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Abstract The Oligocene Yao’an syenite porphyry, associ-
ated with gold mineralisation, and the Machangqing alkali
granite porphyry–monzonite porphyry, associated with Cu
mineralisation, belong to the Red River–Jinshajiang alka-
line igneous belt that formed in a continental setting in
southwestern China. A study of the mineral chemistry of
major silicate minerals in these two mineralised intrusions
provides insights into their overall crystallisation condi-
tions. The temperature and pressure conditions, derived
from amphibole–plagioclase and perthite–plagioclase geo-
thermometry and Al-in-amphibole barometry, suggest that
the Yao’an intrusion crystallised at around 820±50°C and
0.9–1.3 kbar, whereas the Machangqing intrusion crystal-

lised at around 730±50°C and 2.2–2.8 kbar. The higher
temperature and lower pressure of crystallisation for the
Yao’an intrusion relative to the Machangqing intrusion
indicates that it was emplaced at a shallower crustal level.
Based on biotite composition, the two intrusions formed
under imposed oxygen fugacities above the Ni–NiO buffer
(NNO), and the Yao’an intrusion crystallised under more
oxidising conditions than the Machangqing intrusion. The
results show that the intrusions associated with Cu–Au
mineralisation in the Red River–Jinshajiang alkaline igne-
ous belt were emplaced at a relatively high fO2, which,
together with the weakly fractionated magma, favoured Au
enrichment relative to Cu in the belt.

Introduction

Magmatic–hydrothermal Cu–Au deposits reveal a persistent
genetic association with oxidised intrusions (Imai et al.
1993; Richards 1995; Sillitoe 1997, 2002; Ballard et al.
2002; Maughan et al. 2002; Pollard and Taylor 2002;
Holliday et al. 2002). This association is built on the fact
that convergent margin magmas associated with Cu–Au
mineralisation have a relatively high fO2 (Sun et al. 2004),
which is due to high fO2 melts and fluids released from
subducted slabs, or to brine exsolution during magmatic
evolution (Maughan et al. 2002). Therefore, oxidation state
is a key factor in determining the potential of the convergent
margin magmas to form Cu–Au mineralisation (Ballard et al.
2002; Mungall 2002; Richards 2003; Sun et al. 2004; Liang
et al. 2006; Bonin 2007). In recent years, many magmatic–
hydrothermal Cu–Au deposits, for example, epithermal/
porphyry types, have been shown to be associated with
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high-K calc-alkaline and alkaline magmas in continental
tectonic settings: for example, the porphyry-type Cu–Au
deposits in the Red River–Jinshajiang alkaline igneous belt,
southwestern China, and the Dexing porphyry-type Cu
deposits in eastern China (Hu et al. 1998, 2004; Bi et al.
2000, 2005; Hou et al. 2003, 2007; Rui et al. 2004).
However, there have been few definitive studies (Liang et
al. 2006) of the oxidation state of high-K calc-alkaline and
alkaline magmas associated with Cu–Au mineralisation in
continental tectonic settings. Therefore, it is of considerable
scientific interest, to determine the magmatic oxidation
state of such intrusions in continental tectonic settings.

Copper and Au-mineralised alkaline intrusions occur
widely in the Red River–Jinshajiang alkaline igneous belt
of Southwestern China. Examples include the Yulong and
Machangqing intrusions associated with copper deposits
(Hu et al. 1998, 2004; Hou et al. 2003), and the Yao’an,
Beiya and Bengge intrusions associated with gold deposits
(Bi et al. 2002, 2004). These mineralised intrusions are
felsic, with SiO2 ranging from 58.5 to 70.8 wt.%, K2O+
Na2O from 7.7 to 11.5 wt.% and K2O/Na2O>1, and ages of
∼40–30 Ma (Zhang et al. 1997; Chung et al. 1998). The
gold and copper deposits are located at both the exo- and
endo-contact zones of the intrusions, and their ages also
range from ∼40 to 30 Ma (Wang et al. 2005). The ore-
forming fluids of both gold and copper deposits were
derived from the alkaline intrusions, but the magmatic
fluids responsible for the gold deposits were less exten-
sively diluted by modified air-saturated water (MASW)
than those that deposited the copper deposits (Hu et al.
2004). Although some researchers have obtained geochem-
ical and structural information for individual batholiths and
suites of plutonic rocks within the Red River–Jinshajiang
alkaline intrusive belt (Tu et al. 1984; Zhang et al. 1987,
1997; Leloup et al. 1995; Xie and Zhang 1995; Hu and
Huang 1997; Deng et al. 1998; Wang et al. 1998; Bi, 1999;
Zhang and Schärer 1999; Wang et al. 2001), constraints on
magmatic evolution and mineralisation are not well
understood. Thermobarometric data are particularly lacking
from plutons of the Red River–Jinshajiang igneous belt.
Liang et al. (2006) used the Ce(IV)/Ce(III) ratio in zircon to
examine the oxidation state of the Yulong ore-bearing
porphyries in the Red River–Jinshajiang alkaline igneous
belt, and suggested that the ore-bearing porphyries crystal-
lised from a relatively oxidised magma.

