19

文章编号:文章编号:1008-0244 (2002) 02-0019-06

黑龙江老柞山金多金属矿床地质地球化学初探

代立东¹,李和平¹,王思源²,魏俊浩^{1,2} (1.中国科学院地球化学研究所,贵州 贵阳 550002;2.中国地质大学,湖北 武汉 430074)

摘 要:通过对老柞山金多金属矿床地质背景、硫同位素、铅同位素、碳氧同位素以及包裹体和岩石化学的研究,得 出产金矿带成矿热液为高温岩浆热液,并有地壳物质混入,该矿床形成于活动大陆边缘钙碱系列环境。 关键词:金多金属矿床;硫同位素;铅同位素;碳氧同位素;包裹体;岩石化学;老柞山 中图分类号:P618.51 文献标识码:A

老柞山矿床位于中朝地台北侧,海西期兴蒙 地槽系东段佳木斯隆起带上。此矿床发现于 1966年。尽管先后有中国有色金属工业总公司 七0一队、中国地质大学等多家单位对该矿床进 行了区域地质调查、找矿勘探、物化探异常、成矿 条件、成矿时代等方面的研究,但其中仍存在许多 值得探讨的问题。本文拟通过对硫、铅、碳、氧同 位素的测试分析,结合区域地质背景,对该矿床 的形成环境进行探讨。

1 成矿地质背景

区内出露地层由老到新为下元古界麻山群柳 毛组、中生界侏罗系和第四系松散沉积层^[1]。地 层厚度变化较大,从3~50 m不等,倾角在 70°~ 85°,局部直立,倾向 NE。

区内构造类型主要有两种:褶皱构造和断裂构 造。褶皱构造:区内柳毛组呈单斜片麻构造,岩层 走向为 280°~320°,倾向 NE,倾角 70°~85°,局部直 立,甚至反倾。断裂构造:元古代末期,层间剥离构 造控制着金矿体的生成;华力西期产生了一些新的 断裂构造,这些构造控制着金矿体的分布;燕山期 受新华夏构造运动的影响,产生了 NNE 向压性及 NWW 向的张性裂隙。NWW 向这一组断裂控制着 燕山期岩浆热液金矿体和岩体、岩脉的分布。包括 本矿床在内的 NNE 向的下元古界片麻岩地体,夹

收稿日期:2001-09-10;修回日期:2002-03-04

于郯庐及乌苏里两大断裂之间。老柞山矿床是在 区域新华夏系 NNE 向的郯庐与乌苏里断裂的控制

图 1 黑龙江老柞山多金属矿床地质背景图 (据中国有色金属工业总公司 701 地质队)

Fig. 1. Geologic setting of gold-polymetal deposits at Laozuoshan, Heilongjiang Province.

A.老柞山矿床大地构造位置图 B.老柞山矿床地质图 1.地台;2.加里东褶皱系;3.华力西褶皱系;4.喜马拉雅 褶皱系;5.海沟;6.铜矿体;7.金矿体;8.砂金矿体;9.推 测矿带界线;10.第四系;11.闪长玢岩;12.混合岩;13. 石墨片岩;14.片麻岩;15.大理岩

基金项目:国家科技部攀登计划预选项目(95-预-39);中国科学院 "百人计划"

第一作者简介:代立东(1977-),男,在读硕士研究生,主要从事 地球深部物质与流体研究。

下,形成了以老柞山片麻岩地体为砥柱,其旋回层 向 SE 收敛,向 NW 撒开的控矿帚状构造体系,可称 老柞山帚状构造^[2]。由砥柱向外旋层依次产有东、 中、西矿带(见图 1)。

区内有大面积的岩浆岩出露,主要以侵入岩 为主,分华力西和燕山两期侵入。华力西期侵入 岩分早晚两期。早期的在矿床东部和西部大面积 出露,斜长石约占30%~40%,微斜长石约占 25%~30%,石英约占30%,黑云母约占10%;晚 期的仅在19、12、14、16、18 穿见到,镜下岩石交代 结构发育,斜长石含量约占30%~50%,微斜长 石约占10%~3%,石英约占10%~15%,黑云母 约占5%左右。燕山期侵入岩分布在矿区的中 部,岩性由基性到酸性,以中酸性为主,其中石英 闪长岩与成矿关系密切,霏细岩岩体边缘破碎带 中具有金矿化或赋存金矿体^[3~4]。

