
is very small (Table 5) but still gives improvement.

Wolfsberg et al. (1970) emphasized the importance of
including G0 for the H/D exchange reactions, which was
normally ignored by previous investigators. However,
Richet et al. (1977) suggested it was acceptable to ignore
G0 terms for most H/D exchange reactions. Our results
show that including G0 will obviously benefit almost all
H/D exchange reactions to different extents. Therefore,
we suggest to include G0 term (e.g., via AnZPE correction
discussed in this study) whenever is possible for the H/D
exchange reactions.

4. DISCUSSION

4.1. Comparisons of corrections and their temperature

dependences

In this study, six corrections to the Bigeleisen–Mayer
equation have been investigated. Two of them are caused
by anharmonicity of vibration (AnZPE, AnEXC), three
of them are caused by vibration–rotation interaction
(VrZPE, VrEXC and CenDist), and one is for quantum
mechanical rotation (QmCorr). Table 3 and Table 4 show
that for the non-H/D exchange reactions, except for the
anharmonic correction of zero-point energy (AnZPE), none
of these corrections can make noticeable contributions to
the final partition function ratios of the molecules studied.
Therefore, if we include the AnZPE correction to the
Bigeleisen–Mayer equation, we can precisely predict the
isotopic fractionation for the non-H/D exchange reactions.
On the contrary, for the H/D exchange reactions, almost
all the corrections beyond harmonic approximation are
important.

Table 4 shows that all corrections to partition function
ratios are temperature dependent except VrZPE. The cor-
rections from AnZPE and QmCorr will become smaller
as temperature increases. However, the corrections of
AnEXC, VrEXC and CenDist will become larger with the
increase of temperature. Do they have only monotonous
relationships with temperature?
Table 6
Comparison of vibrational partition function ratios and frequencies
frequencies (at 300 K).

QRvib(H) QRvib(F) QRvib Dv

H2O*/H2O 1.0768 1.0699 1.0742 0.0
HDO/H2O 20.6726 16.8759 18.7859 1.8
H2S*/H2S 1.0145 1.0135 1.0142 0.0
HDS/H2S 9.6187 8.4662 9.0595 0.5
SO�2/SO2 1.0714 1.0696 1.0708 0.0
SOO*/SO2 1.1495 1.1460 1.1485 0.0
N*H3/NH3 1.0849 1.0772 1.0816 0.0
NH2D/NH3 24.6222 20.4927 22.6443 1.9

Note. QRvib(H) is vibrational partition function ratio calculated from harm
calculated from fundamental frequencies. QRvib is the accurate vibratio
AnZPE, AnEXC, VrZPE and VrEXC. DvibðHÞ ¼ QRvibðHÞ � QRvib. DvibðF
frequencies.

Q
m�=m is the product of ratios of fundamental frequencies. Q

to the product of harmonic frequencies ratios according to Teller–Redlic
Fig. 2 (NH2D/NH3 as an example) shows that the
anharmonic correction for the vibrational excited states
(AnEXC) does not monotonously change with tempera-
ture. There is a turning point for AnEXC and it will de-
crease with temperature after that turning point. The
Vib–Rot coupling correction curve for the vibrational ex-
cited states (VrEXC) has a very small drop then goes up
monotonously with temperature to at least 5000 K. Fig. 2
also shows that the two equations of AnEXC calculation
(i.e., Eqs. (22) and (27)) provided in this study will deviate
largely from each other at high temperatures. We find that
such phenomenon repeats for other isotopic pairs but at
even higher temperature. Even for the same NH2D/NH3

case, its results of VrEXC(H) and VrEXC(F) only have a
small deviation from each other at extremely high temper-
atures. We do not know why this happens but probably
due to larger numerical errors at high temperature. It seems
AnEXC(H) is more reasonable than AnEXC(F) at extre-
mely high temperatures for the NH2D/NH3 case.