Estimation of the thermochemical characteristics during
magma crystallisation can provide useful information on
the nature of magmatic evolutionary processes. Chemical
analysis of igneous rock-forming minerals has been widely
used to estimate emplacement pressure, temperature,
oxygen fugacity and compositional variations of igneous
rocks. For example, the analysis and interpretation of
plutonic rocks may be assisted by the application of

feldspar thermometry (e.g., Fuhrman and Lindsley 1988),
amphibole–plagioclase thermometry (e.g., Holland and
Blundy 1994), biotite–apatite thermometry (e.g., Ludington
1978; Zhu and Serjensky 1991) and Al-in-amphibole
barometry (e.g., Vyhnal et al. 1991; Ghent et al. 1991;
Schmidt 1992; Anderson and Smith 1995; Ague 1997).
Biotite and amphibole are very common constituents of
igneous rocks, and contain both Fe+2 and Fe+3 whose ratio
can be used to constrain T, P and fO2 during magmatic
evolution (Wones and Eugster 1965; Rowins et al. 1991;
Loferski and Ayuso 1995; Stewart et al. 1996; Elliott et al.
1998; Stone 2000; Elliott 2001). Selby and Nesbitt (2000)
examined the major-element chemistry of igneous biotite
with the objective of distinguishing between mineralised
and barren plutons. It has been suggested that the intrusive
suites related to major Au–Cu porphyry and gold epither-
mal systems are especially oxidised relative to those suites
related to copper porphyry or W–Mo porphyry systems
(e.g., Ishihara 1981; Lowenstern 1991; Rowins et al. 1991;
Sillitoe 1997; Garrio et al. 2002; Mungall 2002).

In this paper, whole-rock and mineral chemistry are used
to study the crystallisation conditions of the Yao’an syenite
porphyry associated with gold mineralisation, and the
Machangqing alkali–granite porphyry associated with cop-
per mineralisation, both located within the Red River–
Jinshajiang alkaline igneous belt in western Yunnan
Province, China, to understand the oxidation state of such
intrusions associated with copper and gold mineralization in
continental tectonic settings.

Geological setting

The Red River–Jinshajiang alkaline igneous belt is adjacent
to the Red River–Jinshajiang fault zone in the eastern part
of the Tibetan plateau, the eastern part of which comprises
several terranes: from north to south, the Songpan–Ganze,
Qiangtang, Lhasa and Yangtze terranes (Fig. 1), which were
welded together prior to the Cretaceous to form part of the
Eurasian plate. At ∼60–70 Ma, the India–Eurasian collision
created the plateau and resulted in eastward extrusion
tectonics faciltated by strike–slip motion along the NW–
WNW trending Red River–Jinshajiang fault zone (Zhang et
al. 1987; Turner et al. 1996; Chung et al. 1997, 1998; Bi
1999; Yin and Harrison 2000). Numerous alkaline igneous
bodies occur along or near the fault zone (Fig. 1), forming a
magmatic belt over 1000 km long and generally 50–80 km
wide. K–Ar and Ar–Ar dating of whole-rock or mineral
samples from the alkaline rocks define intrusion ages of
∼40–30 Ma (Zhang et al. 1997; Chung et al. 1998; Liang et
al. 2006). The alkaline rocks are exposed around two
tectonic belts, the Red River shear zone (RRSZ) and the
Jinshajiang fault system (Fig. 1a). Geochemically, these
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volcanic and intrusive rocks range from basaltic to trachytic
and rhyolitic in composition (Chung et al. 1998). They
show ultra-potassic or shoshonitic character and incompat-
ible trace-element patterns with highly enriched large-ion
lithophile elements and light rare-earth elements, and
marked depletions in the high field strength elements, such
as Nb, Ta and Ti (Chung et al. 1998; Hou et al. 2003; Bi
et al. 2005). The Sm–Nd isotopic compositions of these
volcanic and intrusive rocks (Zhang et al. 1997; Bi et al.
2005) indicate that they were derived from an enriched
mantle source (EMII). The above features support the
origin of these alkaline magmas in a metasomatised
lithospheric mantle which was previously contaminated by
fluids or melts derived from a subducted oceanic slab
(Chung et al. 1998; Hou et al. 2003). A series of Tertiary
rifted basins, the eruption of alkaline basalt, and the
positive gravity anomaly pattern along the Red River–
Jinshajiang fault system, suggest that the alkaline rocks
formed in a post-collisional extensional setting (Zhang et al.
1987; Turner et al. 1996; Chung et al. 1997, 1998; Hou
et al. 2003).