2 矿床地质特征

2.1 矿带、矿体分布及规模

该矿床分三个矿带,即中矿带和东矿带、西矿带。中矿带长1600m、宽900m,总体走向NW-SE,矿带内已发现金矿体51条,其中以1、2号矿体规模较大,占矿带金储量的82.9%,其它矿体规模较小。东、西矿带分别在中矿带的NE部和SW部,几乎近水平分布,分布范围宽广,矿体品 位变化较大,形状大部分呈不规则的鸡窝状。东 矿带主矿体为1、2、3号,矿体形态较复杂,主要为 脉状、分枝脉状、透镜状以及鸡窝状,规模较小;西 矿带主矿体为304、311号,矿体形状复杂,主要为 鸡窝状和脉状,规模小。

2.2 矿石特征

老柞山矿床内出现的矿石类型较单一,主要为 金矿石。其中的东矿带和中矿带以金矿石为主;而 西矿带有较高品位的铜,可以开采铜矿。金矿石按 其自然类型分为原生矿和氧化矿,按原生矿的结构 构造又可分为浸染状金矿石和致密块状金矿石。

2.3 围岩蚀变

老柞山矿床围岩蚀变类型主要有硅化、绢云 母化、砂卡岩化、钾化,其次为碳酸盐化、绿泥石 化,其中硅化常伴随着毒砂化、黄铁矿化,在西矿 带毒砂化大面积出露,而在中、东矿带以砂卡岩化 为主。在众多的蚀变中,以硅化、砂卡岩化、毒砂 化与成矿关系最为密切。

2.4 成矿期次的划分

作者根据成矿作用、脉体穿插关系、矿物共生 组合等特征将矿床的形成划分为两个成矿期五个 成矿阶段。

成	矿		期	砂土	〒 岩 化 成 矿 期	石 募	铁帽金成矿期		
成	Ą)	阶	段	石英闪长岩 侵入阶段	方解石-磁黄 铁矿-黄铜矿- 金阶段	磁黄铁矿-黄 铜矿-石英- 金阶段	方解石- 金阶段	伟晶石英 阶段	
	石英							·	
	闪长	岩							
	透辉	石							
矿	方解	石							
	磁黄	铁矿				<u> </u>			
肳	黄铜	矿							
	毒砂								
序	褐铁	矿						<u> </u>	
	孔雀	石							<u> </u>
	蓝铜	矿							_
	金					_ 			

表 1 黑龙江老柞山矿床成矿期次简表

Table 1. Metallogenic phases of gold-polymetal ore deposit at Laozuoshan, Heilongjiang Province

3 矿床地球化学

为弄清成矿物质的来源,对老柞山矿床同位 素、包裹体以及岩石化学进行了研究。

3.1 硫同位素

Ohmoto^[5]提出,成矿流体中硫同位素组成受流体中物理化学条件(pH值,Eh值,t,p,I等)

21

变化的限制,且从热液沉积出来的硫化物的同位 素不等于成矿热液的总硫同位素。热液中总硫同 位素近似等于:

$$\delta^{34} S_{\sum S} = \delta^{34} S_1 + X_{\sum SO_4^{2^-}} \cdot \Delta_{HS}^{SO_4^{2^-}} - \Delta_{HS}^{i}$$

其中 $\delta^{34}S_{\Sigma s}$ 表示³⁴S 总硫同位素, $\delta^{34}S_1$ 表示流体中 的³⁴S 同位素组成, $X_{\Sigma SO_4^{-1}}$ 表示相对富集系数, $\Delta_{SO_4^{-1}}^{SO_4^{-1}}$ 表示 SO₄²⁻ 对 HS⁻ 的差值, Δ_{HS}^{i} - 第 i 类型的硫 与 HS⁻ 差值,它的数值很小可略去。

据 Ohmoto^[6~7]等的意见,岩浆成因的 S 具有 δ³⁴S 值不超过±5.0‰范围的特点,初步推测区内 成矿热液的硫是"就地取材",即从混合岩中淋取, 但同时有少量其它硫源的混入。结合矿区地质特 征分析,认为该区硫以幔源为主,有少量壳源硫的 混入,即以幔源为主的壳源混源型(表 2)。

表 2 黑龙江老柞山矿床硫同位素组成表(‰)

lable	2.	Sulphur	isotopic	composition (of Laozuosha	in gold-pol	ymetal ore	deposit ir	n Heilongjiang	; Province (%))
 	_										

测定矿物	样品数	δ ³⁴ S 变化范围	均值	极差	均方差	矿体与围岩
磁黄铁矿	33	+3.5~+4.02	+ 3.72	1.7	0.42	混合花岗岩与闪长玢岩
毒砂	31	+3.9~+5.3	+ 4.46	1.4	0.36	矿体蚀变带
黄铁矿	25	+3.8~+7.1	+ 4.56	3.7	0.89	混合岩
黄铜矿	18	+3.6~+4.2	+ 3.8	1.4	0.43	含金矿体与混合花岗岩
辉钼矿	1	+ 6.6	+6.6			花岗岩