Readers may note that the Bigeleisen–Mayer equation
goes to the unity at the high-temperature limit. However,
the corrections we presented here show different trends. It
is because these corrections are calculated on the assump-
tion that those molecular constants do not change even
at extremely high temperature. It is obviously not true.
Those molecular constants will be changed actually if
temperature goes high (also with pressure, e.g., Polyakov,
1998). Therefore, these corrections can only describe the
accurate isotopic fractionations when the temperature is
not extremely high. At the high-temperature limit, mole-
cules will decompose to atoms where no isotope fraction-
ation happens.
4.2. The conditions for employing Teller–Redlich product rule

Table 6 compares the vibrational partition function
ratios and products of frequencies by using harmonic fre-
quencies and fundamental frequencies at 300 K. According
to the Teller–Redlich product rule, the Qt�r (as shown in
Eq. (47)) will exactly equal the product of frequency ratios
when using harmonic frequencies:
products calculated by harmonic frequencies and fundamental

ibðHÞ DvibðF Þ
Q

x*/x
Q

m*/m QRt�r

026 �0.0043 0.9897 0.9901 0.9897
867 �1.9100 0.6371 0.6456 0.6371
003 �0.0007 0.9973 0.9974 0.9973
592 �0.5933 0.6249 0.6329 0.6250
006 �0.0012 0.9728 0.9732 0.9728
010 �0.0025 0.9419 0.9425 0.9419
033 �0.0044 0.9848 0.9854 0.9848
779 �2.1516 0.5621 0.5705 0.5620

onic frequencies. QRvib(F) is the vibrational partition function ratio
nal partition function ratio value which equals to QRvib(H) times
Þ ¼ QRvibðF Þ � QRvib.

Q
x�=x is the product of ratios of harmonic

t�r is calculated by using the following equation and it will be equal
h rule: see Eq. (48).



Table 7
The comparison of ZPEs with or without G0 terms (in the unit of cm�1).

G0 ZPE(harm)a ZPE(fund)b ZPE(tot)c DZPE(H)d DZPE(F)e

H2O �3.8575 4701.5370 4502.6326 4623.9446 77.5923 121.3121
H2O* �3.8059 4686.1105 4488.5561 4609.0174 77.0932 120.4613
HDO �12.4655 4070.1353 3913.5652 4011.6997 58.4355 98.1345

H2S �0.8450 3390.4480 3278.3936 3346.1272 44.3207 67.7336
H2S* �0.8549 3387.4529 3275.6000 3343.1990 44.2539 67.5990
HDS �7.4790 2919.1601 2833.7750 2886.7023 32.4579 52.9273

SO2 1.0181 1448.8708 1431.8770 1443.4149 5.4560 11.5379
SO�2 1.0061 1434.9815 1418.3487 1429.6404 5.3412 11.2916
SOO* 0.9287 1421.0936 1404.7376 1415.8517 5.2426 11.1135

NH3 �5.7926 7584.9123 7261.1563 7462.5229 122.3894 201.3666
N*H3 �5.5058 7567.9589 7245.6967 7446.1883 121.7706 200.4916
NH2D �4.7451 6917.7696 6632.4519 6812.6614 105.1082 180.2095

a The ZPE as expressed in Eq. (42) using harmonic frequencies.
b The ZPE as expressed in Eq. (42) but using fundamental frequencies.
c The “total ZPE” means the ZPE with G0 term as expressed in Eq. (20).
d DZPE(H) is the difference between ZPE(harm) and ZPE(tot).
e DZPE(F) is the difference between ZPE(fund) and ZPE(tot).
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Qt�r ¼
M�

M

� �3=2 I�AI�BI�C
IAIBIC

� �1=2
,

m�

m

� �3=2

ð47Þ

Table 6 shows
Q

x�=x (using harmonic frequencies) is
the same as Qt�r if ignoring the small numerical errors.
QRvib is fallen between QRvib(H) and QRvib(F). In either
H/D exchange reactions or non-H/D exchange reactions,
DvibðF Þ is always larger than DvibðHÞ in terms of absolute
numbers. These data confirm that using pure harmonic fre-
quencies can always achieve a better vibrational partition
function ratio result than using fundamental frequencies.
Also, they clearly show that only harmonic frequencies
should be used in the Teller–Redlich product rule.

On the other hand, our results show that the errors from
using inaccurate frequencies (e.g., fundamental frequencies
or harmonic frequencies contain errors) to calculate isoto-
pic fractionations could be reduced by employing the Tell-
er–Redlich product rule (this conclusion can be proved
mathematically). The similar conclusion was made by
Schaad et al. (1999). They found employing the Teller–
Redlich product rule could reduce errors in kinetic isotope
effects calculations. It explains why the b(F)s are better than
the b(H)s for the H/D exchange reactions shown in Table 3.
Recently, Domagal-Goldman and Kubicki (2008) also
suggested to apply the Teller–Redlich product rule to the
isotope partition function ratio calculation when uses
implicit solvation models (e.g., PCM model).