Geology and geochemistry of the intrusions

The Yao’an alkaline stock in Yao’an County, Nanhua
County and Mouding County, Yunnan Province, was
emplaced primarily into dark-gray silty mudstones and
marl of Jurassic age (Fig. 1b). The intrusion appears as
stocks and apophyses of syenite porphyry, subordinate
quartz syenite porphyry and minor occurrences of lamp-
rophyre. The Machangqing alkaline intrusion within the
bounds of Xiangyun County, Yunnan Province, predomi-
nantly intruded into lower Ordovician microclastic rocks
and Devonian limestones (Fig. 1c). The intrusion appears as
stocks of alkali–granite porphyry and monzonite porphyry.
Table 1 summarises the characteristics of the Yao’an syenite
porphyry and Machangqing alkali–granite porphyry. The
data presented in Table 1 illustrate some differences between
the two intrusions with respect to textural, mineralogical and
chemical composition, although they have a similar tectonic
setting, age of emplacement, and magma source region.

The Yao’an hydrothermal gold mineralisation occurs
within and around the Yao’an syenite porphyry. The syenite

Fig. 1 a A sketch geological
map of the Red River–
Jinshajiang fault zone showing
the locations of alkaline igneous
rocks and related ore deposits
(modified from Chung et al.
1998); b a sketch map of the
Yao’an alkaline intrusion
(modified from Bi et al. 2005);
c a sketch map of the
Machangqing alkaline intrusion
(modified from Bi 1999)

T, P, fO2 from mineral chemistry of alkaline intrusions 45



porphyries in the mineralised area exhibit various degrees
of hydrothermal alteration. Away from the orebody, the
syenite porphyry is only very weakly altered with primary
perthite, plagioclase, biotite and hornblende. Minor calcite
is the product of hydrothermal alteration, and the proportion
of altered minerals is less than 10 vol.%. Close to the
orebody, however, the syenite porphyry is heavily altered:
primary perthite is partially replaced by secondary K-
feldspar. The alteration assemblages have been classified as
K-feldspar alteration, sericitisation and propylitisation. In
the proximal part the proportion of altered minerals is
generally more than 50 vol.%. The Yao’an hydrothermal
gold deposit is estimated to contain about 10 t of Au, with
the average ore grade being 4–5 g/t (No. 304 Team of

Southwest Geological Exploration Bureau 1995). The
orebodies occur in the endo- and exo-contact zones of
the Yao’an intrusion and the Jurassic Tuodian Formation.
The orebodies mostly comprise veins, and are lenticular in
shape, with branching and pinching common. The Yao’an
gold deposit formed during two stages: an early sulfide
(pyrite–chalcopyrite–galena) stage, and a later sulfide-oxide
stage (pyrite–specularite). The stable isotope (S, C) and
REE data suggest that the early sulfide stage mineralization
of the Yao’an gold deposit was caused by orthomagmatic
fluids derived from the Yao’an alkaline intrusions (Bi et al.
2004).

The Machangqing copper mineralisation occurs within
and around the Machangqing intrusion. About 200,000 t of

Table 1 Characteristics of the Yao’an and Machangqing alkaline intrusions (data from Bi 1999; Bi et al. 2005; Zhang et al. 1997; Peng et al. 2005)

Yao’an alkaline intrusion Machangqing alkaline intrusion

Host rocks Dark-gray silty mudstones and marl
of Jurassic Tuodian Formation

Lower Ordovician microclastics and
Lower Devonian limestones

Outcrop area <1 km2 1.3 km2

Occurrence Stocks and apophyses Stocks

Intrusion type Syenite porphyry Granite porphyry

Quartz syenite porphyry Monzonite porphyry

Lamporphyre

Mineral phenocryst Kfs+Pl+Cpy+Amph+Bi Kfs+Pl+Amph+Bi+Qtz

Typically euhedral Euhedral to subhedral

Size=1–10 mm Size=0.5–10 mm

35–50 vol.% of whole rock 30–45 vol.% of whole rock

Mafic mineral Cpx+Amph+Bi Amph+Bi

Accessory mineral assemblage Ap+Ms+Tit+Zr Ap+Ms+Tit+Zr

Chemical composition SiO2=58.5–67.1% SiO2=66.9–70.8%

CaO=2.30–5.80% CaO=1.20–3.30%

K2O+Na2O=8.1–10.0% K2O+Na2O=7.7–9.4%

K2O/Na2O=1.01–4.53 K2O/Na2O=1.02–2.05

A/CNK=0.79–1.09 A/CNK=0.87–1.16

FeO total=3.5 wt.% FeO total=2.4 wt.%

MgO/(FeO total+MgO)=0.26–0.43 MgO/(FeO total+MgO)=0.19–0.43

∑REE=546.1–811.2 ppm ∑REE=213.6–257.9 ppm

(La/Yb)N=66.7–97.9 (La/Yb)N=26.6–33.8

ISr=0.7088–0.7093 ISr=0.7061–0.7082

ɛNd=−9.2 to −10.6 ɛNd=−3.1 to −10.2
Age (average value) 33.5±1.0 Ma (Ar–Ar, Amph, Zhang et al. 1997) 33.7±1.0 Ma (Ar–Ar, Q, Peng et al. 2005)

