胶北晚中生代煌斑岩的岩石地球化学特征及其成因研究^{*}

刘桑¹ 胡瑞忠¹ 赵军红^{1,2} 冯彩霞¹ 钟宏¹ 曹建劲³ 史丹妮⁴ LIU Shen¹, HU RuiZhong¹, ZHAO JunHong^{1,2}, FENG CaiXia¹, ZHONG Hong¹, CAO JianJin³, SHI DanNi⁴

- 1. 中国科学院地球化学研究所矿床重点实验室, 贵阳 550002
- 2. 香港大学地球科学系,香港,中国
- 3. 中山大学地球科学系, 广州 510275
- 4. 中国石油化工股份有限公司石油勘探开发研究院, 北京 100083
- 1. Deposit key laboratory of Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
- 2. Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
- 3. Deapartment of Earth Sciences, Sun Yat-sen University, Guangzhou 540275, China
- 4. Exploration & Produciton Research Institute, Sinopec Beijing 100083, China 2004-03-27 收稿, 2005-04-20 改回.

Liu S, Hu RZ, Zhao JH, Feng CX, Zhong H, Cao JJ and Shi DN. 2005. Geochemical characteristics and petrogenetic investigation of the Late Mesozoic lamprophyres of Jiaobei, Shandong province. Acta Petrologica Sinica, 21(3):947-958

Abstract The lamprophyres of the Jiaobei are collected from Longkou, Yantai and Weihai, and comprise odinites, hornblende lamprophyres and camptovogesites. K-Ar whole rock ages of the lamprophyres distributed between 89.3Ma and 169.5Ma, showing that the lamprophyres are the result of late Mesozoic magmatism. The contents of SiO₂ range from 42.02 % to 54.95 %, they mainly belong to calc-alkaline series. The lamprophyres derived from an enriched lithospheric mantle source, are characterized by Enrichment in large ion lithophile elements (LILE), such as Ba, U, K, Th, and LREE, depletion in the high field strength elements Nb, Ta and Ti, $Mg^{\bullet}(100 \times Mg/(Mg + Fe^2 +)) = 33.9 \times 53.9$, $Eu/Eu^* = 0.71 \times 0.89$, $(^{87}Sr/^{86}Sr)_i = 0.707642 \times 0.709791$, $\epsilon_{Nd}(t) = -17.6 \times -10.4$, $^{208}Pb/^{204}Pb = 37.588 \times 38.431$, $^{207}Pb/^{204}Pb = 15.423 \times 15.531$, and $^{206}Pb/^{204}Pb = 17.204 \times 18.179$. We interpret that the singular geochemical and isotopic characteristics witness an interaction between the subducted ancient crust (Yangtze Craton (YC)) and the mantle peridotite. Partial melting of such metasomatized mantle produced the lamprophyres. Taking into consideration the possession of Continent Margin Arc Basalt (CABM) feature, we also advocate that the petrogenesis of the lamprophyres were related with the subduction of the ancient ocean plate, and these rocks were products of post-collision arc-magmatism.

Key words Lamprophyres, Late Mesozoic, Geochemical characteristics, Enriched mantle, Partial melting, Subduction

摘 要 胶北煌斑岩分别采自龙口、烟台和威海地区。包括拉辉煌斑岩、斜闪正煌岩和角闪煌斑岩。煌斑岩 K-Ar 全岩年龄变化于 89.3~169.5 Ma, 为晚中生代岩浆活动的产物。在岩石化学组成上, $SiO_2 = 42.02\% \sim 54.95\%$, 以钙碱性系列为主, 岩石以富集大离子亲石元素(LILE)(Ba, U, K, Th)和 LREE,亏损高场强元素(HFSE)(Nb, Ta 和 Ti)为特征, $Mg^{\#} = 33.9 \sim 53.9$, $Eu/Eu^* = 0.71 \sim 0.89$, 87 Sr/ 86 Sr 初始比值 $0.707642 \sim 0.709791$, $e_{Nd}(t) \rightarrow -17.6 \sim -10.4$, 208 Pb / 204 Pb $= 37.588 \sim 38.431$, 207 Pb / 204 Pb $= 15.423 \sim 15.531$, 206 Pb / 204 Pb $= 17.204 \sim 18.179$ 。表明煌斑岩源自俯冲陆壳(扬子下地壳)在地幔源区发生交代作用时形成的富集型地幔的部分熔融体。考虑到煌斑岩具有大陆边缘弧玄武岩的特征,我们认为煌斑岩在成因上同样与古大洋板块的俯冲作用有关,为碰撞后弧岩浆作用形成的脉岩。

关键词 煌斑岩;燕山期;地球化学特征;富集地幔;部分熔融;俯冲作用

中图法分类号 P588.137

^{*} 中国科学院知识创新工程重要方向项目(KZCX3-SW-125)和领域前沿项目(CJ0403,CJ0406)资助.

第一作者简介: 刘燊,男, 1974 年 10 生, 博士, 副研究员, 岩石学和地球化学专业, E-mail;liushen@ vip. gyig. ac. cn

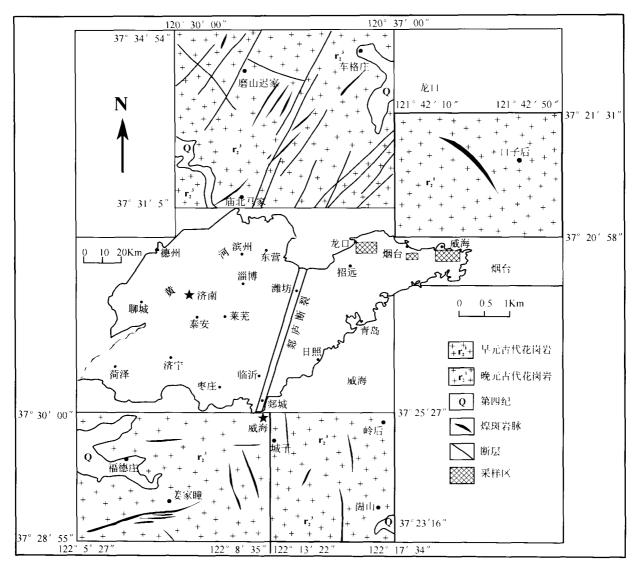


图 1 山东地质和胶北煌斑岩分布简图

Fig. 1 Simplified geological map of Shandong Province showing the distribution of lamprophyres and sample localities in this study

煌斑岩是成分和成因复杂的一组中至暗色的斑状脉岩,按其化学成分和矿物组合,可分为钙碱性煌斑岩、碱性煌斑岩和超基性煌斑岩三大类。由于煌斑岩(特别是钙碱性煌斑岩)与金矿的密切共生关系和煌斑岩的特殊产出构造环境,越来越受到人们的关注(Rock and Groves, 1988a,b; 倪师军,1994; 孙丰月等,1995; 黄智龙等,1999),对煌斑岩的成因认识也从花岗质岩浆后期结晶分异的思维框架转为壳幔相互作用和深部地幔部分熔融,从而使煌斑岩成为能够反映深部构造-岩浆作用和源区地球化学性质及成矿作用的一种研究介质。胶北地区以蕴藏丰富的金矿资源(约占全国1/4)而闻名于世,于是对区内煌斑岩的研究无疑重要。但是,迄今为止,对本区煌斑岩的地质、地球化学特征等方面的研究程度则较低,特别是涉及成因、形成环境等方面更显不足。

1 地质概况

本文研究的煌斑岩样品分别采自龙口、烟台和威海地区(图1)。煌斑岩呈不同走向(北东、北北西、近南北和近东西向)的岩脉群侵入早、晚元古代花岗岩地层中。单条岩脉厚度一般为几米至几十米,长几百米至数公里不等。

研究区内煌斑岩为灰至深灰色、煌斑结构,致密块状构造。主要岩石类型为拉辉煌斑岩、斜闪正煌岩和角闪煌斑岩。拉辉煌斑岩斑晶由橄榄石(0.3~0.6mm)(3%±)(贵橄榄石)、单斜辉石(0.25~1.0mm,多在±0.5mm)(35%)和少量斜长石组成,基质由细条状斜长石(25%)、柱状自形角闪石(0.02~0.08mm)(40%)和少量磁铁矿组成。橄榄石具蛇纹石化现象,并析出磁铁矿。斜长石为拉长石(An=59),

少量发生碳酸盐化,并保留其假象。角闪煌斑岩由长柱状全自形角闪石(90%)和斜长石(中长石)(10%)组成。斜闪正煌斑岩斑晶由长柱状自形角闪石(0.3~0.6mm)(50%~80%)、辉石(±0.6mm)(5%)和少量斜长石(0.3~0.8mm)(正长石)组成。基质主要为角闪石(0.03~0.07mm)和斜长石(0.02~0.06mm)(An=40)组成,同时含少量的原生碳酸盐和磁铁矿。角闪石绿泥石化强烈。

2 分析方法

用玛瑙研钵将样品粉碎成 200 目。主量元素在中国科学院地球化学研究所采用常规湿法分析,分析者李荪蓉;微量元素在中国科学院地球化学研究所用电感耦合等离子质谱(ICP-MS)分析,分析者漆亮,所有元素分析的重现性(准确度)优于5%。稀土元素的分析精度优于5%,微量元素分析精度优于10%。K-Ar年龄由中国地震局地质研究所 K-Ar年龄实验室李大明测试,使用仪器:VG公司生产的 MM-1200