分析测试单位:中国地质大学(武汉)测试中心。

3.2 铅同位素

通过对铅同位素组成的测定分析可知(表 3), 老柞山金矿床铅同位素组成为²⁰⁶ Pb/²⁰⁴ Pb = 18.151 ~18.36,²⁰⁷ Pb/²⁰⁴ Pb = 15.472 ~ 15.643,²⁰⁸ Pb/²⁰⁴ Pb = 37.764 ~ 38.131,变化范围小于 0.22,具有相对稳定 的特点。通过在 Cannon 演化三角图的投点,铅同 位素样品全部落于正常铅小三角形范围内。且从 矿区内²⁰⁶ Pb/²⁰⁴ Pb 的比值来看,属于正常铅。 Cannon 认为,正常铅来自地球内部深处或来自构造 基本封闭系统,矿质具有深源性^[8]。

表 3 黑龙江老柞山矿床矿石及围岩的铅同位素组成

Table 3. Lead isotopic composition of Laozuoshan gold-

		pc	lymetal	ore d	epos	it in Heild	ongjiang l	Tovince
样	号	样品	品名称	矿	物	²⁰⁶ Pb/ ²⁰⁴ Pb ²	⁰⁷ Pb/ ²⁰⁴ Pf	208 Pb/204 Pb
833-	1-62	花	岗岩	钾土	石	18.345	15.534	38.007
8208	-192	黑云县	母花岗岩	计 钾长	石	18.365	15.530	37.884
8358	-266	斜长	花岗岩	钾长	石	18.367	15.547	37.972
8363	3-35	闪长	花岗岩	磁黄	铁矿	18.151	15,526	37.944
51	11	混合	花岗岩	钾甘	石	18.229	15.634	37.855
穿 3	2-1	矿	石	蛬	砂	18.165	15.566	38.131
8239	-113	浅色	花岗岩	黄铜	ŧ矿	18.328	15.472	38.050
8343	3-48	矿	石	黄龟	夫矿	18.247	15.452	37.764

分析测试单位:中国地质大学(武汉)测试中心

3.3 碳同位素和氧同位素

通过对成矿期热液方解石的碳氧同位素测定

(表 4)可知,老柞山金矿 δ^{13} C = -5.33‰ ~ -2.64‰,因此确定区内矿床碳酸盐矿物沉淀时溶 液的 δ^{13} C_{ΣC}值为 -5.33‰ ~ -2.64‰,在岩浆平 均壳源(≈ -8‰ ~ -5‰)^[9]和海相沉积源碳同位 素(≈0‰)^[10]变化范围内,说明成矿流体中碳的 主要来源可能是深部地壳及上地幔且少部分来自 于矿床围岩。在测定方解石中碳同位素的同时, 还对其中的氧同位素进行了测定。氧同位素测定 结果表明, δ^{18} O = 10.27‰ ~ 13.70‰,平均为 11.74‰,计算公式^[10]:

 $1000 \ln \alpha = 2.78 \times 10^6 / T^2 - 3.39$

其中 α 是同位素比值, T 是绝对温度(K), A 和 B 是实验确定的常数, 经过换算^[10]的 $\delta^{18}O(\pi)$ = 3.73‰ ~ 7.58‰, 平均为 5.40‰, 由于在未被 混染的幔源岩浆中流体 $\delta^{18}O$ 的平均值不可能低 于岩浆水(+5.5 - +10.0‰)^[9], 因此区内岩体在 形成过程中, 有地壳物质混入。

表 4 黑龙江老柞山矿床碳酸盐矿物碳氧同位素组成(‰) Table 4. Carbon and oxygen isotopic composition

of

carbonate minerals fr	rom Laozuoshan	gold-polymetal
ore deposit in He	eilongjiang Provi	nce(%)

			<u> </u>		
样品编号	样品名称	矿	物	δ ¹⁸ O∕SMOW	δ ¹³ C∕PDB
8209-64	毒砂方解石脉	方解	石	10.81	- 5.23
8460-14	磁黄铁矿方解石脉	方解	石	12.22	- 5.33
8456-74	毒砂磁黄铁矿方解石脉	方解	石	10.27	-2,64
穿 32-3	方解石石英脉	方解	石	13.70	-3.88