Tectonic setting The Red-River shear zone The Red-River shear zone

Mineralization Au–Ag–Pb–Cu Cu–Mo–Au

Mineralization scale 10 t Au 20 t Cu

Ore grade 4–5 g/t Au 0.5 wt.% Cu

Origin Hydrothermal deposit Hydrothermal deposit

Amph tremolite, Ap apatite, Bi biotite, Kfs K-feldspar, Ms magnetite, Pl plagioclase, Cpx diopside, Qtz quartz, Tit titanite, Zr zircon, A/CNK
molecular Al2O3/(CaO+Na2O+K2O)
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Cu was estimated, with the average ore grade being 0.5%
(No. 301 Team of Southwest Geological Exploration
Bureau 1981). The orebodies are controlled structurally
and occur as veins and fine disseminations in granite
porphyries, contact hornfels in the Lower Ordovician
metasedimentary rocks, and as skarns in the Devonian
limestones. Porphyry-type and skarn-type ores constitute
two major mineralisation styles in the Machangqing copper
deposit. The Machangqing intrusive body exhibits strong
hydrothermal alteration that forms more or less concentric
zones extending outward from the inner part of the
intrusion, including a silicification zone, K-silicate zone,
propylitic zone and argillic zone. The silicification zone is
characterised by veins and stockworks of quartz. The K-
silicate zone is characterised by pervasive alteration of
plagioclase to orthoclase, hornblende and primary biotite to
secondary biotite. The alteration was accompanied by
disseminated and veinlet-type Cu-sulfide mineralization.
Propylitic alteration is weak but pervasive forming a wide
halo in the country rocks and overprinting the other
alteration zones. The main assemblage consists of epidote,
chlorite, albite and calcite. Weak argillic alteration is
characterised by the replacement of biotite and feldspar by
clay minerals. The He, Ar, S and C isotopic data suggest
copper mineralisation was apparently caused by orthomag-
matic fluids derived from the Machangqing alkaline
intrusion (Hu et al. 1998; Bi 1999; Bi et al. 2000).

Compositional evolution and fractional crystallisation
of the magmas

The compositional evolution of the granitoids can be
deduced from trace element abundances of mantle incom-
patible elements, and ratios between incompatible and
compatible elements. Each parameter in turn is dependant,
however, on processes, such as melting, mixing, crystal-
lisation and fractionation, in addition to source character-
istics. The K/Rb ratio is more useful in this regard as a
measure of relative compositional evolution. Both K and
Rb substitute into the same site in a range of minerals, but
Rb to a lesser extent than K on account of its larger ionic
radius, so Rb is progressively enriched in residual melts.
Granitoids with K/Rb ratios under 140 are considered
highly fractionated (Blevin 2004). K/Rb ratios are also
useful in highly fractionated melts near minimum melting
conditions, which may show a steep decrease in K/Rb ratio
(Blevin 2004). As shown in Fig. 2, the Yao’an syenites,
with K/Rb ratios greater than 150, can be regarded as being
compositionally less evolved, whereas the Machangqing
alkaline granites, with K/Rb ratios between 150 and 50, are
more fractionated.

Mineral chemistry

Analytical methods

Minerals were analysed using wavelength dispersive X-ray
spectrometry at the Department of Geology, University of
Toronto, Canada. Mineral analyses were done using a
CAMECA SX50 electron microprobe using 20 KV accel-
erating voltage, a static (fixed) beam (5 μm spot size), and a
beam current of 25 nA for all elements other than F and Cl,
which were analysed at a 60 nA beam current. On-peak
counting times were 30 s for F and Cl and 10 s for all other
elements. Calibration was performed using the following
natural and synthetic standards: Si, Ca–wollastonite, Ti–rutile
(synthetic), Al–corundum (synthetic), Mg–magnesium oxide
(synthetic), Fe–hematite, Mn–rhodochrosite, Na–albite, K–
sanidine, Cr–chromium III oxide (synthetic), Cl–tugtupite,
and F–fluorite. Raw data were reduced using the software
package Probe for Windows© (J. Donovan, Advanced
Microbeam, Inc.) which uses standard ZAF correction
algorithms during data reduction. Mineral formulae were
recalculated using the software package MinPet© or using
spreadsheet routines. Analytical accuracy was monitored by
analysing glass of tugtupite composition, basaltic glass, and
F-bearing phlogopite standards. Results are accurate to within
5% for all elements other than F which is within 20%.
Routine detection limits (considered to be three standard
deviations above background) were 0.05 and 0.008 elemental
wt.% for F and Cl, respectively, and 0.02 elemental wt.% for
all other elements. Presented here are 43 analyses of biotite,
15 analyses of tremolite and 18 analyses of feldspar from the
Yao’an and Machangqing intrusions.