质谱 计及与其相连的全金属萃取系统,采用常数: $\lambda=5.543\times10^{-10}/a$, $\lambda_{\rm c}=0.581\times10^{-10}/a$, $\lambda_{\rm b}=4.962\times10^{-10}/a$, $\lambda_{\rm b}=4$

3 K-Ar 年龄

全 K-Ar 全岩测年结果(表 1)来看, 研究区内煌斑岩脉的年龄处于 89.3 Ma~169.5 Ma. 之间, 为晚中生代岩浆作用的产物。与山东省地质矿产资源局的地质调查结果(1990)一致。也与前人对华北克拉通东部基性岩年龄(90~180 Ma)的研究结果一致(Zhang et al., 2004; Xu et al., 2004; Yang et al., 2004)。

表 1 胶北煌斑岩 K-Ar 年龄

Table 1 K-Ar ages of the lamprophyres from Jiaobei

样品) ² :地	岩石类型	测年方法	K(%)	⁴⁰ Ar rad(mol∕g)	40Ar rad(%)	Ages($\pm 2\sigma$, Ma)
DK3	烟台	斜闪正煌岩	全晋(K-Ar)	2.58	4.57E - 10	93.39	99.3 ± 1.05
CG2-1	龙口	拉辉煌斑岩	全岩(K-Ar)	1.72	4.33E - 10	94.01	139.6 ± 2.7
GS1-1	威海	角闪煌斑岩	全岩(K-Ar)	1.58	4.87E - 10	88.38	169.5 ± 3.7
LCI5	龙口	斜闪正煌岩	全岩(K-Ar)	2.05	4.76E - 10	95.39	129.1 ± 2.5
CZ2-1	威海	斜闪正煌岩	全岩(K-Ar)	2.27	5.51E-10	76.76	134.7 ± 3.1
LH2-1	威海	斜闪正煌岩	全岩(K-Ar)	2.04	3.80E - 10	95.66	104.4 ± 2.0
LM1	龙口	斜闪正煌岩	全岩(K-Ar)	2.11	3.35E - 10	93.13	89.3 ± 1.77
WF2	威海	斜闪正煌岩	全岩(K-Ar)	1.60	2.88E - 10	90.65	100.8 ± 2.1
WJ8-1	威海	斜闪正煌岩	全岩(K-Ar)	1.87	4.06E - 10	93.69	121.0 ± 2.4

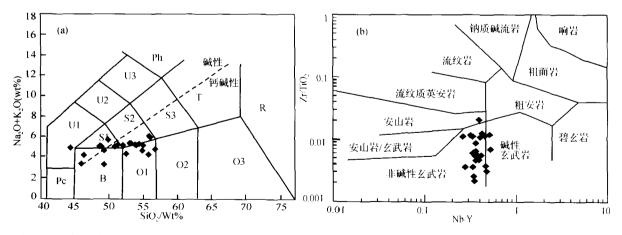


图 2 胶北煌斑岩的岩石分类图解

a. 全碱 - SiO₂图解(据 Rock, 1991); b. Zr/TiO₂ - Nb/Y 图解(据 Winchester and Floyd, 1976) F. 副长石岩; Pc. 苦橄岩; U1. 碱玄岩 + 碧玄岩; U2. 响岩质碱玄岩; U3. 碱玄质响岩; Ph. 响岩; S1. 粗面玄武岩; S2. 玄武粗安岩; S3. 粗安岩; T. 粗面岩 + 粗面英安岩; B. 玄武岩; O1. 玄武安山岩; O2. 安山岩; O3. 英安岩; R. 流纹岩; 虚线表示碱性与非碱性系列的分界线

Fig. 2 Classification of lamprophyres from Jiaobei, Shandong Province

品均落入非碱性玄武岩范围,与TAS判别图基本一致。

4 地球化学

4.1 岩石分类

在全碱 – SiO_2 (TAS)图上(图 2a) (Rock, 1991),本区煌 斑岩的投影点大多数落在钙碱性系列范围内。考虑到煌斑岩易蚀变,且在蚀变过程中 K、Na 等碱金属元素较活泼,用 TAS 图解判别岩石类型可能会产生偏差,因此,我们选择一些在蚀变过程中不活泼的元素(Ti、Zr、Y、Nb)来做进一步判别,在 Zr/TiO₂ – Nb/Y 判别图上(图 2b) (Winchester and Floyd, 1976),除少数几个样品落人碱性玄武岩范围,其它样

4.2 主元素

煌斑岩中 SiO_2 含量变化范围为 42.02% ~ 54.95%。 Mg^* 值为 33.9 ~ 53.9,所有样品以低 $Ti(TiO_2 < 0.7)$ 为特征 (表 2,图 3)。从图 3 可看出, $FeO^*(FeO + Fe_2O_3)$,CaO,CaO/Al₂O₃,Cr 与 MgO 之间呈正相关关系,表明在岩浆分异过程中橄榄石和单斜辉石为主要的分离结晶相。而 Al_2O_3 , K_2O ,Sr 与 MgO 之间的负相关关系暗示斜长石的分离结晶不明显。

表 2 胶北煌斑岩的岩石化学分析结果(wt%)

Table 2 Analysis of chemical compositions (wt %) for the samples of the lamprophyres from Jiaobei

	•		•	, ,		•						
样品	CG2-1	CG1	CG7	CZ2-1	CZ1	DK1	DK3	DK9	GS1-1	GS3	GS8	LC11
SiO ₂	42.02	43.75	45.52	52.49	54.02	52.76	48.37	51.09	54.95	54.22	47.98	50. 13
${ m TiO_2}$	0.57	0.37	0.67	0.08	0.16	0.15	0.12	0.31	0.43	0.30	0.20	0.28
Al_2O_3	16. 19	16.28	17.32	18.40	18.71	17.47	17.18	18.71	15.97	14.41	21.48	17.18
Fe_2O_3	2.98	2.28	2.68	3.68	2.78	2.95	3.23	2.88	2.85	3.32	3.08	2.14
FeO	5.05	5.34	4.40	3.70	3.55	3.89	4.10	3.75	3.95	3.86	4.05	4.20
MnO	0.17	0.18	0.19	0. 14	0.11	0.15	0.18	0.14	0.17	0.15	0.15	0.1
MgO	8.76	10.60	8.14	4.67	5.32	7.32	7.67	6.63	6.54	8.54	6.38	7.9
CaO	13.88	12.97	9.07	4.80	5.54	6.73	9.08	7.42	6.97	7.96	6.87	9.0
Na ₂ O	2.70	1.52	2.67	3.09	3.27	2.91	2.90	2.94	2.86	2.73	3.27	2.8
K_2O	2.07	1.78	2.12	2.74	2.56	2.33	2.04	2.32	1.91	1.54	2.34	2.3
P_2O_5	0.30	0.21	0.25	0.30	0.37	0.38	0.32	0.27	0.22	0.15	0.51	0.2
CO_2	1.51	1.65	0.60			0.22	0.70	0.30	0.20	0.52	0.39	0.8
LOI	3.50	3.10	6.05	5.20	3.05	2.21	3.54	2.64	2.53	1.78	2.85	2.4
TOTAL	99.70	100.03	99.68	99. 29	99.44	99.47	99.43	99.40	99.55	99.48	99.55	99. 6
Mg#	46.48	52.58	47.9	33.88	40.22	46.19	45.7	44.58	43.59	49.06	41.96	49.7
样品	LCI4	LC15	LH2-1	LM1	LM2	LM3	LM7	LM9	WF2	WJ2	WJ3	WJ8
SiO_2	47.04	47.16	53.38	48. 26	47.58	49.98	45.18	48.90	49.95	51.99	51.82	53.2
TiO_2	0.40	0.28	0.11	0.25	0.31	0.25	0.12	0.22	0.12	0.37	0.21	0. 1
Al_2O_3	17.10	17.32	18.40	17. 18	17.51	18.57	17.63	16.26	16.87	19.63	19.96	18.4
Fe_2O_3	3.59	3.01	2.80	3.15	3.35	3.12	3.96	2.65	2.44	3.45	2.67	2.8
FeO	3.85	4.02	3.70	4.50	4.32	4.06	4.12	3.95	4.00	3.10	4.08	3.8
MnO	0.19	0.20	0.15	0.16	0.18	0.15	0.19	0.16	0.15	0.18	0.16	0.1
MgO	8.98	8.02	7.31	10.05	9.34	7.41	9.05	7.74	6.54	4.81	4.66	5.2
CaO	10.31	11.42	6.56	10.70	9.21	8.62	12.79	8.96	8.50	7.24	7.48	7.5
Na_2O	3.07	2.61	2.81	2.37	2.92	3.28	2.27	2.19	3.19	2.86	2.91	2.9
K_2O	1.96	2.47	1.83	1.00	1.68	1.88	1.92	1.94	1.93	2.26	2.28	2.1
P_2O_5	0. 25	0.30	0.22	0.25	0.27	0.31	0.22	0.22	0.20	0.42	0.25	0.2
CO_2	1.00	1.15		1.00	1.20	0.58	1.21	0.65	0.40	0.50	0.56	0.3
LOI	2.10	2.00	2.20	1.02	1.86	1.73	2.01	5.64	5.13	2.69	2.71	2.4
TOTAL	99.84	99.96	99.47	99.89	99.73	99.94	100.67	99.48	99.42	99.50	99.75	99. 6
Mg [#]	49.38	47.83	49.14	53.87	52.38	47.75	47.55	44.82	40.73	35.04	36.06	39.3