分析测试单位:中国地质大学(武汉)测试中心。

2002 年

3.4 包裹体

从中矿带 280 m 中段和西矿带各采一样品, 并作包裹体测试分析。测试结果表明,西矿带方 解石中几乎无包裹体,而中矿带 280 m 中段石英 中包裹体大量出现。所观察的石英包裹体,均为 气液二相包裹体,形状大都不规则,少量呈规则的 圆状、椭圆状,大小中等(4 µm~18 µm).所测均一 温度如图 2 所示,从中看出,石英包裹体温度范围 区间为 360 ℃~385 ℃,属于高温岩浆热液型。

3.5 岩石化学

从岩石化学成分参数表中可以来看,尽管岩 浆活动频繁,老柞山矿床及外围岩石化学里特曼 指数(σ)基本上在 1.8~3.3之间.据邱家骧^[11],当 σ <1.8 时,属于钙性;当1.8< σ <3.3 时,属于钙 碱性;当3.3< σ <9 时,属于碱性;当 σ >9 时,属 于超碱性。老柞山矿床及外围岩石化学里特曼指 数(σ)大部分落在 1.8~3.3之间,属于钙碱系列 环境。从 K₂O/Na₂O-SiO₂ 图解中可以看出,研究 区样品大部分落在 ACM 区,属于活动大陆边缘, 即老柞山矿床属于活动大陆边缘钙碱系列环境 (图 3)。

Fig. 2. Histogram of homogenization temperatures of quartz inclusions in the ore band of gold-polymetal ore field of Laozuoshan, Heilongjiang Province.

表 5 黑龙江老柞山矿床及外围的岩石化学表

Table 5. Petrochemistry of Laozuoshan gold-polymetal ore deposit in Heilongjiang Province

						-			•							
13	岩石类型	样品数					氧	七物含量	/%					特征数值		
及期			SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	K ₂ O + Na ₂ O	K ₂ O/ Na ₂ O	σ
ŧ	闪长岩	1	55.16	1.00	17.12	3.22	5.46	0.16	3.81	6.06	3.68	2.30	0.40	5.89	0.63	2.94
	石英闪长岩	1	64.44	0.61	15.40	2.53	2.17	0.125	1.86	2.83	4.61	3.94	0.20	8.55	0.85	3.41
燕		5	62.08	0.67	17.40	3.53	2.77	0.08	2.83	4.25	4.19	2.82	0.08	7.00	0.68	2.73
ш	花	1	69.58	0.40	15.33	0.73	1.97	0.10	1.37	2.55	3.80	3.22	0.15	7.02	0.85	1.85
期	四因	5	64.08	0.63	15.21	1.73	3.03	0.07	2.32	3.25	4.28	3.18	0.90	6.94	0.74	2.29
	长出	8	67.84	0,52	15.11	1.54	3.23	0.06	1.55	3.28	3.68	2.63	0,15	6.30	0.71	1.60
	<i>1</i> 1	2	64.40	0.71	16.32	0.99	3.65	0.09	1.77	4.43	3.75	2.89	0.32	6.60	0.79	2.05
	二长花岗岩	5	68.30	0.48	15.03	0.83	3.11	0.20	1.10	2.74	3.71	3.55	0.15	7.17	0.85	1.89

第2期

代立东:黑龙江老柞山金多金属矿床地质地球化学初探

23

	 \$	岩石类型						氧	化物含量	/%					4	侍征数值	í	
入期			石类型	石类型	品数	SiO2	TĩO₂	Al ₂ O ₃	FezO3	FeO	MnO	MgO	CaO	Na ₂ O	K20	P205	K ₂ O + Na ₂ O	K ₂ 0/ Na ₂ 0
			3	68.03	0.37	16.02	1.84	2.09	0.03	1.41	2.60	3.95	4.12	0.09	8.10	1.05	2.63	
		化岗口	4	67.02	0.48	15.52	1.60	2.51	0.075	1.43	3.47	3.68	3.25	0.25	7.10	0.84	1.58	
		乙氏学	1	67.46	0.56	16.22	1.61	2.47	0.10	1.56	3.42	4.00	3.32	0.20	7.32	0.83	2.19	
	早 -	-151 	3	65.70	0.50	15.46	2.56	1.87	0.10	2.37	3.69	4.18	2.89	0.23	7.07	0.70	2.17	
	期	~	7	66.50	0.51	15.33	2.40	2.30	0.05	1.18	2.11	4.16	4.00	0.19	8.18	0.96	2.85	
中		一长闪长岩	1	68.96	0.30	17.00	1.63	0.47	0.05	0.22	0.66	3.36	4.40	0.04	7.76	1.31	2.32	
		花岗闪长斑岩	2	65.52	0.45	15.65	1.95	2.47	0.08	1.72	3.23	3.75	3.03	0.14	6.78	0.79	2.04	
	晚 -	碱长花岗岩	2	74.76	0.18	12.55	0.85	1.42	0.01	0.19	0.51	4.10	4.79	0.065	8.76	1.16	2.39	
	, 期	花岗斑岩	1	76.70	0.11	12.48	0.31	1.08	0.05	0.12	0.29	4.29	4.77	0.10	9.06	0.11	2.44	
		闪长斑岩	3	58.68	0.52	16.16	1.60	4.86	0.13	3.67	6.60	2.95	1.40	0.17	4.36	0.54	1.23	