The calculation of Fe3+ in biotite from incomplete
electron microprobe analyses is not a valid procedure
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Fig. 2 K/Rb vs. SiO2 plot for Yao’an and Machangqing alkaline
intrusions
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because of uncertainties related to site vacancies and charge
balances (Dyar et al. 1991; Feldstein et al. 1996; Delaney et
al. 1998). Thus, the total iron (FeOT) of biotite was
obtained by electron microprobe analysis, and the Fe3+/
Fe2+ ratio of biotite was determined by Mossbauer
spectroscopy (Annersten 1974). Bulk mineral separates
from the Yao’an and Machanqing intrusives were ground
into powder in an agate mortar. Room-temperature Moss-

bauer studies to determine Fe2+ and Fe3+ spectra area were
done in the Mossbauer Spectroscopy Laboratory at the
Department of Physics in Nanjing University. The Moss-
bauer spectra were measured using a 25 mCi 57Co/Rh
source. Run times for the individual measurements aver-
aged 1.5 days per sample. Results were calibrated against
an α-Fe foil of 25 μm thickness and 99% purity.

Results

Biotite

Representative electron-microprobe analyses of biotite from
the Yao’an syenite porphyry and Machangqing granite
porphyry samples are listed in Tables 2 and 3 and are plotted
on Fig. 3. The biotite is magnesium-rich Mg/(Fe+Mg)
ranging from 0.62 to 0.73 (average 0.66) in the Yao’an
syenite and from 0.57 to 0.68 (average 0.62) in the
Machangqing alkali–granite. In terms of phlogopite–
annite–eastonite–siderophyllite variation (Fig. 3a), biotite
from both intrusions displays a low and uniform Fe/(Fe+
Mg) ratio (0.34±0.07 for Yao’an and 0.38±0.06 for
Machangqing) and is dominated by the phlogopite end-
member. The rather uniform Fe/(Fe+Mg) ratios in the
biotite rule out the possibility of modification by an
overprinting late-stage fluid (Mahmood 1983; Rowins et
al. 1991). As shown in Table 4 and Fig. 4, the Fe3+/(Fe2++
Fe3+) ratio of the Yao’an syenite is 0.425 and 0.373 in the
Machangqing alkali granite. Biotite from both intrusions
(Tables 2, 3) is greatly enriched in F relative to Cl, with
average F/(F+Cl) ratios of 0.91 and 0.96 for Yao’an and
F/(F+Cl) ratios of 0.85 and 0.95 for Machangging.

Amphibole

Representative electron-microprobe analyses of amphibole
from the Yao’an syenite and Machangqing alkali granite
samples (Table 5), and plotted in Fig. 5. The amphibole is
tremolite according to the classification of Hawthorne and
Oberti (2006). Calcic amphibole compositions in both
intrusions show increasing Al content with increasing Fe/
(Fe+Mg), but are richer in Na and Ti in the Yao’an syenites
than in the Machangqing alkali–granites. The Fe/(Fe+Mg)
ratios of primary amphiboles are low (0.38 and 0.42) in the
Machangqing alkali–granites, and range from 0.40 to 0.43
in the Yao’an syenites. Two grains of secondary actinolite
of the Machangqing alkali–granite are rich in Mg, and their
Fe/(Fe+Mg) ratios range from 0.24 to 0.27. Estimated Fe3+/
(Fe3++Fe2+) ratios determined by the method of Cosca et al.
(1991) are 0.30–0.39 in tremolite from the Machangqing
alkali granite, and 0.32–0.47 in tremolite from the Yao’an
syenite.
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Feldspar

Representative electron-microprobe analyses of plagioclase
and perthite from Yao’an syenite and Machangqing alkali
granite samples are summarised in Table 6. All crystals
nominally identified as plagioclase are ternary feldspars,
corresponding to anorthoclase both in composition and in
their typical habit and characteristic development of albite

and pericline twinning. Greater extents of solid solution of
Or and An components are shown by the ternary feldspars
from the Yao’an syenite porphyry than the Machanquing
granite porphyry.