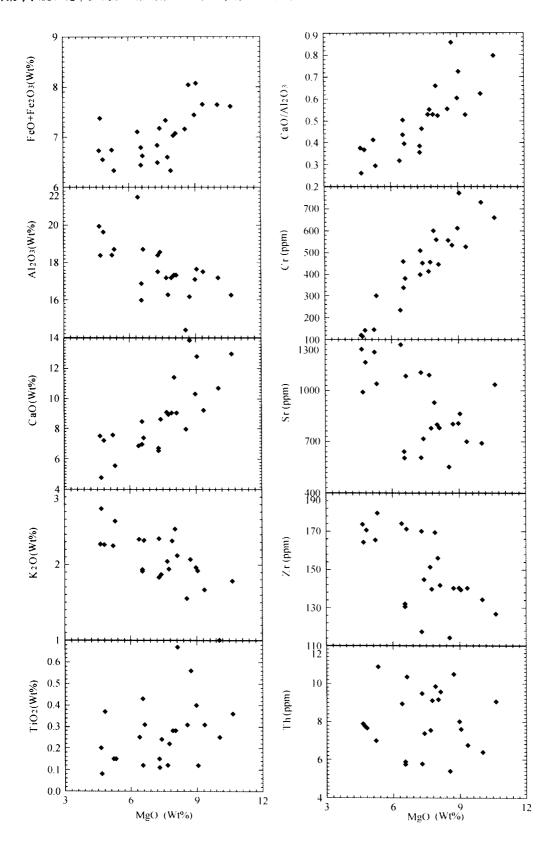


图 3 胶北煌斑岩主元素和微量元素相对 MgO 的变异图解

Fig. 3 Variation diagrams for major oxides and trace elements vs. MgO contents for the lamprophyres from Jiaobei

表 3 胶北煌斑岩稀土和微量元素分析结果(µg/g)

Table 3 $\,$ Analysis of REE and trace elements compositions ($\mu g/g$) of the lamprophyres from Jiaobei

