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Abstract. Dissolved organic matter (DOM) in the waters from Lake Biwa, Japan was fractionated using
tangential flow ultrafiltration, and subsequently characterized by fluorescence properties and amino ac-
ids. While major dissolved organic carbon (DOC), UV absorbance (Abs), humic-like fluorescence (Flu)
and total hydrolyzed amino acids (THAA) occurred in the less than 5 kDa molecular size fraction, they
were not evenly distributed among various molecular size fractions. Flu/Abs ratios increased, and
THAA/DOC ratios decreased with decreasing molecular size. Humic-like fluorescence occurred in all
molecular size fractions, but protein-like fluorescence only occurred in the 0.1 �m-GF/F fraction. Subtle
differences in amino acid compositions (both individuals and functional groups) were observed between
various molecular size fractions, this may indicate the occurrence of DOM degradation from higher to
lower molecular weight. The results reported here have significance for further understanding the sources
and nature of DOM in aquatic environments.

Introduction

In aquatic environments, molecular mass distribution and characteristics of DOM
have been reported in terms of elemental (C, N) and isotopic (13C and 14C) com-
position, fluorescence and absorbance (Smith 1976; Stewart and Wetzel 1980; Carl-
son et al. 1985; Hart et al. 1992; Guo et al. 1994; Martin et al. 1995; Guo and
Santschi 1996; Mopper et al. 1996; Guo and Santschi 1997). These studies showed
that although major DOC was mainly in the less than 5 kDa molecular size frac-
tions, and minor DOC in the >0.1 �m fractions, the chromophoric properties and
chemical compositions of DOM were not evenly distributed among different mo-
lecular size fractions. Recent studies on metal binding characterization (Salbu et al.
1987; Orlandini et al. 1990; Hart et al. 1992; Guo et al. 1994; Martin et al. 1995;
Wu et al. 2001; Wu and Tanoue 2001a) also indicated that there did exist evident
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differences in the properties and nature of DOM in different molecular size frac-
tions.

Recently, three dimensional excitation/emission (Ex/Em) matrix spectroscopy
(3DEEM) has been used successfully to probe the chemical structure of DOM due
to its ability to distinguish different classes of organic matter (Coble et al. 1990;
Senesi 1990; Mopper and Schultz 1993; Del Castillo et al. 1999; Mayer et al. 1999).
HPLC has been also used to detect amino acid compositions in studies of DOM
biogeochemical cycling in aquatic environments (Robertson et al. 1987; Berdie et
al. 1995; Colombo et al. 1998; Wu and Tanoue 2001b). These methods, however,
have never been used to investigate various molecular size fractions of DOM.

In this paper, an initial investigation was carried out to explore fluorescence and
amino acid characteristics, and the possible interrelationship of various molecular
size fractions of DOM. 3DEEM and HPLC, coupled with both acid and alkaline
hydrolysis, were used. Tangential flow ultrafiltration was used to fractionate DOM,
which has been demonstrated to be a promising fractionation method for DOM
(Carlson et al. 1985; Guo et al. 1994; Guo and Santschi 1996). Water samples from
Lake Biwa were chosen as a case study.

Materials and methods

Sampling

We selected two sampling stations in the north basin of Lake Biwa; Stations A (70
m depth), and B (40 m depth), located in the northeast and southwest regions of the
basin, respectively. Lake Biwa (35°00�–35°30� N, 135°50�–136°15� E) is the larg-
est freshwater source in Japan with a surface area of 674 km2, a maximum depth of
104 m and a mean depth of 41 m. It is composed of two basins; the large, deep and
mesotrophic North Basin and the small, shallow and eutrophic South Basin. Sea-
sonal stratification usually occurs from April to January in Lake Biwa (Miyajima et
al. 1997). Water samples were collected in June 1999, and were filtered through
glass-fiber filters (GF/F, Whatman, Maidstone, UK) immediately after sampling,
and stored at 2 °C. The GF/F filtrate was then fractionated using a tangential flow
ultrafiltration system (Minitan II system, Millipore Co. Ltd) with Durapore (0.1 �m
pore size) and Biomax (cutoff membrane, molecular size 5 kDa) membranes suc-
cessively. About 15–20 l of original water was concentrated to 200–400 ml in each
fraction, namely, 0.1 �m-GF/F and 5 kDa-0.1 �m. The <5 kDa fraction was not
concentrated. The fractionation was carried out within 2 days after GF/F filtration,
and the fractions were then kept frozen until further analysis. The system was care-
fully pre-cleaned following the manufacturer’s instructions.
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DOC, absorbance and fluorescence analysis

All fractions were analyzed for DOC, fluorescence and absorbance. DOC concen-
tration was measured by a high temperature catalytic oxidation method using po-
tassium hydrogen phthalate as a standard; After the water sample was acidified with
HNO3, and the DIC was removed by bubbling with pure air for 15 minutes, 200 �l
of sample was injected into TOC analyzer (TOC 5000A, Shimadzu Co. Ltd) (Wu
et al. 2001). System and pure water (Milli-Q TOC, Millipore Co. Ltd) blanks were,
on the average, 2–4 �M C and 6 �M C, respectively.

