Vol.21, No.5 September, 2001

¹³⁷Cs 在滇西与黔中地区散落的差异* 一一青藏隆起对滇西地区全球性扩散 大气污染物散落屏蔽效应的推断

万国江[□] 白占国[◎] 刘东生[◎] 王仕禄[⊕] 陈敬安[□] 黄荣贵[□]

(①中国科学院地球化学研究所环境地球化学国家重点实验室,贯阳 550002;
 ②中国农业科学院土壤肥料研究所农业部植物营养学重点实验室,北京 100081;
 ③中国科学院地质与地球物理研究所,北京 1000290

摘要 云贯高原是青藏隆起在南亚大陆形成的一个海拔梯度大、地势格局复杂的特异环境 单元 该地域兼受东南季风与西南季风的交汇影响,是全球变化的敏感区之一。青藏隆起对 云贵高原现代环境影响主要表现在;1)全球性大气扩散污染物的屏蔽效应和局地性大气扩 散污染物的滞留效应;2)区域化学风化的增强效应和物理侵蚀的梯级效应;3)地表环境地 球化学过程的低纬度·高海拔效应、核素示踪模式分析表明;滇西与黔中地区之间¹³¹;s自 大气散落差异明显[1986年以前,洱海和红枫湖沉积物中¹³⁷Cs散落的累计值分别为(0.11 = 0.01)Bq/cm¹²及(0.37±0.01)Bq/cm¹²], 而²Bc的散落相近、这说明青藏隆起对滇西地区存在 全球性扩散大气污染物散落的屏蔽效应。

主题词 -37Cs-7Be 散落蓄积 屏蔽效应 云贵高原 青藏隆起

1 引言

全球变化源于全球物质和能量循环的驱动。地质历史时期形成的地表环境格局对全 球物质和能量循环产生重要影响。一些研究基于风化作用强度与地表温度、大气 CO₂ 浓 度之间的反馈关系,提出地球具有抗外部于扰而保持表面温度稳定的能力一;并建立长时 间尺度碳的地球化学循环模型,以解释新生代青藏隆起后地表高差增大,风化作用加强, 大气 CO₂ 浓度和表面温度降低¹²⁻⁴¹。尽管这些模型及其模拟结果仍面临严峻的挑战⁵¹, 但毋庸置疑的是:青藏隆起塑造了中国大陆的三级阶地,形成了季风气候,改变了物质循 环和水汽输送途径,从而对周边地区现代环境产生多种类型的重要影响。云贵高原作为 青藏隆起的东翼斜坡,位于藏滇褶皱带和扬子准地台两种不同性质大地构造的过渡带,是 南亚大陆的一个海拔梯度大,地势格局复杂的特异环境单元。

第一作者简介:万国江 男 61岁 研究员 地球化学专业 E-mail:gyw@ms gyng ac.cm

^{*} 国家自然科学基金(批准号:49971053、49894170、49773207 和 49333040))资助项目和中国科学院"九五"重大项目(批准号:KZ951-A1-402-06-04)

²⁰⁰¹⁻⁰⁵⁻¹² 收稿,2001-06-19 收修改稿

洱海是滇西高原最大的断陷湖泊^{11,7}、位于云南省大理市北(25°46′N,100°11′E),湖 面正常水位1974m(海防高程),呈NNW-SSE方向狭长状展布,长42km,最大宽度 S.4km;属澜沧江水系。洱海西岸为强烈上升的点苍山,其河谷呈剧烈下切的不对称侵蚀 地貌景观 其汇水区域广泛发育着碳酸盐岩、片麻岩和硅质岩;表土类型多样,以红壤、水 稻土及冲积土为主;光山秃岭,草灌稀疏,森林覆盖率仅7%。

红枫湖是黔中地区最大的人工湖"¹,位于贵州省贵阳市郊(26°31′N,106°26′E)。湖 面高程1240m,属乌江水系猫跳河开发的第1梯级,1960年建成蓄水。红枫湖下游6km 串联有第2梯级开发的百花湖,系1966年建成蓄水。为叙述方便,本文中统称红枫湖。 红枫湖汇水区域以三叠纪白云岩为主。岩溶作用发育,石灰土和黄壤广布,土层浅薄。由 于侵蚀严重,呈现出石漠化景观。石山上部岩石裸露,表土仅残存在凹陷的溶臼、溶沟、溶 槽及裂隙中。山坡上仅依稀见有草灌。