				_	•							
样品	CG2-1	CG1	CG7	CZ2-1	CZ1	DK1	DK3	DK9	GS1-1	GS3	GS8	LC11
Ba	1817	1781	1759	1496	1670	2277	2792	2054	1102	904	1686	1796
Rb	62.7	62.9	72.3	73.6	65.3	54.2	47.5	50.8	52.8	38.5	51.5	62.3
Sr	803	1035	781	990	1039	1105	1090	1083	642	553	1267	929
Y	23.5	21.6	23.3	22.4	19.3	20.0	20.6	19.7	17.5	16.8	25.8	23.4
\mathbf{Zr}	140	126	142	164	180	171	151	171	128	114	176	169
Nb	8.02	7. 19	8.12	8.76	9.86	9. 17	8.62	8.21	8.35	7.86	13.5	8.04
Th	10.5	9.05	9.57	7.78	10.8	9.47	7.53	10.3	5.76	5.42	8.91	9.85
Ni	223	272	177	36	78	125	114	120	172	218	126	190
V	191	188	171	173	135	159	169	148	174	188	168	196
Cr	535	661	447	115	298	398	414	381	462	556	237	599
Hf	3.67	3.38	3.74	4.49	4.62	4.44	4.14	4.32	3.48	3.15	4.20	4.36
Sc Ta	26.0 0.36	29.1	22. 2	19.7	17.8	21.8	23.1	21.0	22.2	26.1	20.8	25.1
Со	40.9	0.32 47.9	0.39 36.8	0.42	0.49	0.44	0.38	0.41	0.43	0.41	0.64	0.35
U	3.07	1.28	1.33	24.5 1.42	26.1 1.73	33.6 1.38	34. 2 0. 99	33.4 1.84	31.0	38.3	32.2	41.6
Cu	32.0	35.2	31.0	34.7	7.3	16.9	22.6	23.1	1.47 30.0	1.41 70.1	1.46	1.52
Pb	11.8	11.6	15.6	10.2	12.2	9.92	12.3	11.2	20.1	70. 1 17. 6	38.6	66.7
La	67.2	58.9	74.3	55.9	68.3	72.5	57.3	73. 2	28.9	25.6	12.6 72.9	10.4
Ce	132	117	143	104	124	134	110	129	57.8	51.8	146	62.9 116
Pr	13.9	12.7	15.0	12.3	13.8	14.4	12.3	13.5	6.58	5.92	16. 2	
Nd	55.8	50.6	56.8	48.0	53.9	52.3	45.6	48.1	26.2	23.7	62.0	12.3 47.7
Sm	9.14	8.51	9.68	8.15	8.13	8. 27	7.43	7.55	5.45	5. 11	10. 2	47.7 7.96
Eu	1.99	1.96	2.31	1.78	1.67	1.71	1.64	1.62	1.21	1.14	2. 12	1.85
Gd	6.16	6. 22	6.99	5.67	5. 15	5.73	5.36	5.43	3.99	3.95	6.92	5.93
Ть	0.80	0.78	0.89	0.73	0.68	0.72	0.69	0.64	0.57	0.56	0.92	0.79
Dy	4.29	4.18	4.52	4.02	3.46	3.69	3.77	3.41	3.27	3.03	4.74	4.31
Ho	0.83	0.80	0.88	0.80	0.59	0.70	0.72	0.69	0.68	0.61	0.89	0.81
Er	2.26	1.94	2.31	2.11	1.75	2.02	1.92	1.79	1.74	1.61	2.28	2.28
Tm	0.29	0.27	0.30	0.26	0.23	0.26	0.27	0.23	0.23	0.23	0.31	0.30
Yb	1.97	1.85	1.95	0.86	1.71	1.72	1.78	1.60	1.57	1.68	2.00	1.90
Lu	0.29	0.29	0.33	0.30	0.25	0.26	0.26	0.24	0.23	0.21	0.31	0.30
(La_N/Yb_N)	20.3	19.1	22.7	38.7	23.7	25.1	19.1	27.1	11.0	9.1	21.6	19.6
Eu/Eu*	0.81	0.82	0.86	0.80	0.79	0.75	0.79	0,77	0.78	0.78	0.78	0.82
样品	LC14	LCI5	LH2-1	LM1	LM2	LM3	LM7	LM9	WF2	WJ2	WJ3	WJ8-1
Ba	1563	1642	1466	1379	1367	1221	1587	1448	1285	1490	1621	1598
Rb	39.1	66.8	49.9	44.6	32.0	49.0	42.0	50.8	60.6	62.9	63.9	63.9
Sr Y	807	801	608	691	701	719	866	778	604	1164	1242	1225
$\frac{1}{\mathrm{Zr}}$	25.1 140	19.9 156	19.3	21.9	21.3	23.6	22.6	18.8	25.8	20.1	21.8	22.2
Nb	6.98	7.54	118 7.84	134 7.78	142 7.77	146	140	140	132	170	175	165
Th	7.98	9.16	5.78	6.37	6.76	7. 98 7. 36	7.11	6.86	6.73	7.65	7.86	7.42
Ni	207	174	220	249	213	157	7.60 238	9.11 119	5.89	7.65	7.87	7.00
v	178	177	169	192	188	172	184	161	70.1	33.1	25.3	33.5
Ċr	612	560	509	730	526	453	773		150	171	174	156
Hf	3.82	4.04	3.21	3.63	3.87	3. 67	3.76	456 3.51	338 3.53	142	121	146
Se	24.4	23.0	22.3	29.5	26.5	22.6	3. 76 28. 1	24.5	3.53 22.5	4.63 21.2	4.70 20.6	4.58 20.9
Ta	0.29	0.33	0.36	0.34	0.34	0.35	0.32	0.34	0.31	0.38	0.41	
Co	41.1	35.8	35.6	46.5	41.3	34. 1	43.9	32.7	30.9	26.1	26.4	0.39 25.7
U									1.11	1.96	1.67	1.88
	1.14	1.46	1.47	0.88	0.89	1.03	1, 15	1.34				1.00
Cu		1.46 40.1	1.47 50.9	0.88 14.4	0.89 15.8	1.03 16.4	1.15 49.3	1.34				
Cu Pb	1.14				0.89 15.8 8.86	16.4	49.3	23.5	14.0	18.6	17.9	17.3
	1.14 102	40.1	50.9	14.4	15.8	16.4 9.42	49.3 9.90	23.5 13.6	14. 0 4. 12	18.6 13.4	17.9 11.4	17.3 12.7
Pb	1. 14 102 4. 28	40. 1 6. 23	50. 9 23. 68	14.4 8.46	15.8 8.86	16.4	49.3	23.5 13.6 61.0	14. 0 4. 12 52. 0	18. 6 13. 4 53. 6	17.9 11.4 56.9	17.3 12.7 59.2
Pb La Ce Pr	1. 14 102 4. 28 55. 0	40. 1 6. 23 56. 7	50.9 23.68 39.7	14.4 8.46 53.1	15.8 8.86 49.0	16. 4 9. 42 50. 8	49.3 9.90 52.2	23.5 13.6 61.0 117	14. 0 4. 12 52. 0 87. 1	18. 6 13. 4 53. 6 102	17.9 11.4 56.9 107	17.3 12.7 59.2 110
Pb La Ce	1.14 102 4.28 55.0 98.6 11.3 44.6	40. 1 6. 23 56. 7 103	50.9 23.68 39.7 64.4	14.4 8.46 53.1 91.6	15.8 8.86 49.0 92.0	16. 4 9. 42 50. 8 89. 3	49.3 9.90 52.2 95.2	23.5 13.6 61.0 117 12.3	14. 0 4. 12 52. 0 87. 1 10. 8	18. 6 13. 4 53. 6 102 11. 6	17.9 11.4 56.9 107 12.1	17.3 12.7 59.2 110 12.3
Pb La Ce Pr Nd Sm	1.14 102 4.28 55.0 98.6 11.3 44.6 7.88	40. 1 6. 23 56. 7 103 11. 2 43. 1 7. 17	50.9 23.68 39.7 64.4 7.93 31.0 5.65	14.4 8.46 53.1 91.6 11.0 41.9 7.95	15.8 8.86 49.0 92.0 10.7	16.4 9.42 50.8 89.3 10.5	49.3 9.90 52.2 95.2 10.9	23.5 13.6 61.0 117 12.3 45.7	14. 0 4. 12 52. 0 87. 1	18.6 13.4 53.6 102 11.6 45.6	17.9 11.4 56.9 107 12.1 48.4	17.3 12.7 59.2 110 12.3 49.1
Pb La Ce Pr Nd Sm Eu	1.14 102 4.28 55.0 98.6 11.3 44.6 7.88 1.76	40. 1 6. 23 56. 7 103 11. 2 43. 1 7. 17 1. 58	50.9 23.68 39.7 64.4 7.93 31.0 5.65 1.25	14.4 8.46 53.1 91.6 11.0 41.9 7.95 1.60	15.8 8.86 49.0 92.0 10.7 40.8	16.4 9.42 50.8 89.3 10.5 38.8	49.3 9.90 52.2 95.2 10.9 42.7	23.5 13.6 61.0 117 12.3	14.0 4.12 52.0 87.1 10.8 41.0	18. 6 13. 4 53. 6 102 11. 6	17.9 11.4 56.9 107 12.1 48.4 8.38	17.3 12.7 59.2 110 12.3 49.1 8.37
Pb La Ce Pr Nd Sm Eu Gd	1.14 102 4.28 55.0 98.6 11.3 44.6 7.88 1.76 5.99	40. 1 6. 23 56. 7 103 11. 2 43. 1 7. 17 1. 58 5. 26	50.9 23.68 39.7 64.4 7.93 31.0 5.65 1.25 4.42	14.4 8.46 53.1 91.6 11.0 41.9 7.95 1.60 5.46	15.8 8.86 49.0 92.0 10.7 40.8 7.47	16.4 9.42 50.8 89.3 10.5 38.8 6.61	49.3 9.90 52.2 95.2 10.9 42.7 7.71	23.5 13.6 61.0 117 12.3 45.7 7.25	14.0 4.12 52.0 87.1 10.8 41.0 7.41	18.6 13.4 53.6 102 11.6 45.6 7.96	17.9 11.4 56.9 107 12.1 48.4	17.3 12.7 59.2 110 12.3 49.1 8.37 2.11
Pb La Ce Pr Nd Sm Eu Gd Tb	1.14 102 4.28 55.0 98.6 11.3 44.6 7.88 1.76 5.99 0.79	40. 1 6. 23 56. 7 103 11. 2 43. 1 7. 17 1. 58 5. 26 0. 67	50. 9 23. 68 39. 7 64. 4 7. 93 31. 0 5. 65 1. 25 4. 42 0. 58	14.4 8.46 53.1 91.6 11.0 41.9 7.95 1.60 5.46 0.78	15.8 8.86 49.0 92.0 10.7 40.8 7.47 1.50 5.61 0.77	16. 4 9. 42 50. 8 89. 3 10. 5 38. 8 6. 61 1. 54 5. 21 0. 68	49.3 9.90 52.2 95.2 10.9 42.7 7.71 1.82 5.73 0.75	23.5 13.6 61.0 117 12.3 45.7 7.25 1.63	14.0 4.12 52.0 87.1 10.8 41.0 7.41 1.72	18.6 13.4 53.6 102 11.6 45.6 7.96 1.84	17.9 11.4 56.9 107 12.1 48.4 8.38 1.81	17.3 12.7 59.2 110 12.3 49.1 8.37
Pb La Ce Pr Nd Sm Eu Gd Tb	1.14 102 4.28 55.0 98.6 11.3 44.6 7.88 1.76 5.99 0.79 4.21	40. 1 6. 23 56. 7 103 11. 2 43. 1 7. 17 1. 58 5. 26 0. 67 3. 67	50. 9 23. 68 39. 7 64. 4 7. 93 31. 0 5. 65 1. 25 4. 42 0. 58 3. 48	14.4 8.46 53.1 91.6 11.0 41.9 7.95 1.60 5.46 0.78 3.98	15.8 8.86 49.0 92.0 10.7 40.8 7.47 1.50 5.61 0.77 4.13	16.4 9.42 50.8 89.3 10.5 38.8 6.61 1.54 5.21	49.3 9.90 52.2 95.2 10.9 42.7 7.71 1.82 5.73	23.5 13.6 61.0 117 12.3 45.7 7.25 1.63 5.11	14.0 4.12 52.0 87.1 10.8 41.0 7.41 1.72 5.74	18.6 13.4 53.6 102 11.6 45.6 7.96 1.84 5.72	17. 9 11. 4 56. 9 107 12. 1 48. 4 8. 38 1. 81 5. 81	17. 3 12. 7 59. 2 110 12. 3 49. 1 8. 37 2. 11 6. 21
Pb La Ce Pr Nd Sm Eu Gd Tb Dy	1.14 102 4.28 55.0 98.6 11.3 44.6 7.88 1.76 5.99 0.79 4.21 0.84	40. 1 6. 23 56. 7 103 11. 2 43. 1 7. 17 1. 58 5. 26 0. 67 3. 67 0. 72	50. 9 23. 68 39. 7 64. 4 7. 93 31. 0 5. 65 1. 25 4. 42 0. 58 3. 48 0. 70	14.4 8.46 53.1 91.6 11.0 41.9 7.95 1.60 5.46 0.78 3.98 0.82	15.8 8.86 49.0 92.0 10.7 40.8 7.47 1.50 5.61 0.77 4.13 0.79	16. 4 9. 42 50. 8 89. 3 10. 5 38. 8 6. 61 1. 54 5. 21 0. 68	49.3 9.90 52.2 95.2 10.9 42.7 7.71 1.82 5.73 0.75 3.88 0.78	23.5 13.6 61.0 117 12.3 45.7 7.25 1.63 5.11 0.64	14.0 4.12 52.0 87.1 10.8 41.0 7.41 1.72 5.74 0.74	18.6 13.4 53.6 102 11.6 45.6 7.96 1.84 5.72 0.69	17.9 11.4 56.9 107 12.1 48.4 8.38 1.81 5.81 0.74	17.3 12.7 59.2 110 12.3 49.1 8.37 2.11 6.21 0.76
Pb La Ce Pr Nd Sm Eu Gd Tb Dy Ho	1.14 102 4.28 55.0 98.6 11.3 44.6 7.88 1.76 5.99 0.79 4.21 0.84 2.21	40. 1 6. 23 56. 7 103 11. 2 43. 1 7. 17 1. 58 5. 26 0. 67 3. 67 0. 72 1. 90	50.9 23.68 39.7 64.4 7.93 31.0 5.65 1.25 4.42 0.58 3.48 0.70 1.82	14.4 8.46 53.1 91.6 11.0 41.9 7.95 1.60 5.46 0.78 3.98 0.82 2.18	15.8 8.86 49.0 92.0 10.7 40.8 7.47 1.50 5.61 0.77 4.13	16. 4 9. 42 50. 8 89. 3 10. 5 38. 8 6. 61 1. 54 5. 21 0. 68 3. 76	49.3 9.90 52.2 95.2 10.9 42.7 7.71 1.82 5.73 0.75 3.88	23.5 13.6 61.0 117 12.3 45.7 7.25 1.63 5.11 0.64 3.71	14.0 4.12 52.0 87.1 10.8 41.0 7.41 1.72 5.74 0.74 4.01	18.6 13.4 53.6 102 11.6 45.6 7.96 1.84 5.72 0.69 3.71	17.9 11.4 56.9 107 12.1 48.4 8.38 1.81 5.81 0.74 3.82	17.3 12.7 59.2 110 12.3 49.1 8.37 2.11 6.21 0.76 4.03
Pb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er	1.14 102 4.28 55.0 98.6 11.3 44.6 7.88 1.76 5.99 0.79 4.21 0.84 2.21 0.26	40. 1 6. 23 56. 7 103 11. 2 43. 1 7. 17 1. 58 5. 26 0. 67 3. 67 0. 72 1. 90 0. 24	50. 9 23. 68 39. 7 64. 4 7. 93 31. 0 5. 65 1. 25 4. 42 0. 58 3. 48 0. 70 1. 82 0. 24	14.4 8.46 53.1 91.6 11.0 41.9 7.95 1.60 5.46 0.78 3.98 0.82 2.18 0.28	15.8 8.86 49.0 92.0 10.7 40.8 7.47 1.50 5.61 0.77 4.13 0.79 2.10 0.28	16. 4 9. 42 50. 8 89. 3 10. 5 38. 8 6. 61 1. 54 5. 21 0. 68 3. 76 0. 74 2. 04 0. 28	49.3 9.90 52.2 95.2 10.9 42.7 7.71 1.82 5.73 0.75 3.88 0.78	23.5 13.6 61.0 117 12.3 45.7 7.25 1.63 5.11 0.64 3.71 0.70	14.0 4.12 52.0 87.1 10.8 41.0 7.41 1.72 5.74 0.74 4.01 0.80	18.6 13.4 53.6 102 11.6 45.6 7.96 1.84 5.72 0.69 3.71 0.68	17.9 11.4 56.9 107 12.1 48.4 8.38 1.81 5.81 0.74 3.82 0.73	17. 3 12. 7 59. 2 110 12. 3 49. 1 8. 37 2. 11 6. 21 0. 76 4. 03 0. 76
Pb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm	1.14 102 4.28 55.0 98.6 11.3 44.6 7.88 1.76 5.99 0.79 4.21 0.84 2.21 0.26 1.99	40. 1 6. 23 56. 7 103 11. 2 43. 1 7. 17 1. 58 5. 26 0. 67 3. 67 0. 72 1. 90 0. 24 1. 75	50. 9 23. 68 39. 7 64. 4 7. 93 31. 0 5. 65 1. 25 4. 42 0. 58 3. 48 0. 70 1. 82 0. 24 1. 63	14.4 8.46 53.1 91.6 11.0 41.9 7.95 1.60 5.46 0.78 3.98 0.82 2.18 0.28 1.94	15.8 8.86 49.0 92.0 10.7 40.8 7.47 1.50 5.61 0.77 4.13 0.79 2.10 0.28 1.93	16. 4 9. 42 50. 8 89. 3 10. 5 38. 8 6. 61 1. 54 5. 21 0. 68 3. 76 0. 74 2. 04	49.3 9.90 52.2 95.2 10.9 42.7 7.71 1.82 5.73 0.75 3.88 0.78 2.10 0.27 1.76	23.5 13.6 61.0 117 12.3 45.7 7.25 1.63 5.11 0.64 3.71 0.70 1.83	14.0 4.12 52.0 87.1 10.8 41.0 7.41 1.72 5.74 0.74 4.01 0.80 2.15	18.6 13.4 53.6 102 11.6 45.6 7.96 1.84 5.72 0.69 3.71 0.68 1.73	17.9 11.4 56.9 107 12.1 48.4 8.38 1.81 5.81 0.74 3.82 0.73 1.98	17.3 12.7 59.2 110 12.3 49.1 8.37 2.11 6.21 0.76 4.03 0.76 2.03
Pb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb	1.14 102 4.28 55.0 98.6 11.3 44.6 7.88 1.76 5.99 0.79 4.21 0.84 2.21 0.26 1.99 0.29	40. 1 6. 23 56. 7 103 11. 2 43. 1 7. 17 1. 58 5. 26 0. 67 3. 67 0. 72 1. 90 0. 24 1. 75 0. 28	50. 9 23. 68 39. 7 64. 4 7. 93 31. 0 5. 65 1. 25 4. 42 0. 58 3. 48 0. 70 1. 82 0. 24 1. 63 0. 25	14.4 8.46 53.1 91.6 11.0 41.9 7.95 1.60 5.46 0.78 3.98 0.82 2.18 0.28 1.94 0.32	15.8 8.86 49.0 92.0 10.7 40.8 7.47 1.50 5.61 0.77 4.13 0.79 2.10 0.28 1.93 0.30	16. 4 9. 42 50. 8 89. 3 10. 5 38. 8 6. 61 1. 54 5. 21 0. 68 3. 76 0. 74 2. 04 0. 28 1. 80 0. 26	49.3 9.90 52.2 95.2 10.9 42.7 7.71 1.82 5.73 0.75 3.88 0.78 2.10 0.27 1.76 0.28	23.5 13.6 61.0 117 12.3 45.7 7.25 1.63 5.11 0.64 3.71 0.70 1.83 0.25 1.72 0.26	14. 0 4. 12 52. 0 87. 1 10. 8 41. 0 7. 41 1. 72 5. 74 0. 74 4. 01 0. 80 2. 15 0. 25 1. 72 0. 26	18.6 13.4 53.6 102 11.6 45.6 7.96 1.84 5.72 0.69 3.71 0.68 1.73 0.23 1.72 0.23	17. 9 11. 4 56. 9 107 12. 1 48. 4 8. 38 1. 81 5. 81 0. 74 3. 82 0. 73 1. 98 0. 26	17. 3 12. 7 59. 2 110 12. 3 49. 1 8. 37 2. 11 6. 21 0. 76 4. 03 0. 76 2. 03 0. 25
Pb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm	1.14 102 4.28 55.0 98.6 11.3 44.6 7.88 1.76 5.99 0.79 4.21 0.84 2.21 0.26 1.99	40. 1 6. 23 56. 7 103 11. 2 43. 1 7. 17 1. 58 5. 26 0. 67 3. 67 0. 72 1. 90 0. 24 1. 75	50. 9 23. 68 39. 7 64. 4 7. 93 31. 0 5. 65 1. 25 4. 42 0. 58 3. 48 0. 70 1. 82 0. 24 1. 63	14.4 8.46 53.1 91.6 11.0 41.9 7.95 1.60 5.46 0.78 3.98 0.82 2.18 0.28 1.94	15.8 8.86 49.0 92.0 10.7 40.8 7.47 1.50 5.61 0.77 4.13 0.79 2.10 0.28 1.93	16. 4 9. 42 50. 8 89. 3 10. 5 38. 8 6. 61 1. 54 5. 21 0. 68 3. 76 0. 74 2. 04 0. 28 1. 80	49.3 9.90 52.2 95.2 10.9 42.7 7.71 1.82 5.73 0.75 3.88 0.78 2.10 0.27 1.76	23.5 13.6 61.0 117 12.3 45.7 7.25 1.63 5.11 0.64 3.71 0.70 1.83 0.25 1.72	14. 0 4. 12 52. 0 87. 1 10. 8 41. 0 7. 41 1. 72 5. 74 0. 74 4. 01 0. 80 2. 15 0. 25 1. 72	18.6 13.4 53.6 102 11.6 45.6 7.96 1.84 5.72 0.69 3.71 0.68 1.73 0.23 1.72	17.9 11.4 56.9 107 12.1 48.4 8.38 1.81 5.81 0.74 3.82 0.73 1.98 0.26 1.73	17.3 12.7 59.2 110 12.3 49.1 8.37 2.11 6.21 0.76 4.03 0.76 2.03 0.25 1.64