Fluorescence was measured with 3DEEM using a fluorescence spectrophotom-
eter (Hitachi, Model F-4500). The excitation wavelength ranged from 240 nm to
400 nm (5 nm bandwidth), and the emission from 250 nm to 600 nm (2 nm band-
width). Each sample was scanned three times, and the resulting spectra were
smoothed and averaged. The spectra were subsequently normalized to water Ra-
man Scattering area, and Matlab™ was used to obtain the normalized 3DEEM sur-
face and contour plots, in which Ex/Em maxima can be identified. Instrumental
correction was made according to the manufacturer’s instructions. UV absorbance
of samples was measured at wavelength 254 nm using a spectrophotometer (Shi-
madzu, MPS-2400, UV-vis multipurpose) equipped with a 2 cm quartz cell.

Amino acid analysis

Individual amino acid concentrations were determined by pre-column o-phthaldial-
dehyde (OPA) derivatization and separation of the components by HPLC and fluo-
rescence detection (Lindroth and Mopper 1979). For acid hydrolyzable amino ac-
ids, 2 ml water samples were hydrolyzed at 110 °C for 22 h in 6N HCl. The
hydrolysate was then diluted, neutralized with cooled 2N NaOH, and reacted with
an OPA fluorescent tag for HPLC analysis. A reference mixture of 17 standard
amino acids including aspartic acid (Asp), glutamic acid (Glu), serine (Ser), histi-
dine (His), glycine (Gly), threonine (Thr), arginine (Arg), tyrosine (Tyr), alanine
(Ala), methionine (Met), valine (Val), phenylalanine (Phe), isoleucine (Ile), leucine
(Leu), ornithine (Orn), lysine (Lys) and proline (Pro) was used to assign the iden-
tities. Due to the nonlinear response, Orn, Lys and Pro were ignored. Since tryp-
tophan (Trp) was not stable in the acid hydrolysis, alkaline hydrolysis was applied
before HPLC analysis. For alkaline hydrolysis, ascorbic acid was added as antioxi-
dant, and water samples were first hydrolyzed in 4.2N NaOH at 110 °C for 16 h;
The hydrolysate was then diluted, and neutralized to pH = 9 with cooled 2N HCl,
reacted with a fluorescent tag and analyzed for tryptophan in a similar manner (Wu
and Tanoue 2001b). The recovery of tryptophan was 91±3.3% (n = 4). The analyti-
cal precision expressed as standard deviation from multiple standard injections of
25 �l was less than 0.8% for Val, Met, Ile, Phe and Leu, 1.2 – 1.9% for Ser, His
and Gly, 2.0 – 4.7% for Glu, Thr, Ala, Arg, Trp and Tyr, and 9.9% for Asp (Wu and
Tanoue 2001b).
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Results and discussion

Molecular size distribution of DOC, absorbance and fluorescence

The distribution of DOC, absorbance and fluorescence of the fractionated DOM is
shown in Table 1. As determined by DOC concentration, the relative abundance of
the <5 kDa fraction ranged from 55 to 69% of the total DOC, 5 kDa-0.1 �m frac-
tion from 30 to 43%, and 0.1 �m-GF/F fraction from 1 to 2% (Table 1), indicating
that most DOC was in the <5 kDa fraction. Relative DOC abundance in the <1
kDa fraction ranged from 50 to 78% in oceanic environments (Carlson et al. 1985;
Guo et al. (1994, 1995); Guo and Santschi 1996). For freshwater, Martin et al.
(1995) reported that only 43% of total DOC was in the <10 kDa fraction in Lena
River. These results suggest that the relative abundance of DOC in the lower mo-
lecular size fractions varied among different environments. In terms of UV absor-
bance at 254 nm, the <5 kDa fraction accounted for 57–85% of the total DOM,
which was slightly higher than those (55–69%) determined by DOC. For humic-
like fluorescence, the <5 kDa molecular size fraction was also dominant, account-
ing for 74–88% of the total fluorescence. The recoveries for DOC, absorbance and
fluorescence ranged from 84% to 121%, which are similar to the previous reports
on DOC (80–118%, Carlson et al. (1985) and Guo et al. (1994, 1995), Guo and
Santschi (1996)). Ultrafiltration systems that gave good fluorescence or absorbance
balances may have poor DOC mass balances since fluorescence and absorbance
techniques are more selective and thus may miss contaminants (Buesseler et al.
1996; Mopper et al. 1996). Good balances from all fluorescence, absorbance, DOC
and THAA in this study indicate the validity of the ultrafiltration system used.

