矿物岩石 J MINERAL PETROL

贵州都匀牛角塘富镉锌矿 同位素地球化学研究

叶 霖^{1,2}, 潘自平^{2,3}, 李朝阳¹,

刘铁庚2, 厦 斌1.2

中国科学院广州地球化学研究所,广东 广州 510640;
中国科学院地球化学研究所矿床开放实验室,贵州 贵阳 550002;
中国科学院研究生院,北京 100049

【摘 要】 通过对牛角塘富镉锌矿的硫和铅同位素研究发现,该矿床同位素组成与其他 含镉铅锌矿床明显不同,其硫同位素组成以富重硫为特征,δ³⁴S值变化范围不大,集中在 +22‰~+30‰;硫化物单矿物、矿石和乌训组地层岩石具有极其相近的铅同位素组成和 高µ值(9.66~9.884)。表明该矿床的硫主要来源于寒武系地层硫酸盐或油田卤水,成矿 物质铅主要来自铀钍相对富集的上部地壳岩石即清虚洞组白云岩(含矿地层)下伏地层乌 训组页岩夹薄层灰岩,因此,牛角塘富镉锌矿成矿物质主要来源于上地壳即乌训组地层岩 石,成矿时代为加里东运动的中晚期。

【关键词】 镉;富镉锌矿;同位素特征;牛角塘 中图分类号:P597⁺2 文献标识码:A 文章编号:1001-6872(2005)02-0070-05

镉是分散元素之一,与锌有着相似的地球化学 行为,因此主要呈类质同象赋存于闪锌矿中。由于镉 属于重金属有毒元素,因此,对镉的研究多侧重于水 体(江、河、湖泊、工业废水)及沉积物和土壤中镉的 迁移富集和所造成的环境影响,关于镉的富集成矿 机制的研究十分薄弱,多集中在研究镉的一般地球 化学特征,如镉的独立矿物、赋存状态等^[1~4]。上世 纪末,我国西南地区相继发现了碲、铊、锗等分散元 素的独立矿床或矿体^[5,6],这是矿产地质和成矿理论 的一大突破,分散元素在我国西南地区可能有着独 特的地球化学行为。在研究贵州都匀牛角塘铅锌矿 时,发现其中镉含量异常高^[7,8],闪锌矿矿石中镉平 均质量分数为 0.9%左右,闪锌矿单矿物中镉质量 分数一般大于 1.20%,最高可达 1.97%,镉的储量 为5 299.14 t(达大型以上规模)。可见,镉等分散元 素并不"分散",在特定的条件下会富集,甚至形成独 立矿床或矿体^[9]。目前,对牛角塘矿床高度富集镉的 机理尚有争议,张碧志等^[10]认为该矿床属于同生沉 积-后期叠加改造成因,叶霖等^[11]通过成矿流体的 研究,认为牛角塘矿床的形成与麻江古油藏的破坏 有关,成矿流体来源于古油田卤水,而刘铁庚等^[8]则 认为该矿床属弱改造的层控矿床,在成矿过程中可 能有生物和热水的参与。

1 区域及矿床地质概况

牛角塘矿床产于湘西-黔东铅锌成矿带南端。矿 区NE向断裂发育,以蔓洞大断裂和早楼断裂为代

基金项目:国家自然科学基金(编号:40373021);博士后基金项目

收稿日期:2004-12-15; 改回日期:2005-04-01

作者简介: 叶 霖, 男, 35岁, 博士, 地球化学专业, 研究方向: 矿床地球化学研究,

表。出露地层从上震旦统到寒武系娄山关群均有,其 中上震旦统一下寒武统乌训组以碳酸盐岩和细碎屑 岩为主,其次为碳质页岩、泥岩及硅质岩等。矿体主 要赋存于乌训组之上的下寒武统清虚洞组含藻白云 岩中(图1)。现已发现4个矿化层,90多个矿体。分 别产于清圩洞组第二、第三和第七等岩性段以及石 冷水组第二岩性段的藻类白云岩中。目前已探明本 矿床 Zn 储量为 35×10⁴ t 以上,Cd 的储量为 5 299.14 t(达大型以上规模)。矿体呈似层状、透镜 状产出,矿体产状与容矿围岩的产状基本一致,且为 过渡关系。