4.3 稀土元素和微量元素

煌斑岩均以 LREE 强烈富集为特征,(La/Yb),介于9.05~38.7之间。Eu/Eu*在0.71~0.89之间变化(表3)。在球粒陨石标准化(Anders and Grevesse,1989)配分曲线中(图4),所有样品都表现为 LREE 强烈富集、HREE 亏损的右顷型特征,且所有的样品都具有弱的负 Eu 异常,暗示在成岩过程中可能存在不明显的斜长石分离结晶作用。

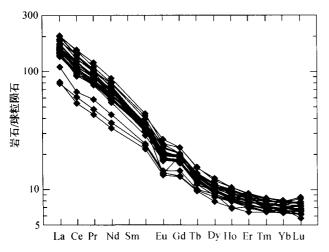


图 4 胶北煌斑岩球粒陨石标准配分图解 (标准值据 Anders and Grevesse, 1989)

Fig. 4 Chondrite-normalized REE patterns for the lamprophyres from Jiaobei

在原始地幔标准化(Sun and McDonough, 1989) 地球化学 蛛网图(图5)中,所有岩石都表现出大离子亲石元素(LILE) (Ba、Th、K、Pb)和 LREE 富集,而高场强元素(HFSE)(Nb、P 和 Ti) 亏损,这与大多数板内火山岩(MORB、OIB、碱性玄武 岩和金伯利岩)存在明显区别(Sun and McDonough, 1989)。 而与大洋板块俯冲有关的火山岩(弧火山岩)微量元素配分 型式类似。同时,其明显的 Nb、Ti 和 P 亏损可能反映了源区 本身的特征。另外, LILE 和 LREE 相对 HFSE 富集的特征可 以从 Ba/Nb-La/Nb 相关图中明显地表现出(图 6),图中显 示, 煌斑岩的 Ba/Nb 和 La/Nb 比值与弧火山相同, 而明显高 于 N-MORB、OIB、碱性玄武岩和金伯利岩的相应比值(20~1 和2.5~0.5),暗示了大陆物质(花岗质岩石,麻粒岩、沉积 物等)在煌斑岩岩浆生成中起了重要作用。明显的负 Nb 异 常,表现出俯冲带火山岩的特征,或在岩石成因中存在大量 大陆物质的参与(Jahn et al., 1999)。在 MORB 标准化蛛网 图(图7a)中,所有煌斑岩样品与大陆边缘弧玄武岩曲线 (图7b)(Pearce,1982)一致,说明原始岩浆的形成与古大洋 板块的俯冲作用有关。