As seen in Table 1, Flu/Abs abundance ratios increased from 0.1 �m-GF/F to 5
kDa-0.1 �m, to the <5 kDa molecular size fraction, suggesting that the distribution
was shifted towards the lower molecular fractions for humic-like fluorescence, as
compared to UV absorbance. This is in agreement with previous reports that fluo-
rescence efficiency or Flu/Abs ratios of DOM increased with reducing molecular
weight (Stewart and Wetzel 1980; Ewald et al. 1988; Senesi 1990). The difference
also implies that fluorescing and absorbing DOM was not evenly distributed over
various molecular weights in freshwater.

3DEEM fluorescence characteristics of molecular size fractions

The normalized 3DEEM surface and contour plots of the fractionated DOM are
shown in Figure 1. Two general Ex/Em maxima can be observed in these plots:
Peak A with Ex/Em 320–350/430–460 nm, and Peak B with Ex/Em 230–250/430–
470 nm. Part of the Peak B fluorescence was obscured by water Raman Scattering.
Peaks A and B were similar to previous reports for DOM fluorescence in aquatic
environments, and were usually referred to as humic-like fluorescence (Mopper and
Schultz 1993; Coble 1996; Del Castillo et al. 1999; Wu et al. 2001).

It is interesting to note that an additional Peak C with Ex/Em 260–290/330–350
nm was obvious only in the 0.1 �m-GF/F fractions and GF/F filtrates. Fluorescence
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similar to Peak C in this study was also reported in other natural waters (280/325–
335 nm, Coble et al. (1990); 270/320 nm, Mopper and Schultz (1993); 270/320
nm, Determann et al. (1994) and Wu et al. (2001)), and was usually referred to as
protein-like fluorescence. Determann et al. (1994, 1998) reported that some phy-
toplankton, picoplankton and bacteria were the major sources of protein-like fluo-
rescence in natural aquatic environments. Our results are consistent with those re-
ports since the 0.1 �m-GF/F fraction may possibly include small phytoplankton
and bacteria particles.

Figure 1. 3DEEM surface and contour plots of molecular size fractions of DOM in Lake Biwa. The
fluorescence was calibrated by water Raman scattering. The fractions were the same as those in Table 1.
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Thus, differences in fluorescence properties were evident for different molecular
size fractions of DOM. The humic-like and protein-like fluorescence was shifted to
the lower and higher molecular size fractions, respectively.

Amino acids in various molecular size fractions, and their relationship with
fluorescence characteristics

Total hydrolyzed amino acids (THAA) included total acid hydrolyzed amino acids
and alkaline hydrolyzed tryptophan. THAA concentrations and composition in var-
ious molecular size fractions of DOM are shown in Tables 1 and 2. The mass bal-
ance ranged 89–107%, and was again satisfactory. The <5 kDa molecular size frac-
tion accounted for 51–63% of total THAA, indicating that major THAA were in
the <5 kDa fraction. This result is similar to fluorescence and absorbance distribu-
tion discussed earlier. However, THAA/DOC ratios increased with increasing mo-
lecular size (Table 1), showing that THAA were more heavily weighted in the
higher molecular size fractions than in the lower molecular fractions.

Molar percent ratios of individual amino acids in THAA in different molecular
size fractions were analyzed to identify differences in composition (Figure 2, Ta-
ble 2). It is shown that the most abundant species were Ala, Asp, Glu, Gly and Ser
in all molecular size fractions, accounting for 53.4 – 58.4% of total THAA.