注:分析数据引自文献[12]。

图 3 黑龙江老柞山金多金属矿床 K₂O/Na₂O-SiO₂ 投点图

Fig. 3. $K_2O/Na_2O\text{-}SiO_2$ diagram of Laozuoshan

gold-polymetal ore deposit in Heilongjiang Province. PM. 被动大陆边缘; ACM. 活动大陆边缘; ARC.大洋 岛弧

4 结 论

矿床同位素、包裹体及岩石化学资料表明,成 矿热液主要为岩浆水,可能有少量的地壳物质的 混入,成矿物质主要来自幔源,成矿环境是活动大 陆边缘钙碱系列环境,主要产金矿带属于高温热 液型金矿带,高温岩浆热液为老柞山金矿床的形 成提供了热源,而且提供了成矿物质。

本论文在成文过程中,曾得到中国科学院地 球化学研究所黄智龙研究员和王多君博士的热心 指导和大力帮助,文中的部分图件曾得到李营硕 士的指导,谨表谢意。

2002年

参考文献

- [1] 张红军.老柞山金矿床地质特征及同位素地球化学特征[J].黄金,1999,20(12):4~7.
- [2] 李春昱, 郭令智, 朱夏, 等. 板块构造基本问题[M]. 北京: 地震出版社, 1986, 176~462.
- [3] 邓翔云,宋涛,胡明春,等.黑龙江省勃利县至宝清县老柞山金矿区东西矿带勘探报告(第一期)[R].中国有色金属总 公司黑龙江地质勘探公司七〇一队,1994:15~21.
- [4] 邓翔云,戴福林,张裕信,等.黑龙江省七台河市老柞山金矿区中矿带勘探报告[R].中国有色金属总公司黑龙江地质 勘探公司七〇一队,1994:37~41.
- [5] Ohmoto H. Systematics of sulphur and carbon isotope in hydrothermal ore-deposits [J]. Econ Geol, 1972(17):551 ~ 578.
- [6] Ohmoto H. Isotopes of sulphur and canbon. in: barnes hied geochemistry of hydrothermal ore deposits [M]. New York: John Wiley&sons, 1979: 509 ~ 567.
- [7] 刘英俊,曹励明,李兆麟,等.元素地球化学[M].北京:科学出版社,1984,458~471.
- [8] Doe B R, Stacey J S. The application of lead isotope to the problems of ore genesis and ore prospect evolution [J]. Econ. Geol., 1974, (69):757 ~ 776.
- [9] 袁见齐,朱上庆,翟裕生.矿床学[M].北京:地质出版社,1993,148~151.
- [10] Hugh R. Rollison. 杨学明, 杨晓勇, 陈双喜(译). 岩石地球化学[M]. 安徽: 中国科学技术大学出版社, 2000, 167~239.
- [11] 邱家骧.岩浆岩岩石学[M].北京:地质出版社,1984,34~50.
- [12] 黑龙江省地质矿产局.黑龙江省区域地质志[M].北京:地质出版社,1993,70~415.

GEOLOGY AND GEOCHEMISTRY OF LAOZUOSHAN GOLD-POLYMETAL ORE DEPOSIT IN HEILONGJIANG PROVINCE

Dai Lidong¹, Li Heping¹, Wang Siyuan², Wei Junhao^{1,2}

(1. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002;

2. China University of Geosciences, Wuhan 430074)

Abstract

In this paper, through the study of ore-deposit geologic settings, sulphur isotopes, lead isotopes, carbon isotopes, oxygen isotopes, fluid inclusions and petrochemistry, the authors have drawn a conclusion that gold ore deposits were derived from high-temperature magmatic hydrothermal solutions with underground water involved. It is the first time that the authors put forward that the Laozuoshan gold-polymetal ore deposit in Heilongjiang Province was formed in a calc-alkaline environment at the continental margin.

Key words: gold-polymetal ore deposit; sulphur isotope; lead isotope; carbon isotope; oxygen isotope; inclusion; petrochemistry; Laozuoshan

...