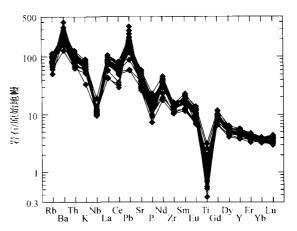


图 5 胶北煌斑岩原始地幔标准化蛛网图 (标准值据 Sun and McDonough, 1989)

Fig. 5 Primitive mantle (PM) normalized spidergrams of the lamprophyres from Jiaobei

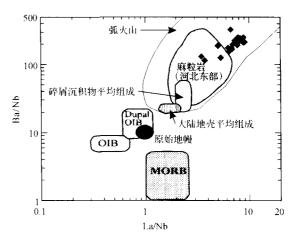


图 6 胶北煌斑岩 Ba/Nb-La/Nb 相关图

其中:火山弧和太古代麻粒岩(河北东部)据 Jahn and Zhang, 1984;原始地幔据 Sun and McDonough, 1989;大陆地壳平均组成据 Taylor and Mclennan, 1985 和 Condie, 1993;碎屑沉积物平均组成据 Condie, 1993; MORB, OIB和 Dupal OIB据 Le Roux, 1986

Fig. 6 Plot of Ba/Nb vs. La/Nb showing the lamprophyres from Jiaobei

4.4 Sr、Nd、Pb 同位素组成

煌斑岩的 Sr、Nd、Pb 同位素数据见表 4、(^{87}Sr / ^{86}Sr),介于 $0.707642 \sim 0.709791$, ^{208}Pb / ^{204}Pb = $37.588 \sim 38.431$, ^{207}Pb / ^{204}Pb = $15.423 \sim 15.531$, ^{206}Pb / ^{204}Pb = $17.204 \sim 18.179$ 、同位素组成同样可以在图 8 中反映出来,煌斑岩的 Pb 同位素组成与下地壳一致(图 8a、b),暗示成岩过程存在 大量下地壳物质的参与。(^{206}Pb / ^{204}Pb),与(^{87}Sr / ^{86}Sr),和 (^{143}Nd / ^{144}Nd),(图 8c, d)之间不存在相关关系反映煌斑岩

4 胶北煌斑岩 Sr、Nd、Pb 同位素组成

样品	$^{87}\mathrm{Sr}/^{86}\mathrm{Sr}(2\ \sigma)$	$^{143}\mathrm{Nd}/^{144}\mathrm{Nd}(2\ \sigma\)$	$^{87}\mathrm{Rb}/^{86}\mathrm{Sr}$	147 Sm/144 Nd	$(^{87}Sr/^{86}Sr)_{i}$	$(^{143} \text{Nd}/^{144} \text{Nd})_{i}$	$\boldsymbol{\varepsilon}_{Nd}(1)$	$(^{208}\mathrm{Pb}/^{204}\mathrm{Pb})_{\mathrm{i}}$	(207 Pb/204 Pb) _i	$(206 \text{Pb}/204 \text{Pb})_{i}$
DK9	0.709468 ± 13	0.511728 ± 10	0. 135549	0.094767	0.709279	0.511667	-16.5			
DK3	0.709292 ± 16	0.511675 ± 12	0.125851	0.098420	0.709116	0.511611	-17.6	37.588	15.423	17.204
CZ2-1	0.708507 ± 14	0.511999 ± 9	0. 214822	0.102650	0.708098	0.511908	- 10.9	37.692	15.454	17.426
WF2	0.708849 ± 13	0.512033 ± 10	0. 289913	0.109351	0.708436	0.511961	-10.7	37.917	15.468	17.645
WJ8-1	0.707899 ± 13	0.512029 ± 8	0.150843	0. 103148	0.707642	0.511947	- 10.4	36.734	15.086	16.942
LC15	0.709126 ± 14	0.511905 ± 9	0.241093	0.100558	0.708687	0.511820	-12.7	37.945	15.465	17.466
LM7	0.708671 ± 14	0.511872 ± 9	0.140258	0.109049	0.708416	0.511780	-13.5			
LM1	0.709569 ± 13	0.511759 ± 8	0.186529	0.114738	0.709335	0.511692	-16.2	38.019	15.473	17.459
CG2	0.710204 ± 16	0.511803 ± 10	0.263850	0.102945	0.709791	0.511728	-15.0	38.431	15.531	17.683
GS1-1	0.708318 ± 18	0.511964 ± 10	0.117589	0.099095	0.708036	0.511853	-11.0	37.960	15.431	18.099
LH2-1	0.708692 ± 11	0.512035 ± 9	0.236971	0.110265	0. 708344	0.511960	-10.6	38, 158	15.516	18.179

不可能是 MORB 源区与 EM2 源区发生岩浆混合形成的(Zou et al., 2000); 而与方城玄武岩的起源相同,是下地壳与古老岩石圏地幔混合交代而成(Zhang et al., 2002). 煌斑岩的 ε Nd(t)范围为 $-10.4 \sim -17.6$,该值与北大别混杂岩体($-15 \sim -20$)(Jahn et al., 1999)接近,进一步表明成岩过程存在大量下地壳物质的参与。

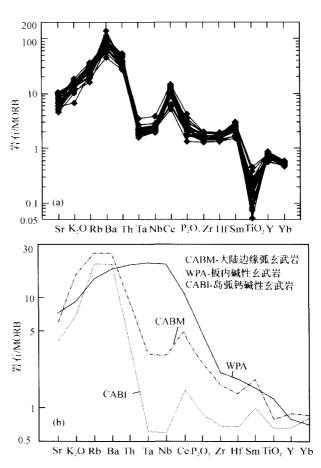


图 7 胶北煌斑岩(a)、大陆边缘弧玄武岩、板内碱性玄武岩和岛弧钙碱性玄武岩(b)的大洋中脊玄武岩标准化蛛网图(标准值据 Sun and McDonough,1989)

Fig. 7 MORB-normalized spidergrams of (a) the lamprophyres from Jiaobei, and (b) CABM, CABI and WPA. 其中 CABM, CABI 和 WPA 据 Pearce (1982)

5 讨论

5.1 地壳混染

地球化学研究显示,在岩石形成过程中存在大量地壳物质的参与。然而地壳物质以何种方式参与的呢? 地壳物质可以通过俯冲进入岩石圈地幔,以熔融产生的熔体对岩石圈地幔进行改造(交代作用),也可以在岩浆上升侵位过程中实现(地壳混染作用)。如果属于后者,从质量平衡观点出发,就不能解释岩石的同位素和地球化学特征。因为通过计算

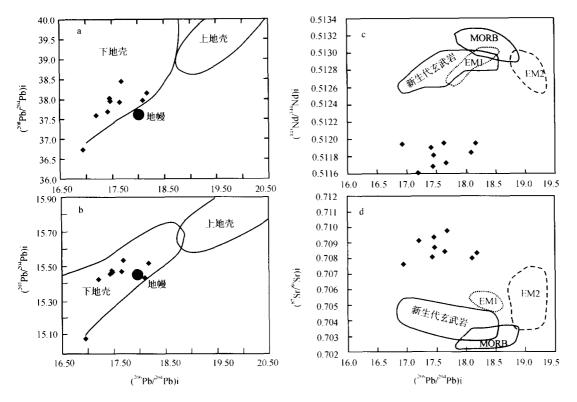


图 8 胶北煌斑岩的 Pb、Sr、Nd 同位素相关图解

其中:地幔、上地壳和下地壳据 Zartman and Doe (1981); MORB, EM1 和 EM2 据 Zou et al. (2000)和 Hart (1984);新生代玄 武岩据 Zhang and Sun (2002).