根据前期研究进展分析,青藏隆起对云贵高原现代环境影响主要体现在:1)全球性大 气扩散污染物的屏蔽效应和局地性大气扩散污染物的滞留效应:2)区域化学风化的增强 效应和物理侵蚀的梯级效应:3)地表环境地球化学过程的低纬度 - 高海拔效应。此外、 从多种敏感指标的综合分析和⁷Be - ¹³⁷Cs - ²¹⁰Ph 计年的时间序列,还揭示出洱海地区气 候冷暖变化存在 200a 和 400a 准周期,干湿变化存在 100a,200a 和 400a 准周期的短尺度 波动 - 本文通过¹³⁷Cs 和⁷Be 在滇西和黔中地区表土及(洱海和红枫湖)沉积物中累计分布 特证的对比,来讨论全球性扩散大气污染物散落的地区差异。

2 基本原理

流域侵蚀和湖泊沉积是地表环境物质迁移的主要地球化学过程。现代人为活动不仅 影响着流域侵蚀作用的进程,而且人为释放物质也叠加到侵蚀物质的迁移过程中;湖泊沉 积物不仅是流域地表物质迁移的主要宿体,而且还是流域内大气散落物的积蓄场所^态。 环境中存在的放射性核素具有已知的输入函数和衰变关系,在不同时间尺度和不同景观 类型的地球化学过程研究中具特殊的示踪价值**¹⁰。

在前期研究工作中,根据放射性示踪核素在水系和冰芯中积累的资料,间接地获取了 其大气浓度和沉降通量等很有价值的资料。但是,这些资料的全球覆盖率较低,数据的质 量精度不够确定。无论从目前,还是长远的角度,广泛地检验和评价现有的全球数据非常 必要。由全球变化欧洲研究网 5 个实验室发起于 1999 年在瑞典 Uppsala 举行的全球循 环示踪剂国际研讨会"即以此作为中心议题。在全球物质循环研究中,⁷Be,¹⁷⁷Cs 和²¹⁰ Pb 具有重要的示踪价值。

2.1 ¹³⁷Cs是流域侵蚀和湖泊沉积的优良示踪剂

早年大气层核试验后通过全球大气扩散而散落到地表环境中的¹³⁷Cs(半衰期 30.2a),其散落通量的年际变化受核试验强度、地区性和纬度效应影响、利用某些年代

ł

^{1.)} El-Daoushy F. Large-scale and long-term environmental changes in surface water as modelled through environmental radioactivity = 1999

散落并蓄积在湖泊、海湾沉积物中的¹²⁷ Cs 比活度的异常作为时间标志,可确定沉积物 平均堆积速率^{18~15};利用表土层中¹³⁷ Cs 的分布变化、可指示表土的侵蚀特征^{18-16,19} 特别是如下一些重要问题的解决,更肯定了¹³⁷ Cs 的示踪价值:1)当前使用的沉积物采 样和分样设备、可以不扰动沉积物柱芯并高精度分截出季节性沉降微粒的样品、从而 使¹³⁷ Cs 可靠地用于沉积速率小于 1 cm/a 的沉积物计年 -^{5-15,20-22}; 2) 尽管 1955 年 ¹³⁷ Cs 计年时标因时间较长、强度不大而失效⁻¹⁹,但是、与 1974 年全球散落相对应的次 级蓄积峰作为计年时标、增加了¹³⁷ Cs 的沉积计年价值^{[18,20-22}; 。前苏联切尔诺贝利核电 站事故散落的¹³⁷ Cs 也同样保留在湖泊沉积物的相应层节中、也具备辅助计年时标意 义^{118,20-23]}。3) ¹³⁷ Cs 计年的可靠性是以¹³⁷ Cs 在沉积物中赋存状态的稳定性为基础。 虽然¹³⁷ Cs 在湖泊沉积物中存在一定的扩散能力、但沉积物中绝大部分¹³⁷ Cs 处于固定 态、能较好地保存于其沉积年代的相应层位中。分子扩散不足以改变蓄积峰的位置、确 保了¹³⁷ Cs 计年时标的可靠性^{12-18,221}。