矿石矿物主要由闪锌矿和黄铁矿组成,其次为 方铅矿、白铁矿和菱锌矿,还有少量的异极矿、褐铁 矿、毒砂、辉锑矿和雄黄等,偶见自然银、硫镉矿和待 定镉的独立矿物。脉石矿物主要是白云石,少量的方 解石、石英和粘土矿物等。闪锌矿和黄铁矿除不规则 粒状外,还有草莓状和结核状。闪锌矿均为浅色,有 的接近无色,主要有浅灰色,淡红色,浅灰绿色和浅 黄褐色等。各色闪锌矿之间无明显界限,为过渡关 系。近矿围岩蚀变主要为白云石化,其次为黄铁矿和 弱硅化等。镉在矿床中主要以类质同像赋存于闪锌 矿中,其次以硫镉矿、菱镉矿和方镉矿等独立矿物存 在于矿床氧化带,部分镉呈吸附态存在于其他矿物 表面。

2 矿床硫同位素组成特征

硫同位素分析方法是采用氟化法对硫化物单矿 物(双目镜下挑选,纯度达到 98%以上)进行处理, 即以 BrF。为氧化剂在高温真空条件下使硫化物转 变成 SF。,在 MAT251 质谱计上测定,采用国际标 准 CDT,测定方法总精确度为 0.2%。

分析结果(表 1)表明牛角塘矿床的硫同位素组成以富重硫为特点, 8³⁴S值大多分布在+20%以上

图 1 牛角塘富镉锌矿床地质略图^[10] Fig. 1 The Geological map of Niujiaotang ('d-rich zinc deposit^[10]

(图 2)。总体上矿床 δ^{34} S值变化范围不大 (+10.03‰~+32.80‰),极差为22.73‰,均值为 26.97‰,主要集中分布在+22‰~+30‰之间,且 具塔式分布特征,主峰值为+26‰~+30‰。其中闪 锌矿的 δ^{34} S一般为+10.03‰~+29.81‰,主要集 中在+22‰~+32‰之间;方铅矿的 δ^{34} S=23‰~

图 2 牛角塘富镉锌矿的 b³⁴S 直方图

表1 牛角塘矿床硫同位素分析结果

Ta	ble	1	Sulfur	isotopic	compositions	of	Niujiaotang	mine
----	-----	---	--------	----------	--------------	----	-------------	------

序号	样品号	样品名称	取样位置	δ ³⁴ S/‰
1	AA-5	闪锌矿	牛角塘矿床	29.28
2	L-2-1	黑色闪锌矿	马坡【矿段	26.06
3	L-4-I	黑色闪锌矿	马坡丨矿段	24.90
4	L-12-1	黑色闪锌矿	马坡丨矿段	14.85
5	B-I-2	黑色闪锌矿	马坡【矿段	25.97
6	B-6-2	黑色闪锌矿	马坡丨矿段	16.01
7	L-2-2	浅黄色闪锌矿	马坡!矿段	25.12
8	L-4-2	浅黄色闪锌矿	马坡』矿段	24.12
9	L-12-2	浅黄色闪锌矿	马坡』矿段	10.03
10	B-1-1	浅黄色闪锌矿	马坡丨矿段	26.89
11	B-6-I	浅黄色闪锌矿	马坡丨矿段	25.71
12	C-1-1	闪锌矿	马坡∎矿段	29.81
13	C-1-3	闪锌矿	马坡∎矿段	28.75
I 4	C-I-4	闪锌矿	马坡Ⅲ矿段	28.75
15	C-1-8	黄铁矿	王家山『矿段	22.76
16	C-I-10	黄铁矿	马坡!矿段	28.81
17	C-I-5	黄铁矿	马坡∎矿段	29.04
18	C-1-7	方铅矿	马坡!矿段	28.88
19	C-I-22	方铅矿	马坡∎矿段	26.23
20	Zw-2	闪锌矿	左弯田工矿段	26.102
21	768-4	闪锌矿	马坡∥矿段	27.222
22	MY-2	闪锌矿	马坡∎矿段	26.220
23	Y2-1	闪锌矿	马坡Ⅱ矿段	27.099
24	DL-2	闪锌矿	马坡』矿段	25.646
2 5	DL-3	闪锌矿	马坡Ⅱ矿段	27.665
26	DL-I	闪锌矿	马坡Ⅱ矿段	28.597
27	MP-5	黄铁矿	马坡『矿段	26.895
28	MP-2	黄铁矿	马坡』矿段	25.859
29	768-2	黄铁矿	马坡』矿段	22.590
30	768-1	黄铁矿	马坡Ⅱ矿段	26.747
31	Y2-2	黄铁矿	马坡』矿段	22.768
32	MY-1	方铅矿	马坡∎矿段	25.590
33	M Y-2	方铅矿	马坡∎矿段	22.324
34	KIS-15	闪锌矿	马坡Ⅱ矿段	26.98
35	KIS-15	方铅矿	马坡∎矿段	32.82
36	KIS-16	闪锌矿	狮子洞矿带	27.69
37	KIS-19	闪锌矿	马坡∎矿段	25.74
38	K1S-19	方铅矿	马坡Ⅲ矿段	20.33