4.3. ZPE and G0

The total ZPE can be described by G0, harmonic fre-
quencies and anharmonic constants (i.e., Eq. (20)). How-
ever, due to the complexity of G0, many researchers do
not include it in their calculation of ZPE. Here, we
checked the errors produced by such neglect by compar-
ing the total ZPE (G0 included) and ZPEs not including
G0 but using harmonic frequencies or fundamental ones
in Eq. (42). The energy differences between the total
ZPE and those obtained using harmonic or fundamental
frequencies (denoted as DZPE(H) or DZPE(F)) can be ex-
pressed as �ðG0 þ 1

4

P
i6jxijÞ for harmonic frequencies or

G0� 3
4

P
ixii � 1

4

P
i<jxij for fundamental frequencies (Grev

et al., 1991) (see Table 7).
For cases of H/D exchange, both the G0 terms and the

energy differences deviate significantly from the total
ZPE. For non-H/D exchange cases, both the G0 values
and the energy differences from the total ZPE change only
a little. These results suggest that G0 terms shouldn’t be ig-
nored for H/D exchange reactions. Importantly, using har-
monic frequencies will cause smaller energy difference than
using fundamental frequencies for all the cases we tested,
which means if one chooses to ignore G0 for non-H/D ex-
change reactions, using harmonic frequencies will cause
smaller ZPE energy errors.
4.4. Scale factor

In this paper, we did not use any frequency scale factor
for the MP2/aug-cc-pVTZ level calculations. However, in
isotopic fractionation prediction one often needs to choose
an appropriate frequency scale factor when the method
used is not of sufficiently high accuracy. This often occurs
to isotopic fractionation involving larger molecules.

There are three common types of frequency scale fac-
tors. The first type of scale factor is used for scaling har-
monic frequencies to match frequencies from experiments
(i.e., fundamental frequencies, e.g., Sinha et al. (2004)).
The second type is the scale factor for matching an accurate
ZPE (i.e., total ZPE mentioned in this paper but generally
the G0 term is ignored, e.g., Scott and Radom (1996)).
The third type is the scale factor for matching pure har-
monic frequencies (e.g., Zhao and Truhlar, 2008). Gener-
ally, the values of these three scale factors are in this
order: sf(fund) < sf(zpe) < sf(harm), where sf means scale
factor for the same quantum chemistry calculation level.
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We have shown in this study that pure harmonic
frequencies are needed for Bigeleisen–Mayer equation,
suggesting the sf(harm) factors have to be used. However,
the central idea is to estimate the accurate energy shifts
due to isotopic substitution. According to the discussions
above, we know an accurate ZPE (i.e., with AnZPE correc-
tion) plays a key role in the estimation of isotopic fraction-
ation. By any chance, if we can obtain an accurate ZPE
through a very good sf(zpe), we can use this equation to ob-
tain better result:

bðAX �=AX Þ0 ¼ exp �ZPEðtot;AX �Þ=kT½ �
exp �ZPEðtot;AX Þ=kT½ �

Y3n�6

i

� uiðAX �Þ 1� exp½�uiðAX Þ�gf
uiðAX Þ 1� exp½�uiðAX �Þ�gf ð48Þ

It is a modified Bigeleisen–Mayer equation with anhar-
monic corrections via direct including of zero-point en-
ergy, and can provide the enough accuracy for the non-
H/D exchanges better than Eq. (7). In quantum chemis-
try calculations, sf(harm) is only calculated for a few
quantum methods, however, sf(zpe) has been derived
for many methods (Scott and Radom, 1996; Sinha
et al., 2004; Merrick et al., 2007). This makes sf(zpe) eas-
ier to be used into isotopic fractionation calculations. For
the circumstances that only sf(fund) is known, we recom-
mend using a slightly larger scale factor as sf(zpe) into
the calculations (e.g., according to Merrick et al.
(2007), sf(zpe) is about 0.02 larger than sf(fund) for
numerous quantum methods).

4.5. The practice of using one set of fundamental frequencies

We have showed that one should not directly use the
fundamental frequencies in the Bigeleisen–Mayer equation.
However, it is often not easy to find fundamental frequen-
cies for both the major isotopologue and the minor one.
Therefore, there is another practice used by many research-
ers when there is only one set of fundamental frequencies in
hand. Such practice is to use the fundamental frequencies
for the major isotopologue but calculate another set of har-
monic frequencies for the minor isotopologue through
building a force field from the observed fundamental fre-
quencies. Usually, such force fields are constructed as a har-
monic type. The same force constants used for the major
isotopologue will be also used for the minor isotopologue.
Schauble (2004) explained such vibrational force field mod-
eling in a quite detailed way.