Fig. 8 Summary plots of (a, b) lead-isotopic ratios and 143 Nd/ 144 Nd and 87 Sr/ 86 Sr vs. 206 Pb/ 204 Pb diagrams (c,d) diagrams of the lamprophyres from Jiaobei

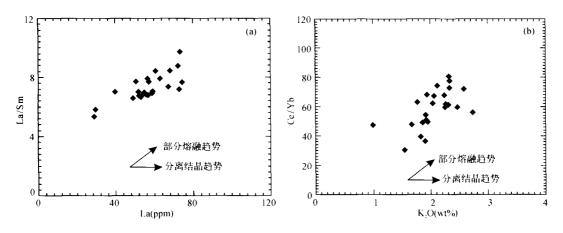


图 9 胶北煌斑岩 La - La/Sm(a)和 K₂O - Ce/Yb(b)相关图

Fig. 9 Variation trends of (a) La vs. La/Sm (a) and (b) K₂O vs. Ce/Yb. Showing that variation in partial melting may play more important role than fractional crystallization (FC) in the magmatic evolution of the lamprophyres from Jiaobei

(Jahn et al., 1999) 幔源流体的 Nd 同位素组成(ϵ Nd) 假设从 +8 降为 -10 ~ -18, 大约需要40% ~55% 的中-下地壳岩石 的参与, 更不用说热源问题。如此大体积的混染作用将极大 地改变岩浆的主元素组成。比如, SiO_2 含量就会相应变大, 但这与具体的情形并不相符(表 2)。但少量的混染却不能

回答岩石中强烈的负 Nb 异常、高的 La/Nb、Ba/Nb 比值和 MgO 含量以及 SiO₂和(⁸⁷ Sr/⁸⁶ Sr)_i之间的非相关(略)特征。 因此,我们认为煌斑岩呈现的同位素和地球化学特征是由源 区交代作用引起的。

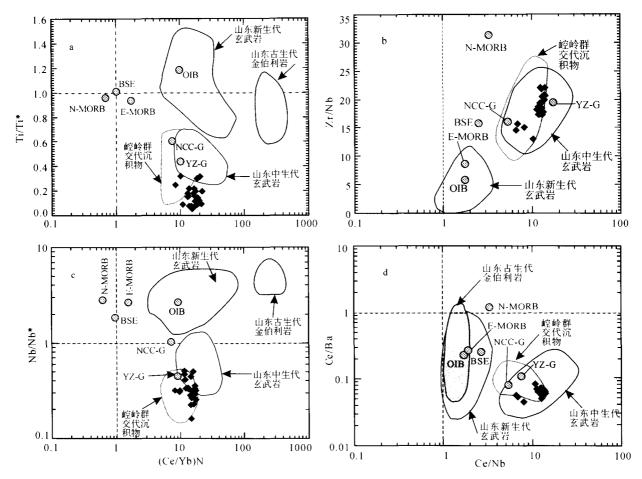
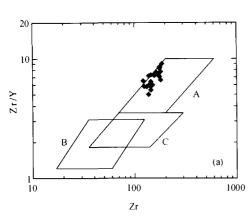


图 10 胶北煌斑岩微量元素比值相关图


Fig. 10 Variations in trace elements ratios for the lamprophyres from Jiaobei 其中:Ti* = ((Gd) _N + (Tb)_N)/2, Nb* = ((U)_N + (K)_N)/2; BSE, N-MORB, E-MORB 和 OIB 据 Sun and MacDonough (1989); NCC-G: 华北地台麻粒岩平均组成、YZ-扬子地台麻粒岩平均组成和崆岭群据 Gao et al. (1998,1999); 山东新生代玄武岩、中生代玄武岩和古生代金伯利岩据 Zhang and Sun (2002)

5.2 部分熔融和分离结晶

尽管研究区内煌斑岩具有相同的地球化学和同位素特征,说明它们来自相似的富集地幔源区。但由于年龄不同,它们并不是同岩浆作用的产物。在 La- La/Sm 和 K₂O-Ce/Yb 相关图(图 9a,b)中,清楚地表明研究区内煌斑岩为部分熔融条件下的产物。而地球化学特征显示,在岩浆分异过程中同时存在单斜辉石、橄榄石、斜长石(不明显)、角闪石、钛铁矿和磷灰石等矿物的分离结晶作用。

5.3 成因分析

煌斑岩富集 LILE, LREE、亏损 HFSE(Nb、Ti 和 P), 具有高 Sr 和低 Nd,以及下地壳的 Pb 同位素组成特征,完全 不同于 OIB、IAB 和 CFB。岩浆在上升侵位过程中并未受到 地壳物质的混染,在地球化学和同位素方面是继承了源区的 特性。(Ce/Yb)_N,Ti/Ti*,Nb/Nb*,Ce/Nb,Zr/Nb 和 Ce/Ba 比值对区分软流圈地幔或岩石圈地幔以及在弧岩浆起源上 是否存在俯冲物质的参与有很好的指示意义(Salters and Shimizu, 1988; Kelemen et al., 1990; Turner and Foden, 2001)。从图 10 可看出, 煌斑岩与山东中生代玄武岩的区域 (Zhang and Sun, 2002)重叠,暗示它们在地幔源区上存在着 一致,即都来自岩石圈地幔。而明显不同与山东古生代金伯 利岩和新生代玄武岩(Zhang and Sun, 2002)。岩石强烈亏损 HFSE (Ti/Ti* < <1, Nb/Nb* <1) 表明煌斑岩的地幔源区 与弧岩浆一致 (Kelemen et al., 1990; Turner and Foden, 2001)。崆岭群(交代沉积物和麻粒岩)是扬子克拉通下地壳 的代表(Gao et al., 1998; 1999; Ma et al., 2000), 在图 10 b、 c和d中, 煌斑岩几乎都落入崆岭群范围, 表明熔体中包含大 量的扬子下地壳物质。从地球化学和同位素(Nd-Sr-Pb)证 据可知, 研究区内煌斑岩为富集的岩石圈地幔部分熔融的 产物,而大量的扬子下地壳物质是如何进入岩石圈地幔,与 其发生强烈的混合交代作用,从而形成富集地幔源区的呢?

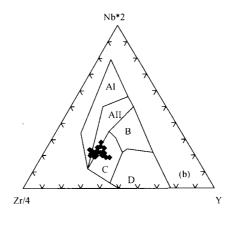


图 11 胶北煌斑岩构造判别图

其中:Zr/Y - Zr 图据 Pearce and Norry (1979)、A, B 和 C 分别代表 WPB、IAB 和 MORB(b) Nb - Zr - Y 图据 Meschede (1986)、AI + AII, AII + C, B 和 D 分别代表 WPAB (板内碱性玄武岩), WPT (板内拉斑玄武岩), P-MORB 和 N-MORB

Fig. 11 Tectonic discriminates diagrams for the lamprophyres from Jiaobei

这可能要归因于板块的碰撞、俯冲作用。环境判别图 (图 11a、b)显示煌斑岩形成于大陆板内环境,这与岩石具有 的大陆边缘弧玄武岩特性不一致,暗示在岩浆形成前发生过 大洋板块的俯冲,这种俯冲曾被认为与古太平洋(Izanaqi)板 块自三叠纪(250 Ma)的西向俯冲有关(Hu et al., 1994; Sun et al., 2000a, b; Hu et al., 2001)。但根据地球物理研究认 为,早白垩纪以前,太平洋板块相对中国东部并不存在西向 俯冲作用(Engebretson et al., 1985; Xu et al., 1993; 袁学 诚, 1996; Zhang et al., 2001)。所以从年代分布来看,太平 洋板块俯冲作用对本文煌斑岩的形成影响可能不大,但还有 待进一步研究。另一观点认为与扬子地台和华北地台之间 的古特提斯洋(可能为苏-鲁洋)北向俯冲作用有关(吴根耀, 2002)。相比之下,此观点对解释研究区内脉岩的成因就比 较合理:在三叠纪和侏罗纪-早白垩纪时,古特提斯大洋发生 了大规模的北向消减作用,从而在约 240 Ma 时,扬子地台与 华北地台发生碰撞,大量的扬子下地壳被重的大洋岩石圈拽 人地幔(Zhang and Sun, 2002),在软流圈作用下发生熔融, 由于密度较小,熔融的硅酸盐物质向上迁移与上覆的岩石圈 地幔橄榄岩发生连续广泛的相互作用(交代作用),完全破坏 掉老的岩石圈地幔,从而形成富集的岩石圈地幔源区。但只 有当构造条件成熟时,岩石圈发生大范围坍塌与拉张,富集 的岩石圈地幔发生部分熔融,岩浆沿着裂隙快速上升侵位, 形成大量的基性岩脉。综合研究认为研究区煌斑岩为碰撞 后弧岩浆作用的产物。

6 结论

研究区内煌斑岩以钙碱性系列为主。煌斑岩 K-Ar 全岩 年龄变化于 89.3~169.5Ma,为晚中生代岩浆作用的产物。

地球化学和同位素特征显示煌斑岩来自富集的岩石圈

地幔的部分熔融。富集地幔的产生归因于熔融的俯冲扬子 下地壳物质与上覆古老岩石圈地幔的混合交代作用。

具有大陆边缘弧玄武岩的特性,暗示煌斑岩在成因上与 古特提斯大洋板块(?)的俯冲作用有关,为碰撞后弧岩浆作 用形成的脉岩。

致谢 感谢邹海波博士、张宏福研究员、迟效国教授、毕献武研究员、战新志研究员以及山东省国土资源厅的建议、帮助和给予的方便!