2.2 'Be 是环境中微粒季节性迁移的最佳示踪剂

⁷Be 是宇宙线轰击大气中 N、O 靶核而产生的全球性散落核素。⁷Be 作为微粒季节性 迁移的最佳示踪核素、业已广泛用于湖泊、海湾沉积物混合作用^{117,2+-27]}和表土微粒季节 性迁移 ^{28+31]}的示踪。其示踪原理主要基于:1)⁷Be 可能作为季节性环境变化的示踪核 素。⁷Be 的半衰期为 53.3 天.平均寿命 76.5 天,不存在长期累积效应:而散落于湖水中 的⁷Be 通过沉降作用的寄宿时间也仅几十天,与其平均寿命相当^[17,24,25];⁷Be 在海洋沉积 物中的增长相当于该地区的大气散落、也暗示进入水体的⁷Be 在短期内便可转移到沉积 物⁻¹¹。2)⁷Be 具有微粒水迁移的示踪价值。铍具有难溶的氢氧化物地球化学赋存特性, 决定了⁷Be 的微粒迁移性质。⁷Be 自大气散落受降水冲刷影响^[32]。3)⁷Be 在土粒中的结合 状态适合于微粒季节性迁移示踪。对表层土样溶析实验知、⁷Be 绝大部分存在于有机质 或铁锰氧化物相中,溶解扩散迁移性远较¹²⁷Cs小^[29]、

3 滇西和黔中地区表土和沉积物中⁷Be和¹³⁷Cs分布的差异

3.1 表土顶部'Be/¹³⁷Cs值的差异显示两核素散落-蓄积的地区差异

表土层中散落核素的分布是大气散落与土粒侵蚀的共同结果、采自滇西(洱海汇水 区)和黔中(红枫湖汇水区)表土分层样品中⁷Be 和¹³⁷Cs 的比活度分析表明,⁷Be 比活度随 土层深度下降,¹³⁷Cs 比活度在表土层中呈略增(减)的较稳定分布。两核素比活度比值 (⁷Be/¹³⁷Cs)的垂直剖面也随土层深度呈下降趋势。但是,两核素在滇西地区表土顶部边 界层表观比活度的比值(⁷Be/¹³⁷Cs)总体较黔中地区高(图1)。这一现象显示出两核素在 两地区存在着散落 - 蓄积的差异:既可能滇西地区⁷Be 的散落 - 蓄积较黔中地区高,也可 能滇西地区¹³⁷Cs 的散落 - 蓄积较黔中地区低。

3.2 ¹³⁷Cs 和⁷Be 在红枫湖沉积物中蓄积累计值大于洱海沉积物

3.2.1 洱海和红枫湖沉积物中的³³Cs

¹³⁷Cs在洱海和红枫湖沉积物中具有相似的垂直分布特征,并与全球散落的时序相吻

i

411

合:由沉积物柱芯中¹³⁷Cs时标获得的沉积物堆积速率与²¹⁰ Pb 计年结果一致。这一事实 表明,近几十年间两湖的沉积作用均较稳定^{110,21,22}。

但是,按已经校正到沉降年代的数值表示,1986年以前洱海和红枫湖沉积物中¹³⁷Cs的累计值分别为(519±26)Bq/m³及(3704±56)Bq/m³。后者约为前者的7.1倍(表1)。 上述分析可见,滇西地区湖泊沉积物中¹³⁷Cs的蓄积明显低于黔中地区。为确证¹³⁷Cs散落的地区差异,需联系到侵蚀。沉积过程进行分析