For comparing such “one set of fundamental frequen-
cies” method with the “exact” method with all corrections,
we built the Urey–Bradley force field by our calculated fun-
damental frequencies listed in Table 1. The bond lengths
and the bond angles are also obtained from our calculations
(e.g., 0.9612 Å and 104.1213� for H2O, respectively). Be-
cause the G and F matrices can only be treated for a specific
point group but partly isotopic substitution will lower the
symmetry, we only calculate b factors of fully isotopic sub-
stitutions and marked as b(UB) in Table 3. Our results
show that the b(UB) factors generally contain larger errors
than b(H) factors for non-H/D exchanges. For H/D ex-
changes, b(UB)s are better than b(H)s but it is meaningless
to use uncorrected Bigeleisen–Mayer equation (i.e., b(H))
for H/D exchange reactions.

Goodson et al. (1982) have compared such “one set of
fundamental frequencies” practice (referred as [anharm] in
their paper) with the one using pure harmonic frequencies
(referred as [harm]) for a few diatomic and tri-atomic mol-
ecules. We do not know how accurate their harmonic fre-
quencies would be because they used a complicated
procedure to obtain those harmonic frequencies from
experimental spectra, while the relationship of their results
are similar to our b(UB)s and b(H)s. They found that both
ways actually produced similar results for heavy isotopes
(non-H/D), but our results show that the b(H)s are general
better than b(UB)s for the non-H/D exchange cases. For
the H/D exchanges, they found that the [anharm] way
was better than the [harm] way which is confirmed by our
results. However the accuracy of b(UB)s (or [anharm]) is
still not satisfactory to deal with the H/D exchanges, be-
sides as mentioned by Zeebe (2005), the b factor of such
practice is very sensitive to the accuracy of the chosen fun-
damentals. We therefore do not recommend this treatment
in the H/D exchanges by using uncorrected Bigeleisen–
Mayer equation.

Considering the complexity of constructing the force
fields of polyatomic molecules and the further simplifica-
tions which often have to be used in building the force
fields, we do not recommend using this practice only if
one cannot find the aids from quantum chemistry on har-
monic frequencies calculation.

5. CONCLUSIONS

Corrections beyond the harmonic level to the Bigelei-
sen–Mayer equation have been discussed and compared.
The hindered internal rotation correction on isotope effects
is found to be insignificant for most cases. Anharmonic cor-
rection for ZPE, including the G0 term, has been found to
be very important for all kinds of isotope exchange reac-
tions. For the H/D exchange reactions, almost all the high
order corrections discussed in this study are important. We
have shown through detailed analysis of relevant energy
contributions that three improper ways should be avoided
when studying equilibrium isotopic fractionations using
the Bigeleisen–Mayer equation. First, one should avoid
using two sets of fundamental frequencies in any circum-
stance. Second, one should avoid using the uncorrected
Bigeleisen–Mayer equation for the H/D exchange reactions.
Third, one should avoid using scale factors for fundamental
frequencies to scale calculated harmonic frequencies but
rather use the scale factor for accurate ZPE when one has
to do so. If all the mistakes mentioned are avoided, the
accuracy of theoretical predictions for isotopic equilibrium
can be effectively improved.
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APPENDIX A

A1. Partition function of vibrational excited states

The vibrational energy at excited state n can be ex-
pressed as the following form in terms of harmonic frequen-
cies and anharmonic constants:

ðEn � E0Þ=hc ¼
X

i

xini þ
X
i6j

xij ninj þ
1

2
ni þ

1

2
nj

� �
ðA1Þ

Here, we define yij ¼ hcxij=kT , thus we have the partition
function of vibrational excited states:

QvibEXC ¼
X

n

exp �
X

i

uini �
X
i6j

yij ninj þ
1

2
ni þ

1

2
nj

� �" #( )

ðA2aÞ
¼
X

n

exp �
X

i

uini �
X

i

yii n2
i þ ni

� �
�
X
i<j

yij ninj þ
1

2
ni þ

1

2
nj

� �" #( )