注:20~33.引自谷团:(;34~38.引自文献[31]

34%;黄铁矿的 $\delta^{34}S = +21.3\%$ ~+25.9‰。该矿床 硫同位素组成与 MVT 型铅锌矿硫同位素组成(δ³⁴S =+10‰~+25‰^[12])相似。王华云^[13]和蒲心纯^[14] 研究表明湘西-黔东铅锌成矿带中矿床成矿热液的 总硫同位素组成与矿物的硫同位素组成趋于一致, 在+27.0‰~+29.5‰之间,据此,推断该矿床硫化 物的硫同位素组成应与湘西-黔东铅锌成矿带中矿 床相似,大致可以视为成矿热液的硫同位素组成。根 据牛角塘矿床的硫同位素组成特征,可以认为成矿 物质硫的来源有两个:①寒武系地层硫酸盐(或含硫 的地层岩石)或封存的古海水,依据是该矿床的硫同 位素组成与寒武系海水硫同位素组成(+27‰~ +29‰, Holser, 1966)非常一致; ②油田卤水, 牛角 塘矿床正好位于于麻江古油藏南缘,矿区内分布若 干麻江古油藏受破坏后残留的干沥青,其硫同位素 组成在 22.65‰~26.23‰之间[15],该矿床硫同位素 组成与矿区内干沥青具有一致硫同位素组成说明矿 床中硫来源可能是油田卤水,湘西-黔东铅锌矿带中 大量沥青的产出和成矿热液包裹体中气态烃及油气 圈闭构造的存在[14],也是油田卤水提供一部分硫的 有力证据,笔者通过[11]包裹体研究表明该矿床成矿 流体与麻江古油藏的油田卤水有密切关系。

牛角塘矿床与其他含镉铅锌矿(品位较低)对 比,其硫同位素组成明显富集重硫。云南金顶超大型 含镉铅锌矿,是我国最大的铅锌矿床,也是我国最大 的镉储量矿床(铅锌矿储量 1 500×10⁴ t,镉储量 17 ×10⁴ t,但镉品位较低,0.01%~0.2%)^[16],其 88 件硫化物矿物样品 S 同位素数据的统计表明, δ^{34} S 出现3个峰值:-4.5‰(黄铁矿样品占 78.9%)、 -13.5‰(闪锌矿样品占 81%)和-19.0‰(方铅矿 样品占 87.1%),总体上富轻硫的特征反映还原硫 与地层中大量硫酸盐的还原作用有关。