References

Anders E and Grevesse N. 1989. Abundances of the elements; meteoritic and solar. Geochim. Cosmochim. Acta, 53:197-214

Bureau of Geology and Mineral Resources of Shandong Province. 1990. 1: 50000 final productions of six regional geological map (Mouping county etc.) joint surveys

Condie K. 1993. Chimical composition and evolution of the upper continental crust; contrasting results from surface samples and shales. Chem. Geol., 104:1-37

Engebreson DC, Cox A, Gordon RG. 1985. Relative motions between oceanic and continental plates in the Pacific basins. Geol. Soc. Am. Spec. Paper, 206:1-59

Gao S, Ling WL, Qiu Y, Lian Z, Hartmann G, Simon K. 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochim. Cosmochim. Acta, 63:2 071 - 2 088

Gao S, Luo TC, Zhang BR, Zhang HF, Han YW, Zhao ZD, Hu YK. 1998. Chemical composition of the continental crust as revealed by studies in Eastern China. Geochim. Cosmochim. Acta, 62:1 959 – 1 975

Hart SR. 1984. A large-scale isotope anomaly in the southern Hemisphere mantle. Nature, 309:753-757

Hu SX, Zhao YY, Hu ZH, Guo JC, Xu B. 1994. Evolution and development of tectonics and magmatism at the active continental margin of the east China (E 106) during Mesozoic and Cenozoic. Acta Petrologica Sinica, 10: 370 - 381 (in Chinese with English

- abstract)
- Huang Zhilong, Liu Congqiang, Zhu Chengming, Wan Liankui, Xia Huayun. 1999. The origin of lamprophyres in the Laowangzhai gold field, Yunnan province and their relations with gold mineralization. Beijing: Geological Publishing House, 3 – 112 (in Chinese with English abstract)
- Jahn BM, Wu FY, Lo CH, Tsai CH. 1999. Crust-mantle interaction induced by deep subduction of the continental crust; geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chem. Geol., 157; 119-146
- Jahn BM and Zhang ZQ. 1984. Archean granulite gneisses from eastern Hebei Province, China: rare earth geochemistry and tectonic implications. Contrib. Mineral. Petrol., 85: 224-243
- Kelemen PD, Johnson KTM, Kinzler RJ, Irving AJ. 1990. High-field-strength element depletions in arc basalts due to mantle-magma interaction. Nature, 345:521 524
- Le Roux AP. 1986. Geochemical correlation between southern African kimberlites and south Altantic hotspots. Nature, 324: 243 245
- Ma CQ, Ehlers C, Xu CH, Li ZC, Yang KG. 2000. The roots of the Dabieshan ultrahigh-pressure metamorphic terrance: Constraints from geochemistry and Nd-Sr isotope systematics. Precambrian Research, 102: 279-301
- Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with Nb-Zr-Y diagram. Chem. Geol., 56:207 - 218
- Ni Shijun. 1994. A new model of gold mineralization with the contribution of meso-basic dyke rocks in Xiaoqinling. Chengdu: Southwestern Communication University Press, 12 45 (in Chinese with English abstract)
- Pearce JA. 1982. Trace element characteristics of lavas from destructive plate boundaries. Thorpe RS (ed.). Andesites. New York: Wiley, 528-548
- Pearce JA, Norry MJ. 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib. Mineral. Petrol., 69: 33 -47
- Rock NMS. 1991. Lamprophyres. Blackie, Glasgow, 1-285
- Rock NMS and Groves D1. 1988a. Do lamprophyres carry gold as well as diamond? Nature, 332; 253-255
- Rock NMS and Groves D1. 1988b. Can lamprophyres resolve the genetic controversy over mesothermal gold deposits? Geology, 16: 538 541
- Salters VJM, Shimizu N. 1988. World-wide occurrence of HFSE-depleted mantle. Geochim. Cosmochim. Acta, 52; 2177 – 2182
- Sun Fengyue, Shi Zhunli, Feng Benzhi. 1995. Gold geology and mantle C-H-O fluid lithogenesis and mineralization in Eastern Shandong province. Changchun: Jilin People Publishing House, 12 - 65 (in Chinese with English abstract)
- Sun JG, Hu SX, Ling HF. 2000a. Study on the geochemistry and subduction-crust mantle interaction of the high potassium-potassium dike rocks in gold dposits concentration zone of east Shandong, China. Acta Petrologica Sinica, 16: 401 - 412 (in Chinese with English abstract)
- Sun Jinggui, Hu Shouxi, Ling Hongfei, Ye Ying. 2000b. Element geochemistry and origin of high potassic-potassic dike rocks in two types of goldfields in Northwest Jiaodong, Shandong, China. Geochimica, 29:143-152 (in Chinese with English abstract)
- Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes.
 In; Saundern AD and Norry MJ (eds.). Magmatism in the ocean basins. Geol. Soc. Spec. Publ., 42;313-345
- Taylor SR and Mclennan SM. 1985. The continental crust: Its composition and Evolution. Blackwell, 312
- Turner S, Foden J. 2001. U, Th, and Ra disequilibria, Sr, Nd and Phisotope and trace element variations in Sunda arc lavas: Predominance of a subducted sediment component. Contrib. Mineral. Petrol., 142: 43-57
- Winchester JA and Floyd PA. 1976. Geochemical magma type discrimination; application to altered and metamorphosed basic igneous rocks. Earth Planet. Sci. Lett., 28:459-469
- Wu Genyao, Chen Huanjiang, Ma Li, Xu Keding. 2002a. Su-Wan block: An independent tectonic unit during period of tethyan

- evolution. Journal of Palaeogeography, 5(2):77 87 (in Chinese with English abstract)
- Xu JW, Ma GF, Tong WX, Zhu G, Lin SF. 1993. Displacement of Tancheng-Lujiang Wrench fault system and its geodynamic setting in the northwestern Circum-pacific. The Tancheng-Lujiang Wrench system. In: Xu J. (ed.), John Wiley & Sons, 51-74
- Xu YG, Ma JL, Huang X, Lizuka Y, Chung SL, Wang YB and Wu XY. 2004. EarlyCretaceous grabbroic complex from Yinan, Shandong Province: Petrogenesis and mantledomains beneath the North China Craton. Int. J. Earth Sci., 93:1025-1041
- Yang JH, Chung SL, Zhai MG and Zhou XH. 2004. Geochemical and Sr-Nd-Pb isotopiccompositions of mafic dikes from the Jiaodong Peninsula, China: evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos 73:145-160
- Yuan XC. 1996. Altas of geophysics in China. Geophysical Map Collections in China (Yuan XC, eds.). Beijing: Geological Press, 59-62 (in Chinese with English abstract)
- Zartman RE, Doe BR. 1981. Plumbotectonics-the model. Tectonophysics, 75:135-162
- Zhang HF and Sun M. 2002. Geochemistry of Mesozoic basalts and mafic dikes, Southeastern North China Craton, and tectonic implications. International Geology Review, 44: 370 382
- Zhang HF, Sun M, Zhou MF, Fan WM, Zhou XH and Zhai MG. 2004. Highly heterogeneous late Mesozoic lithospheric mantle beneath the North China Craton: evidencefrom Sr-Nd-Ph isotopic systematics of mafic igneous rocks. Geol. Mag., 141:55-62
- Zhang HF, Sun M, Zhou XH, Fan WM, Zhai MG, Yin JF. 2002. Mesozoic lithosphere destruction beneath the North China Craton: Evidence from major, trace element, and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib. Mineral. Petrol., 144: 241-253
- Zhang Qi, Zhao Taiping, Wang Yan, Wang Yunlong. 2001. A discussion on the Yanshanian magmatism in eastern China. Acta Petrologica et Mineralogica, 20:273 – 280 (in Chinese)
- Zou HB, Zindler A, Xu XS, Qi Q. 2000. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: Mantle sources, regional variations and tectonic significance. Chem. Geol., 171, 33-47

附中文参考文献

- 黄智龙,刘丛强,朱成明,王联魁,肖化云.1999. 云南老王寨金矿区煌 斑岩成因及其与金矿化的关系. 北京: 地质出版社,30-112
- 胡受奚,赵乙英,胡志宏,郭继纯,徐兵. 1994. 中国东部中新生代活动大陆边缘构造 岩浆作用演化和发展. 岩石学报,10(4):370 381
- 倪师军. 1994. 小秦岭基性岩脉与金矿成因关系新模式. 成都:西南交通大学出版社,12-45
- 孙丰月,石准立,冯本智. 1995. 胶东金矿地质及幔源 C-H-O流体分异成岩成矿. 长春: 吉林人民出版社,12-65
- 山东省地质矿产资源局. 1990.1:5 万六区(牟平区等)地质图联测最终成果
- 孙景贵,胡受奚,凌洪飞.2000a. 胶东金矿区高钾 钾质脉岩地球化 学与俯冲 壳幔作用研究. 岩石学报,16(3):401 412
- 孙景贵,胡受奚,凌洪飞,叶瑛. 2000b. 胶西北两类金矿田的高钾 钾质脉岩元素地球化学与成岩作用研究. 地球化学,29(2):143 152
- 吴根耀,陈焕疆,马力,徐克定.2002a. 苏皖地块一特提斯演化阶段独立的构造单元. 古地理学报,5(2):77-87
- 袁学诚. 1996. 中国地球物理学投影. 见: 袁学诚主编. 中国地球物理 图集. 北京: 地质出版社,59-62
- 张旗,赵太平,王焰,王云龙.2001. 中国东部燕山期岩浆活动的几个问题. 岩石矿物学杂志,(3):273-280