ðA2bÞ
¼
X

n

exp �
X

i

uini

 !
exp �

X
i

yii n2
i þ ni

� �
�
X
i<j

yij ninj þ
1

2
ni þ

1

2
nj

� �" #( )

ðA2cÞ
�
X

n

Y
i

exp �uinið Þ
Y

i

1� yii n2
i þ ni

� �
�
X
jð>iÞ

yij ninj þ
1

2
ni þ

1

2
nj

� �" #( )

ðA2dÞ
�
X

n

Y
i

exp �uinið Þ 1�
X

i

yii n2
i þ ni

� �
�
X
i<j

yij ninj þ
1

2
ni þ

1

2
nj

� �" #( )

ðA2eÞ

According to the following relationships:

X
n

expð�unÞ ¼ ½1� expð�uÞ��1 ðA3aÞ

X
n

n expð�unÞ ¼ expð�uÞ½1� expð�uÞ��2 ðA3bÞ

X
n

n2 expð�unÞ ¼ ½expð�uÞ þ expð�2uÞ�=½1� expð�uÞ��3

ðA3cÞX
n

nm expð�unÞ ¼ ð�1Þm @m

@um

1

1� expð�uÞ

� 	
ðA3dÞ

and the partition function of vibrational excited states to be

QvibEXC ¼
Y

i

1

1� expð�uiÞ
1� 2hc

kT

X
i

xii expð�uiÞ
½1� expð�uiÞ�2

(

� hc
2kT

X
i<j

xij½expð�uiÞ þ expð�ujÞ�
½1� expð�uiÞ�½1� expð�ujÞ�

)

ðA4aÞ

¼
Y

i

1

1� expð�uiÞ
1� 2hc

kT

X
i

xii expðuiÞ
½expðuiÞ � 1�2

(

� hc
2kT

X
i<j

xij½expðuiÞ þ expðujÞ�
½expðuiÞ � 1�½expðujÞ � 1�

)
ðA4bÞ
T C T 1
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Likewise, vibrational energy at excited states n can be ex-
panded in fundamental frequencies and anharmonic
constants:

ðEn � E0Þ=hc ¼
X

i

mini þ
X

i

xiiniðni � 1Þ þ
X
i<j

xijninj

ðA5aÞ

Thus, partition function of vibrational excited states is

Q0vibEXC ¼
X

n

exp �
X

i

mini �
X

i

xiiniðni � 1Þ �
X
i<j

xijninj

" #( )

ðA6aÞ

�
X

n

Y
i

expð�u0iniÞ
Y

i

1� yiiðn2
i � niÞ �

X
jð>iÞ

yijninj

" #( )

ðA6bÞ

�
X

n

Y
i

expð�u0iniÞ 1�
X

i

yiiðn2
i � niÞ �

X
i<j

yijninj

" #( )

ðA6cÞ

¼
Y

i

1

1� expð�u0iÞ
1� 2hc

kT

X
i

xii expð�2u0iÞ
1� expð�u0iÞ½ �2

(

� hc
kT

X
i<j

xij expð�u0iÞ expð�u0jÞ
1� expð�u0iÞ½ �½1� expðu0jÞ�

)
ðA6dÞ

¼
Y

i

1

1� expð�u0iÞ
1� 2hc

kT

X
i

xii

½expðu0iÞ � 1�2

(

� hc
kT

X
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xij

½expðu0iÞ � 1�½expðu0jÞ � 1�
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ðA6eÞ

Both Eqs. (A4b) and (A6e) are results of approximations.
When y is very small, Eq. (A2c) to Eq. (A2d) and Eq.
(A6a) to Eq. (A6b) are treated by

expðyÞ � 1þ y ðA7aÞ

and Eq. (A2d) to Eq. (A2e) and Eq. (A6b) to Eq. (A6c) are
treated byY

i

ð1þ yiÞ ¼ 1þ
X

i

yi ðA7bÞ

The smaller y is, the better approximation will achieve.
Table A1 compares QAnEXC and Q 0AnEXC to test the errors by
employing the approximations (A7a) and (A7b). Obviously,
The error of Q0AnEXC is much smaller than that of QAnEXC , sug-
gesting Eq. (A6e) is a better choice for calculating partition
function of vibrational excited states. Table A2 compares
the results of using Eq. (22) (shown as AnEXC(H)) and those
using Eq. (27)(shown as AnEXC(F)).

APPENDIX B. SUPPLEMENTARY DATA

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.gca.2010.
09.014.
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