利用已达到硫同位素分馏平衡的矿物对——闪 锌矿和方铅矿对(其 $\delta^{34}S_{\sharp\xi\xi\xi}>\delta^{34}S_{\Pi\xi\xi\xi}>\delta^{34}S_{\pi\xi\xi}>\delta^{34}S_{\pi\xi\xi}$) 的硫同位素分馏方程计算成矿温度,采用酒井 (Sakai,1968)的同位素分馏方程计算出该矿床成矿 温度主要在102 C~121 C,这与通过闪锌矿包裹 体均一温度测量结果^[15]基本吻合。

3 矿床铅同位素组成特征

. 铅同位素分析在湖北宜昌地质矿产研究所同位 素室分析完成,其中单矿物在双目镜下挑选,其纯度 达到 98%以上,硫化物样品用 0.5 mol/L HCl 和高 纯水清洗,碳酸盐样品用高纯水清洗,然后在玛瑙研

① 谷团.牛角塘独立镉矿床初步研究.中国科学院地球化学研究 所硕士论文,1999

钵中磨到 100 目以下,样品在聚四氟乙烯 PEA 管形 瓶中分解,硫化物样品用 HCl+HNO₃ 分解,分解完 全后蒸发到近干并转化为 0.15 mol/L HCl+0.65 mol/L HBr 介质,在阴离子 Bio-Rad AG 1×8 交换 柱上分离,用 1.0 mol/L HNO₃ 淋洗 Pb,然后将溶 液加热至干,闪锌矿样品在淋洗 Pb 之前先用大量 0.15 mol/L HBr 溶液洗 Zn,所有试剂都经过两次 双瓶亚沸蒸馏。Pb 同位素比值在 MAT262 多接受

器的热电离质谱计上测定,样品涂在 Re 带上,以硅 胶作为发射剂,测定采用静态模式,用标准样 SRM981控制质谱计中的质量分馏,测定精度好于 0.04%。

都匀牛角塘富镉锌矿床的铅同位素分析结果见 表 2,其中闪锌矿的²⁰⁶Pb/²⁰⁴Pb=18.057~18.226, ²⁰⁷Pb/²⁰⁴Pb=115.621~15.754,²⁰⁸Pb/²⁰⁴Pb= 38.099~38.463, μ =9.54~9.79,方铅矿的²⁰⁶Pb/

表 2 牛角塘矿床铅同位素组成表 Table 2 Lead isotonic compositions of Niuliaotang

Table 2 Dead isotopic compositions of Multiadiang inne								
样品名称	样品数	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	表面年龄/Ma	μ值		
清虚洞组 白云岩	2	17. 204~17. 584(17. 394)	15.479~15.491(15.485)	38. 138~38. 333(38. 236)	633~888(761)	9.35~9.40(9.38)		
乌训组页岩 夹薄层灰岩	2	18.559~19.073(18.816)	15.646~15.723(15.685)	38. 956~39. 408(39. 182)	116~-161(-22.5	5)9.54~9.64(9.59)		
闪锌矿	5	18.057~18.226(18.140)	15.621~15.754(15.680)	38.099~38.463(38.252)	433~510(461)	9.54~9.79(9.65)		
方铅矿	3	18.196~18.203(18.200)	15.724~15.736(15.732)	38.346~38.401(38.382)	467~478(474)	9.74~9.76(9.75)		
闪锌矿、方 铅矿矿石	7	18.148~18.266(18.204)	15.674~15.802(15.734)	38. 214~38. 651(38. 391)	443~506(471)	9.64~9.88(9.75)		