Estimates of pressure, temperature and oxygen fugacity

Temperature–pressure

The amphibole–plagioclase thermometer of Holland and
Blundy (1994) for quartz-bearing assemblages was used
with the temperature-dependent formulation of the Al-in-
amphibole barometer (Anderson and Smith 1995) to
evaluate T–P conditions of the Machangqing alkaline
intrusion. A two-feldspar thermometer (Fuhrman and
Lindsley 1988) was coupled with the temperature-
dependent formulation of the Al-in-amphibole barometer
(Anderson and Smith 1995) to evaluate T–P conditions of
emplacement of the Yao’an syenite. Anderson and Smith
(1995) and Schmidt (1992) established limits in terms of
Mg and Fe content of amphiboles that are suitable for Al-
in-amphibole barometry. These parameters are adopted for
the present study. The amphiboles are rejected for Al-in-
hornblende barometry unless they have 0.4<Fetot/
(Fetot+Mg)<0.65 and 0.2<Fe3+/(Fe3++Fe2+), where Mg
and Fe are calculated on the basis of 13 cations. For
amphibole–plagioclase thermometry, Blundy and Holland
(1990) argued that this geothermometer yields temperatures
of equilibration for amphibole–plagioclase assemblages
with uncertainties of ±50°C for rocks equilibrated at
temperatures in the range of 750–1,000°C, and will yield
acceptable results only for assemblages with plagioclase
less calcic than An92 and with amphiboles containing less
than 7.8 Si atoms per formula unit.

The analysis points of co-existing phases and crystal
pairs are shown in Fig. 6. Analytical data used are given in
Tables 5 and 6. The temperatures for the Yao’an syenite
porphyry derived from perthite–plagioclase pairs suggest
crystallisation between 812°C and 824°C (Table 7). For the
Machangqing pluton, amphibole–plagioclase pairs from the
granite porphyry record conditions from 725°C to 733°C

Table 4 Mössbauer parameters of biotite from Yao’an and Machangqing alkaline intrusions

Sample χ2 Area (%) IS (mm/s) QS (mm/s) Valence Line width (mm/s) Fe3+/(Fe2++Fe3+)

YST-35 1.1 (8) 57.5 1.1 (1) 2.3 (3) Fe2+ 0.44 (5) 0.425
29.3 0.4 (2) 0.9 (3) Fe3+ 0.53 (6)

13.2 0.0 (4) 0.3 (9) Fe3+ 0.32 (7)

MCQ-39 1.1 (3) 62.7 1.1 (2) 2.3 (7) Fe2+ 0.46 (4) 0.373
16.5 0.3 (3) 1.0 (1) Fe3+ 0.36 (5)

20.8 −0.0 (1) 0.3 (2) Fe3+ 0.34 (0)

YST-35 from Yao’an alkali igneous rocks, MCQ-39 from Machangqing alkali igneous rocks
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Table 6 Representative electron microprobe analyses of feldspar pairs from the Yao’an and Machangqing alkaline intrusions

SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Total Ab An Or

M39–5Ab1 65.71 0.05 20.85 0.21 0.00 0.01 1.71 9.78 1.02 99.33 85.80 8.30 5.90

M39–5Ab2 64.75 0.00 20.07 0.59 0.06 1.02 2.22 9.88 0.36 98.95 87.10 10.80 2.10

M39–5Ab3 66.35 0.00 20.76 0.17 0.02 0.00 1.61 10.83 0.31 100.05 90.80 7.40 1.70

Y36–2Ab2 62.00 0.06 22.32 0.48 0.02 0.13 3.90 7.90 1.35 98.16 72.20 19.70 8.10

Y36–2Ab1 62.88 0.00 22.98 0.15 0.00 0.00 4.08 8.23 1.40 99.71 72.20 19.80 8.10

Y35–2Ab1 63.47 0.00 22.79 0.34 0.00 0.01 3.87 8.35 1.11 99.94 74.40 19.10 6.50

Y33–3Ab1 63.50 0.03 22.05 0.17 0.04 0.01 3.34 8.64 1.75 99.51 74.20 15.90 9.90

Y33–3Ab2 63.81 0.03 22.06 0.22 0.00 0.02 3.39 8.31 1.79 99.62 73.10 16.50 10.40

Y33–1Ab2 63.86 0.02 22.70 0.25 0.04 0.00 3.71 8.50 1.52 100.60 73.60 17.80 8.70

Y33–1Ab3 61.09 0.02 22.55 0.30 0.00 0.00 4.11 7.89 1.36 97.32 71.40 20.50 8.10

Y36–2Or1 64.09 0.04 19.16 0.10 0.03 0.00 0.33 4.37 9.97 98.10 39.40 1.60 59.00

Y36–2Or2 64.42 0.06 19.30 0.14 0.00 0.00 0.34 4.38 9.72 98.36 40.00 1.70 58.30

Y35–2Or1 64.34 0.04 19.47 0.21 0.00 0.01 0.61 5.14 8.40 98.22 46.70 3.10 50.20

Y33–3Or1 63.58 0.04 19.11 0.10 0.00 0.00 0.40 4.59 9.50 97.30 41.50 2.00 56.50

Y33–3Or2 63.94 0.06 19.25 0.15 0.00 0.00 0.40 4.79 9.51 98.10 42.50 2.00 55.50

Y33–1Or2 65.78 0.06 19.42 0.07 0.00 0.00 0.21 3.34 10.08 98.96 33.10 1.20 65.70

Y33–1Or3 64.29 0.08 19.09 0.10 0.00 0.01 0.38 4.20 9.48 97.63 39.40 2.00 58.60

Note: M— Machangqing samples, Y- Yao’an samples.