1 stite	I Data of	be and	Cs accumulatio	n in the seamen	its of Ernal La	ike and nor	igieng Lake			
	[7	Be	¹³⁷ Ľs							
湖泊名称	渗透深度	累计值	主峰质量深度	沉积物堆积速率	主峰比活度	总累计值	1986 年前累计值			
	{cm	/Bq•m ^{-∶}	íg∙em ²	/g*cm ² *a ⁻¹	$(Bq \cdot kg^{-1})$	Bq m	(Bq m 2			
洱 侮	2	237 ± 73	1 455	0 047± 0.002	48.3-2.7	590 = 27	519 ± 26			
工阀胡	2	783 ± 44	4 112	0.17 ± 0.01	$252 \text{ b} \equiv 15 \text{ 1}$	3 <u>713 ± 56</u>	3 704 ± 56			

表 1 洱海和红枫湖沉积物中" Be 和137Cs 蓄积资料

C 47 1

3.2.2 洱海和红枫湖沉积物中的⁷Be

洱海和红枫湖沉积物中,⁷Be 主要分布在沉积物顶部 2cm 深度以内,与在其它湖泊和 海湾沉积物表层的分布深度^{112,13} 一致。但是,⁷Be 在两湖沉积物中的累计值具有两点重 要差异:1)⁷Be 在洱海沉积物中的累计值[(237 ± 73)Bq/m³]远较红枫湖沉积物中的累计 值[(783 ± 44)Bq/m³]小(见表 1);2) 红枫湖沉积物中⁷Be 的累计值远高于其汇水区表土 中累计值的平均水平,而洱海沉积物中⁷Be 的累计值较其汇水区表土的累计值小或相当 (图 2)。上述事实说明,黔中地区流域侵蚀较严重,表土中的⁷Be 可能随土粒搬运进入湖 底沉积物;滇西地区表层土粒的选择性侵蚀不明显。

Fig. 2 Inventories of ⁷Be in the sediments of Erhai Lake and Hongfeng Lake and their watersheds

3.3 ¹³⁷Cs 和⁷Be 在沉积物中散落蓄积的模式分析

大气散落核素在湖泊沉积物中的蓄积是大气散落、流域侵蚀和湖泊沉积共同作用的

第四纪册 第四纪册 2001 -	将
------------------	----------

结果。为认识核素散落蓄积的地区差异,尚需从流域侵蚀与湖泊沉积作用的耦合关系上 综合分析它们在沉积物中的累计特征。散落核素在湖泊沉积物中的蓄积既与其直接散落 有关、又受湖泊汇水区的水文地质条件和表土侵蚀的影响。笔者已就大气散落核素在流 域侵蚀和湖泊沉积间的关系建立示踪模型^[17,33]。本文利用该模型计算¹³⁷Cs和⁷Be在洱海 和红枫湖沉积物中的蓄积 – 散落比值,再根据沉积物中实测的累计值讨论其散落的地区 差异。表 2 中, λ 、为核素通过微粒沉降作用自湖水向沉积物迁移的初级迁移速率常数、 τ 、为核素通过微粒沉降作用的寄宿时间、f,及f、分别为核素在湖泊沉积物中蓄积的散 落影响因子和侵蚀影响因子、f为核素在沉积物中的蓄积 – 散落比值,I、为核素自大气散 落的累计值。

7	R Z	件」毋	ጥብ ይደ የሥላ በላ፤ ሀገር ተፖና ተመግሞ	CSTH	De 🖬 🗤	(= 100, 787 19	62011	异氧不	
Table 2	Im	lating	calculation results for	accum	nulation-p	precipitation	n ol	¹³⁷ Cs and	'Be in
			the sedments of Erha	a Lak	e and Ho	ngfeng La	ake		

了发动在根本之前的¹³小和²节,带和二带花楼子计算体用。

核素	湖伯名称	λ. /a	т. /d	ţ,	Ĵ.	$f_{\tau}[f]$	$f = f_r + f_c$	/Bq-cm
¹³⁷ Cs		0 18	2.05 103	0 32	U.17	19	N 49	11 U ± 11 B
	红枫湖	0 73	5.01×10^{2}	0. 19	0.81	02	f.00	0.37 ± 0.01
⁷ Be	洱海	2 [3	L 71 × 10*	0.28	0 05	56	0.33	0.07 ± 0.02
	红枫湖	10.01	3.65×10^{11}	0 40	0.62	06	1.02	0.08±0-01