注:清虚洞组白云岩 φ 值为 0.628~0.657(0.643);括号内为平均值;测试单位;湖北宜昌地矿所同位素室分析

 204 Pb = 18. 196 ~ 18. 203, 207 Pb/ 204 Pb = 15. 724 ~ 15. 736, 208 Pb/ 204 Pb = 38. 346 ~ 38. 401, μ = 9. 74 ~ 9.76, 矿石的²⁰⁶ Pb/²⁰⁴ Pb = 18.148~18.266,²⁰⁷ Pb/ 204 Pb = 15. 674 \sim 15. 802, 208 Pb/ 204 Pb = 38. 214 \sim 38.651, μ=9.64~9.88。它们的铅同位素比值比较 相似,且变化范围均小于 0.1%,属于高 μ 值的正常 铅,计算出的铅模式年龄为 466 Ma~536 Ma,与围 岩的铅同位素组成相似。而硫化物单矿物、矿石和乌 训组地层岩石具有极其相近的μ值(9.66~9.884), 表明硫化物、矿石和乌训组地层岩石具有一致的铅 源,且高μ值(>9.58)特征反映了成矿物质铅主要 来自铀钍相对富集的上部地壳岩石,²⁰⁶ Pb/²⁰⁴ Pb-²⁰⁷Pb/²⁰⁴Pb 图解和²⁰⁶Pb/²⁰⁴Pb-²⁰⁸Pb/²⁰⁴Pb 图解中 投影结果(图 3)也证明了这点。王华云[15]研究认 为,该矿石中铅与乌训组(E₁w)页岩夹薄层灰岩的 岩铅有很好的相关关系(相关系数 r=0.7, n=18), 说明了乌训组是主要的铅源。此外,计算出矿物和 矿石的模式年龄(成矿年龄)在 433 Ma~510 Ma 之 间,即加里东运动的中晚期。而清虚洞组白云岩和 乌训组页岩夹薄层灰岩的铅同位素模式年龄相差很 大,与实际明显偏差,说明这种方法不适宜该区地层 岩石年龄测定。

与其他含镉铅锌矿床对比,牛角塘富镉锌矿床 的铅同位素组成有明显不同,即以上地壳铅特征,且 μ值较高。而云南金顶含镉铅锌矿^[16],96件Pb同位 素数据统一求算模式年龄和源区特征值,发现有 85%的样品反映幔源Pb特征(模式年龄主频位于 42 Ma,μ值主频在 8.87),其余 15%显示壳幔混合 铅特征(模式年龄主频位于 102 Ma,μ值主频在

图 3 牛角塘矿床岩石、矿石矿物铅同位素构造 模式

Fig. 3 Diagram of lead isotopic compositions of rocks and ore minerals

4 总结与讨论

牛角塘富镉锌矿的同位素研究表明,该矿床与 其他含镉铅锌矿的同位素组成有明显差异,其硫同 位素组成以富重硫为特征,其 δ^{34} S值变化范围不大 (+20.33‰~+32.80‰),大多分布在+20‰以上, 说明矿床的硫主要来源于寒武系地层硫酸盐或油田 卤水。硫化物单矿物、矿石和乌训组地层岩石具有极 其相近的铅同位素组成和高µ值(9.66~9.884),反

映了成矿物质铅主要来自铀钍相对富集的上部地壳 岩石即清虚洞组白云岩(含矿地层)下伏地层乌训组 页岩夹薄层灰岩。因此可以认为成矿流体可能是麻 江古油藏油田卤水演化而来,加里东中晚期麻江古 油藏受到破坏,造成与油气伴生的大量油田卤水在 运移过程中,活化萃取了地层(下寒武武统乌训组页 岩夹灰岩)中大量 Cd 和 Zn 等成矿物质,在构造作

用影响下排除烃类和含矿溶液,从盆地中由东向西 南运移到台地边缘有利的岩性和构造位置,由于物 理化学环境的变化,并在矿区遇到富含 Ca²⁺和 Mg²⁺的岩石地球化学障,海相沉积岩中的 SO₄²⁻被 油田卤水中有机质还原产生大量的 H₂S,导致闪锌 矿等硫化物的沉淀,Cd 以类质同象赋存于闪锌矿等 硫化物中。