Fig. 5 Composition of
amphiboles from the Yao’an
and Machangqing alkaline
intrusions. a CaB vs. NaB;
b AlC+AlT vs. Fe/(Fe+Mg);
c CaB vs. NaB; d AlT vs. TiC.
Abbreviations as used by
Hawthorne and Oberti (2006)
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(Table 7). Pressures were calculated using the following
equation presented by Anderson and Smith (1995):

PAS �0:6 kbarð Þ ¼ 4:76Altot � 3:01� TA � 675ð Þ=85ð Þ
� 0:530Altot þ 0:005294 TA � 675ð Þð Þ

where PAS is pressure and TA is temperature calculated
from mineral-pair thermometers (°C). The Al content of
tremolite records crystallisation pressures of 2.2–2.8 kbar
within the Machangqing pluton, and 0.9–1.3 kbar within
the Yao’an pluton (Table 7).

Oxygen fugacity

The atomic proportions of Fe2+, Fe3+ and Mg2+ in biotite can
be used to estimate magmatic oxidation potential, where
biotite occurs in textural equilibrium with magnetite and K-
feldspar (Wones and Eugster 1965). Two independent
sample tests of non-parametric statistical analyses were
performed using SPSS 11.0 software for Fe2+, Fe3+ and
Mg2+ in biotite from the Yao’an syenite and Machangqing
alkali–granite, and were effective in distinguishing biotite
from the two intrusions (p<0.001 for Fe2+ and Fe3+, p<
0.005 for Mg2+). Atomic proportions of Fe2+, Fe3+ and Mg2+

for biotite from the two intrusions (Fig. 7) plot as two groups
close to the hematite–magnetite (HM) buffer. According to
the Fe/(Fe+Mg) ratio of biotites of two intrusions, using log
fO2−T diagram (Wones and Eugster 1965), the oxygen
fugacity ( fO2) of Yao’an intrusion is about 10−13.0 bar, and
those of the Machangqing intrusion is around 10−13.8 bar.

Discussion

Variations of T, P, fO2 in the two intrusions

The temperature and pressure estimates using independent
mineral equilibria for the Yao’an and Machangqing

Table 7 Temperature and pressure estimates for the Yao’an and
Machangqing alkaline intrusions

Yao’an Machangqing

n 7 3

Altotal 1.29–1.48 1.24–1.34

P (kbar) 0.86–1.27 2.23–2.77

T (°C) 812–824 725–733

P: Anderson and Smith (1995); T: Blundy and Holland (1990)
for Machangqing, Nekvasil and Burnham (1987) for Yao’an.
“n” means number of pairs.

Fig. 6 Photomicrographs of the
analysis points of co-existing
phases of Yao’an and
Machangqing alkaline intru-
sions. Analyses are given in
Tables 5 and 6. Samples Y33-3,
Y35-2, Y36-2 from Yao’an,
M39-5 from Machangqing.
Amph tremolite, Kf perthite, Pl
plagioclase
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intrusions show that the syenite porphyry in the Yao’an
intrusion crystallised at 820±50°C (perthite–plagioclase
pairs), and 0.9–1.3 kbar, and the alkali–granite porphyry
in the Machangqing intrusion crystallised at conditions
around 730±50°C (hornblende–plagioclase pairs), and 2.2–
2.8 kbar. Biotite from both porphyries, especially from
Yao’an, is greatly enriched in F relative to Cl. The high F/
(F+Cl) ratios are broadly consistent with biotite which has
not experienced secondary recrystallisation in the presence
of late stage or evolved, lower temperature hydrothermal
fluids which typically results in enrichment in Cl relative to
F (Zhu and Sverjensky 1991). The higher temperature and
lower pressure for the Yao’an intrusion indicates that it was
emplaced at relatively shallower levels in the crust
compared to the Machangqing intrusion.

The biotite chemistry suggests that both intrusions
crystallised at oxygen fugacities well above the NNO
buffer (Fig. 7), which is more than two log units above
FMQ (Mungull 2002). Thus like in arc magmas with a high
potential to generate Au and Cu deposits (Ballard et al.
2002; Mungall 2002; Richards 2003), the alkaline magmas
associated with Cu–Au mineralisation in the continental
setting in Southwestern China also record relatively high
fO2. The oxygen fugacity estimates presented here suggest
that the Yao’an syenite formed at a relatively higher oxygen
fugacity compared with the Machangqing alkali–granite
throughout their crystallisation intervals.