* 模式计算中,固一液分配系数K:¹³⁷C、取4、f0³cm⁵·g⁻¹、引自文献[13]、⁷Be取5、f0⁴cm⁵·g⁻¹,引自文献[17]

通过模式分析可见:

(1)⁷Be 洱海沉积物中的蓄积以散落影响为主,散落 - 侵蚀影响因子的比值为 5.6;而红枫湖以侵蚀影响为主,散落 - 侵蚀影响因子的比值仅为 0.6。洱海的蓄积 - 散 落比值小,仅仅为 0.33;而红枫湖为 1.02、从而,计算得洱海和红枫湖的大气散落累计值 分别为(0.07±0.02) Bq/cm² 及(0 08±0.01) Bq/cm²。这就意味着⁷Be 在滇西与黔中地 区的大气散落通量相近。

(2)¹³⁷Cs 红枫湖沉积物的蓄积以侵蚀影响为主,侵蚀影响因子为散落影响因子的4.3倍;而洱海的蓄积受直接散落控制,其散落影响因子约为侵蚀影响因子的1.9倍, 模式计算的蓄积-散落比值为0.49。红枫湖沉积物的蓄积-散落比值约为洱海的2倍, 反映出侵蚀来源的重要影响。根据蓄积-散落比值关系,分别计算出洱海和红枫湖地区1986年以前¹³⁷Cs自大气散落的累计值为(0.11±0.01) Bq/cm² 及(0.37±0.01) Bq/cm²。 模拟计算说明,¹³⁷Cs在滇西地区的大气散落远小于黔中地区。

4 ¹³⁷Cs在滇西地区的散落被屏蔽

⁷Be 作为宇宙线成因的短寿命核素,具直接散落特征,其散落分布可能存在纬度效应 和海拔效应、在同一地区,⁷Be 自大气散落通量变化主要受降水影响^[32],其最大值出现在 夏天,可能高出冬春季节的几倍^[36]。瑞士⁷Be 的年均散落通量为 0.25Bq/(cm²·a)^{34.1};位

¹⁾ KUek (Kommission zur Überwachung der Radioaktivität)Bericht. 25 Jahre Radioaktivität Überwachung in der Schweiz 1982

于美国墨西哥湾的 Galveston,其⁷Be 的年均散落通量为 0.245 Bq/(cm²·a)^[32]。两地的纬度和海拔虽然有别,但是其年均散落通量相近。本项研究的沉积物样品采自夏秋季节,⁷Be 大气散落累计值可能偏高。云贵高原海拔较高,也可能导致⁷Be 大气散落累计值 偏高。但是,滇西与黔中两地区之间仅 700m 的海拔差异,尚未对⁷Be 大气散落累计值变 化产生明显的影响。模式计算出洱海与红枫湖沉积物中⁷Be 的大气散落累计值很接近 (见表 2)。

¹³⁷ Cs 是大气层核试验产生并在全球范围内扩散和散落的核素,其散落通量的变化受核试验强度、地区性和纬度效应影响。作为两个地区散落累计值对比的讨论,不涉及试验强度的问题。特别是洱海和红枫湖沉积物中¹³⁷ Cs 的垂直剖面与全球散落的时序变化一致。所以滇西和黔中地区¹³⁷ Cs 大气散落的差异不可能从核试验强度的变化来解释。滇西和黔中地区纬度相近且降水量相差仅 20%,¹³⁷ Cs 的大气散落也应相近。同样不可能由纬度效应来认识两地区之间¹³⁷ Cs 的散落变化。因此,滇西地区¹³⁷ Cs 的大气散落远小于黔中地区的现象(见表 2),只能从地区性的角度寻求答案。¹³⁷ Cs 作为一个全球性的污染扩散指标,系伴随西风带气流输送而全球扩散。特别是滇西地区因青藏隆起的影响,受印度洋西南季风的控制,全球大气物质传送有别于黔中地区。UNSCEAR 曾就¹³⁷ Cs 全球扩散散落累计值的区域分布给出模拟图示¹⁵。滇西和黔中地区正好分别位于模拟累计值的不同等值线区域。¹³⁷ Cs 散落的地区差异反映出气流输送过程中被屏蔽的现象,青藏隆起对滇西地区存在着全球性扩散大气污染物散落的屏蔽效应。