Amino acids in different molecular size fractions have not been well documented
in aquatic environments. At present, only a few studies have been done in fresh-
waters, and these have mainly focused on comparison between particulate and dis-
solved fractions (Mayers et al. 1984; Coffin 1989; Berdie et al. 1995). Amino acids
have been extensively studied in bulk DOM, sediments and particulate in aquatic
environments (Siezen and Mague 1978; Lee and Cronin 1984; Steinberg et al. 1987;
Burdige and Martens 1988; Colombo et al. 1998; Dauwe and Middelburg 1998).
These previous studies demonstrated that despite overall similarity of amino acid
composition in sediments, particulate and setting particle in the water column, evi-
dent differences (composition and concentration) with depth existed, indicating or-
ganic matter degradation. It was also reported that glutamic acid, aromatic tyrosine
and phenylalanine were labile, while glycine, serine and threonine were selectively
preserved in degradation. Our data (Table 2 anf Figure 2a) show that the relative
abundance of aspartic acid and glutamic acid decreased with reducing molecular
size (from 0.1 �m-GF/F, to 5 kDa-0.1 �m, to the <5 kDa fractions), while that of
glycine and serine increased. This finding may imply that amino acids were good
biomarkers for DOM degradation, possibly tracing the occurrence of organic mat-
ter degradation from higher to lower molecular weight. This is strongly supported
by the higher nitrogen abundance and lability of higher molecular size fractions of
DOM in recent studies (Hollibaugh and Azam 1983; Harvey et al. 1995), and is
also consistent with the fact that THAA contribution to total DOC decreased from
the higher to lower molecular size fractions (Table 1), as this may suggest the pref-
erential removal of THAA relative to organic carbon during degradation. The fluo-
rescence results discussed in earlier sections also support our suggestion since the
<0.1 �m fractions were dominated by humic-like fluorescence, which was report-
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edly resulted from refractory organic materials (Mopper and Schultz 1993; Deter-
mann et al. 1994); only the 0.1 �m-GF/F fraction had the protein-like fluorescence,
which was linked to recent biological origin (e.g. Traganza (1969) and Mopper and
Schultz (1993)). Moran et al. (2000) observed that protein-like fluorescence was
increased during DOM biological degradation experiments, suggesting that biolog-
ical degradation would not be possibly responsible for the DOM degradation from
higher to lower molecular weight. Photochemical degradation may be the most
likely process as this has been widely reported to play key roles in controlling the
degradation of DOM in aquatic environments (e.g. Zepp (1998) and Moran et al.
(2000)).

In terms of amino acid functional groups, there also existed subtle differences
(Figure 2b). Acidic (Asp and Glu) and aromatic (Tyr, Phe and Trp) species de-
creased from 0.1 �m-GF/F, to 5 kDa-0.1 �m, to the <5 kDa molecular size frac-
tion, while neutral species (Gly, Thr, Ala, Val and Ile) increased. This may suggest
preferential decomposition of acidic and aromatic amino acids relative to neutral
amino acids during degradation. Similar results were also reported in sediments
(Maita et al. 1982; Gonzalez et al. 1983; Steinberg et al. 1987; Burdige and Mar-

Figure 2. The average relative abundances of amino acids and their functional groups in molecular size
fractions of DOM in Lake Biwa.
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tens 1988). There was no observable trend for basic species (Arg and His) in dif-
ferent molecular size fractions.

It is noteworthy that tryptophan concentrations in DOM increased with increas-
ing molecular size (Table 2 and Figure 2). There are no comparable data at present
since tryptophan analysis has been ignored due to its lability in the acid hydrolysis
used in most recent studies (Mayers et al. 1984; Robertson et al. 1987; Berdie et al.
1995). Fluorescence similar to protein-like fluorescence in both freshwater and
oceanic waters has been widely assumed to be due to the aromatic amino acids
since only three aromatic amino acids (tryptophan, tyrosine, phenylalanine) among
all amino acid species were reported to fluoresce (e.g. Wolfbeis (1985)). Our ob-
servations show that the 0.1 �m-GF/F molecular size fraction containing protein-
like fluorescence not only had abundant amino acids (relative to DOC), but also
had a higher proportion of aromatic amino acids (relative to total THAA) than the
lower molecular size fraction without protein-like fluorescence (Table 1, Figure 1
and Figure 2). Thus our results reconfirm the previous assumed relationship be-
tween the protein-like fluorescence and aromatic amino acids in DOM. Since
phenylalanine usually has lowest fluorescence efficiency among the three aromatic
amino acids, tryptophan fluoresces much more strongly than tyrosine when bound
(Wolfbeis 1985; Determann et al. 1998), the protein-like fluorescence is likely due
to the presence of tryptophan in DOM. The decrease of relative tryptophan abun-
dance from the higher to lower molecular size fractions may imply that tryptophan
was labile, and may be used as a new proxy for DOM degradation from higher to
lower molecular weight.

Summary

At present, little is known about the relationships between the physical and chemi-
cal characteristics and the molecular size of DOM. Our observations (Table 1, Table
2, Figure 1 and Figure 2) provide some new insight on the relationship between
fluorescence and amino acid composition. The results show that the 0.1 �m-GF/F
molecular size fraction had a higher relative abundance of amino acids (Table 1),
and a higher proportion of acidic and aromatic species (Figure 2, Table 2). Differ-
ences in relative abundances of individual amino acids were evident among differ-
ent molecular size fractions (Table 2 and Figure 2). All fractions had similar hu-
mic-like fluorescence (Peaks A and B), but unique protein-like fluorescence was
found in the 0.1 �m-GF/F fraction. Based on these results, it is likely that the 0.1
�m-GF/F fraction may be of more recent biological origin, representing newly
produced organic materials, and the lower molecular size fractions may have been
considerably degraded.
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