Redox controls on Au and Cu behavior in magma

The oxygen fugacity of a magma controls the oxidation
state of sulfur in a melt. At low oxygen fugacity, sulfur in
the magma exists mainly as S2−, which has a relatively low
solubility in silicate melts (Katsura and Nagashima 1974;
Carroll and Rutherford 1985, 1988). Sulfur saturation is
more easily reached in reduced magmas and the precipita-

tion of sulfides in these magmas would be expected to
occur earlier than in oxidised ones (Carroll and Rutherford
1985, 1988). Chalcophile elements, such as Cu and Au,
would be partitioned into these early sulfides and not
concentrated into late stage melts and the magmatic–
hydrothermal fluid (Blevin 2004). At high oxygen fugacity,
sulfur in the magma is mainly present as oxidised sulfur
species (e.g. SO2), which have a much higher solubility in
silicate melts than reduced sulfur species (e.g. H2S, Carroll
and Rutherford 1985, 1988), and will tend to delay or even
prevent saturation of a magmatic sulfide phase. Thus,
copper and gold will accumulate in the melt during
differentiation under oxidised conditions, and be concen-
trated into a magmatic–hydrothermal fluid (Ballard et al.
2002).

In the Red River–Jinshajiang alkaline intrusive suite, a
clear genetic link has been established between alkaline
potassic intrusions and spatially associated gold and copper
mineralisation by Hu et al. (1998, 2004) and Bi et al. (2000,
2002, 2004). The He, Ar, S, C isotope and REE data
suggest that the mineralising fluids were derived from the
volatile-rich alkaline intrusions. The Yao’an and
Machangqing alkaline intrusions associated with porphyry
Cu–Au deposits were emplaced at high fO2, on the basis of
biotite composition (Fig. 7). It is concluded therefore that
oxidation state is also a key factor in determining the
potential of alkaline magmas for forming Cu–Au mineral-
ization in the Red River–Jinshajiang alkaline intrusive belt.

Fractionation of felsic magma may concentrate gold so
long as it behaves as an incompatible element. Gold may be
removed from magmas by the crystallisation of sulfides,
particularly intermediate solid solution (iss), and to a lesser
extent, magnetite (Cygan and Candela 1995; Simon et al.
2003). Compatible behaviour and the removal of gold may
be limited by low sulfur content, low iron content, or high
oxidation state leading to sulfate stability (Thompson et al.

Fig. 7 Fe3+–Fe2+–Mg ternary
diagram for the estimation of
redox conditions of biotite
crystallisation in the Yao’an and
Machangqing alkaline intru-
sions. Dashed lines represent
fO2 buffers. Experimentally
derived fO2 buffer after Wones
and Eugster (1965). Dark
square and dark dot represent
the samples (see Tables 2 and 3)
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1999). Crystallisation at high fO2 promotes the incompat-
ible behaviour of gold and assists in its efficient partitioning
into a magmatic fluid phase. Transport of gold within an
orthomagmatic fluid from a cooling intrusion into a fracture
stockwork can lead to the deposition of gold in restricted
volumes of rock to form an ore deposit. At lower fO2,
sulfide minerals or even sulfide melt may separate from the
silicate magma, effectively stripping the magma of its gold
before it can generate an orthomagmatic aqueous fluid
(Mungall 2002; Richards 2003).

As discussed above, the gold-related Yao’an syenite
crystallised under more oxidizing conditions, with a weaker
degree of fractionation, compared to the Machangqing
alkaline granite that hosts copper mineralization. The
combination of limited extent of fractional crystallisation
and a high fO2, probably sufficiently oxidising to stabilize
oxidized sulfur species in the melt, allowed the magma at
Yao’an to evolve to the point of saturation with an aqueous
fluid without suffering significant loss of gold. On the other
hand, lower fO2 and a greater extent of fractional
crystallisation have apparently resulted in significant
reductions in the gold content of the Machangqing magma
before the separation of an orthomagmatic fluid, leading to
copper-dominated mineralisation instead. This is in agree-
ment with the results of a study of Au-rich and Au-poor
copper porphyry-type deposits by Sillitoe (1998).

Conclusions

The two alkaline intrusions associated with porphyry Cu–
Au deposits described here, were emplaced at high fO2.
This implies that oxidation state is a key factor in
determining the potential of alkaline magmas for forming
Cu–Au mineralisation in continental tectonic settings.

Two distinct evolutionary paths are recognized for the
magmas parental to the Au–Cu-mineralised Yao’an syenite
and the Cu-mineralised Machangqing alkali granite, despite
their similar origins in metasomatised upper mantle
lithosphere. The Yao’an syenite records a limited history
of fractional crystallisation at shallow depths, comparative-
ly high temperatures, and higher fO2, before it solidified
and exsolved a Au- and Cu-rich, highly-oxidising ortho-
magmatic fluid. The Machangqing alkali–granite records a
more extensive process of fractional crystallisation to
relatively lower temperature at greater depth, and lower
fO2, and exsolved a Au-poor and Cu-rich orthomagmatic
fluid.
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