参考文献

- 1 Walker J C G. Carbon geodynamic cycle. Nature , 1983 , 303 ; 730 ~ 731
- 2 Berner R.A. A model for atmospheric CO₅ over Phanenesis time. American Journal of Science, 1991, 291: 339 376
- 3 Berner R.A. GEOCARB II: A revised midel of atmospheric CO₂ over Phanen-Apple time. American Journal of Science , 1994, **294**:56 ~ 91
- 4 Tajika E. Climate change during the last 150 million years: Reconstruction from a carbon cycle model. Earth and Planetary Science Letters, 1998, 160:695 ~ 707
- 5 François L M. Goddéns Y. Isotopic o instraints on the Cenozoic evolution of the carbon cycle. Chemical Geology , 1998, 145 (3~4); 177 ~ 212
- 6 万国江,徐义芳,李荪蓉等 云贵高原若十湖泊水库水化学组分研究,环境科学丛刊,1988,9(3);37~51
- 7 沈仁湘 洱海水位对环境的影响 见:云南大理白族自宙州洱海管理局、云南大理白族自治州科学技术委员会编 云南洱海科学论文集,昆明:云南民族出版社,1989 93~99
- 8 万国江,环境质量的地球化学原理,北京;中国环境科学出版社,1988,1-219
- 9 Santschi P.H. Radioisotopes in aquatic sciences. EAWAGINews (1983, (14-15):1-6
- 10 Wan G J, Appleby P G. Radionuclides in ecological systems In: Farina A ed. Perspectives in Ecology. NL: Backhuys of Leiden, 1999 - 369 ~ 379
- 11 Krishnaswami S, Lak D, Martin J M et al. Geochronology of lake sediments. Earth and Planetary Science Letters, 1971, 11:407 ~ 414
- 12 Krishnaswami S, Lal D. Radionuclide hmnochronology. In: Lerman A ed. Lakes: Chemistry , Geology , Physics. Berlin: Springer-Verlag, 1978. 153 ~ 177
- 13 Robbins J A.Edgington D N. Determination of recent sedimentation rates in Laki Michigan using ²⁴⁰ Pb and ¹¹⁷Cs. Geochemica et Cosmochimica Acta (1975), 39 (285 ~ 304)

1) Agudo E G. Global distribution of ¹³⁷Cs inputs for soil environ and sedimentation studies. 1995