参考文献

- [1] 张丽彦,杨锡惠、金顶氧化铅锌矿石中镉的赋存状态[J]、地质与勘探,1986,(6);36-40、
- [2] 谭凤琴,广东仁化凡口铅锌矿西矿带矿石中主要伴生组分的研究[J], 广东有色金属地质,1995,(1-2),40-51
- [3] Carig J R.Ljokjell P.Vokes F M. Sphalerite compositional variations in sulfide ores of the Norwegin Caledonides[J]. Economic Geology, 1984,79(7):1 727-1 735.
- [4] Vtlu F, Celebi H, Peker I. Die Spurenelements Cd, Sb, Pb und Zn de Cu-Erze aus der Massivsulfiflagerstatte Ergani-Maden, Provinz Elazig/Ostturkei[J]. Chemie der Ercle, 1995, 55(3), 189-204.
- [5] 驼耀南,曹志敏,四川发现世界首例独立碲矿床[J],中国地质,1994,(2):27-29,
- [6] 张 忠,龙江平,南华富Ti雄黄矿床研究新进展矿床地球化学研究[M].北京:北京地震出版社,1994,58-60.
- [7] Ye Lin, Liu Tiegeng. Shpalerite chemistry, Niujiaotang Cd-rich Zinc deposit, Guizhou, southwest China[J]. Chinese journal of geochemistry, 1999, 18(1); 62-68.
- [8] 刘铁庚,叶 霖,都匀牛角塘独立镉矿床的地质地球化学特征[J],矿物学报,2000,20(3);279-285.
- [9] 涂光炽,分散元素可以形成独立矿床-一个有待开拓深化的新矿床领域[A],欧阳自远主编,中国矿物岩石地球化学研究新进展(二) [C],兰州;兰州大学出版社,1994,234,
- [10] 张碧志,覃 明,李明道.都匀牛角塘矿田控矿条件及成矿模式探讨[J].贵州地质,1994,11(4);287-293.
- [11] 叶 霖,刘铁庚,邵树勋. 富镉锌矿的成矿流体地球化学研究-以贵州都匀牛角塘富镉锌矿床为例[J]. 地球化学,2000,29(6):597-603.
- [12] Leach D L. Sangster D F. Mississippi Valley-type lead-zinc deposits [A]. In: Mineral Deposit Modeling (eds. Kirkham R V, Sinclair W D, Thorpe R I). Geological Association of Canada [C]. Spec. Papers. 1993,40:289-314.
- [13] 王华云.贵州铅锌矿的地球化学特征[J].贵州地质,1993,(4);274-289.
- [14] 蒲心纯,周浩达,王熙林,等.中国南方前寒武纪岩相古地理与成矿作用[M].北京:地质出版社,1993,137-145.
- [15] 王华云,施继锡·贵州丹寨、三都、都匀地区低温成矿系列的成矿物质来源和分异条件[J]. 矿物学报,1997,17(4):491-450.
- [16] 薛春纪,陈毓川,杨建民,等.金顶铅锌矿床地质-地球化学[J]、矿床地质,2002,21(3):270-245.

ISOTOPIC GEOCHEMICAL CHARACTERS IN NIUJIAOTANG Cd RICK ZNIC DEPOSIT, DUYUN, GUIZHOU

YE Lin^{1,2}, PAN Zi-ping^{2,3}, LI Chao-yang¹,

LIU Tie-geng¹, XIA Bin^{1,2}

1. Guangzhou Institute of Geochemistry Chinese Academy of Sciences, Guangzhou 510640, China; 2. Open Lab. of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China

3. Graduate School of Chinese Academy of Sciences, Beijing 100049, China

Abstract: Research on the S,Pb and Sr isotopes of Niujiaotang cadmium-rich zinc deposit revealed that the deposit was rich in ³⁴S, with the variation range of S isotopic composition from $+22\%_0 \sim +30\%_0$. The Pb isotopic composition of sulfide monomineral and ore were similar to that of Wuxun Group rock indicating that the S of Niujiaotang deposit came from sulfate of Cambrian strata or oil-field brines, and the metallogenetic material-Pb from the cover rocks-Wuxun Group rocks which was relatively rich in U and Th. In conclusion, metallogenetic material of the deposit came from the shale and limestone of Wuxun Group, and the metallogenetic epoch was mid-late Caledonian period.

Key words: cadmium; Cd-rich zinc deposit; isotopic feature; Niujiaotang

ISSN 1001-6872(2005)02-0070-05; CODEN;KUYAE2

Synopsis of the first author: Ye Lin.male.34 years old.an associate professor of ore geochemistry. Now he is engaged in the research of nonferrous metal ore geochemistry.