	414	第	四	纪	研	寂	2001 年		
14	Pennington W. Cambray R S, Fisher 1973, 242: 324 ~ 326	ΕM	Observ	vations o	n lake se	ediments using fa	allout ¹²⁷ Cs as a tracer Nature		
15	Davis R B, Hess C T, Norten S A et	ul ¹¹	⁵⁷ Cs and	²⁰⁰ Pb d	ung of s	ediments from sol	(-water lakes in New England (U		
	$(S,A_{\rm c})$ and Scandinavia : A failure of	S. A.) and Scaudinavia: A failure of ¹³⁷ Cs dating. Chemical Geology, 1984, 44: 151 ~ 185							
16	万国江,P. 桑季,K 法任库忍等,场 360~365	生く	əreifen 尚	用新近沉	积物中的	൭഻ഀഀഀഀഀഀ൴及其	计年 环境科学学报、1985、(3)		
17	Wan G J, Santschi P H, Sturm M et	ul I	Natural (^{ар} РЬ, "	Be) and f	$[allow (1)^2 Cs]^{236}$	^{a,240} Pu, ⁴⁰ Sr) radionuclides as ge-		
	chemical tracers of sedimentation in C	Freife	nsee.Sw	ıtzerland	Chem	ral Grology , 198	7, 63: 181~195		
18	万国江,林文祝,黄荣贵等 红枫湖 [490~[493]	肌沉积	現物 型で	▶ 垂直音	面的计	年特征及侵蚀;	示踪 科学通报,1990, 35 (19)		
19	Ritchie J C, McHenry J R Applicatio	n of 1	radioactiv	e fallout	cesium-1	37 for measuring	g soil erosion and sediment accurou		
	lation rates and patterns; A review. J	บลาท	al Enerre	onnenta	$l \ Quality$, 1990 , 19 , 215 -	- 133		
20	万国江 ¹³⁷ Cs 及 ¹¹⁰ Pb _{er} 方法湖泊	沉积	计年研究	2.新进展	地球科	学进展,1995,1	10(2):188 ~ 192		
21	万国江。现代沉积年分辨的 ¹³⁷ Cs 计	年一	一只云雨	有洱海和	贵州红植	风湖为例 第四约	纪研究,1999,(1):73~80		
22	徐经意,万国江,王长生等,云南省)	卢沽福	胡、洱海明	现代沉积	物中型門	Ph、 ¹³⁷ C、的垂直	分布及其计年 湖泊科学,1999		
21	Santsahi PH Bolladdor S. Extroply:			`h	المعالية ال	alidur in the cours	renniert Tarran far ihr trabi a m		
2.)	plug of structure to the total and a	ien n		nemouy		Endes in the envi	Forment: I racers for the light of		
	$(5),510 \sim 51b$	queo	t gettile	nncai pr	RENNES	Environmental .	Science and Technology, 1966, 4.		
74	Robbus 1 A Fadie B 1 Berulium 7.	A 173	cor of car	sonal pa	etiolo teor	national dependenced	In Lake Michanny FCIS 1087 6		
	(45),957		cer or see	recura tea	I LICLE LI BI	laport processed	The case of the second second second		
75	万国汀 Santsch, PH Storm Matal	故自	计性核素	和纹理	中在对于	レ研究電士協業	共湖近建岩和速度 谢瑞化学		
	1986 (3). 259 ~ 270	04.3	111 I I I I I I I I I I I I I I I I I I	11123 14	עניידוא	二时九机工作木	<i>步时起</i> 代加苏运手,地林化于		
26	Schuler C. Wisland F. Santachi P.H. et)	A molut	raverstu	dy of rad	icrochdee in Laki	e Zutich Suntzerland, I., Company		
20	son of atmospheric and sedurentary	luves	uf ⁷ Be	10 Bz 21	орь, ²¹⁰ р	$\frac{-37}{2}$ C s	lownal of Gootherwal Research		
	$1991.96(179) \cdot 17.051 \sim 17.065$	nunc:		1161	10. 1	Cana (S.)	owner of menphysical research		
27	Wieland F. Santsohi P.H. Beer Let al	А	multurae	er studu	of radio	nu lides in Lake	Intich Switzerlands ? Resulton		
<u> </u>	times, removal processes and sediment	feen	sing Jo	urnal of	(mathhae	ical Research . 10	191.96(('9),17.067~ 17.080		
28	白占国,万国灯,王长生等,黔中贵)	រណ៍ព ផល	くちょうしん ひんしょう しんしょう しんしょ しんしょ	-nurey ⊈nat7R⊧é	南谷布姆	征及其侵蚀元	<u>踪研究</u> 白秋私受讲展 1007(
	(1):66 ~ 74		- w - 16	- (- 13 - 1	ען איר גע גי		www.ru 日が117 デルロル、1997。		
			_						

- 29 白占国,万 曦,万国江等 岩溶山区表土中⁷B∈.⁻³⁷C,²²⁰Ra和¹²⁸Ra的地球化学相分配及其侵蚀示踪意义 环境 科学学报,1997,17(4):407~411
- 30 白占国,万国江,宇宙线散落核赛 Be 表土迁移示踪原理 见:刘叔仪主编 物理化学力学进展(4) 北京:地震出版社,1996.33~45
- 31 白占国,万国江,宇宙线散落核素"Be在山区表土中的分布特征及侵蚀示踪原理 土壤学报,1998,35(2):266~275
- 32 Baskaran M, Coleman C H, Santschi P H. Atmospheric depositional fluxes of ⁷Be and ²¹⁰Pb at Galveston and College Station, Taxas. Journal of Geophysical Research, 1993, **98**(D11):20.555 ~ 20.571
- 33 万国江, Santschi P H. 瑞士 Greifen 湖沉积物中放射性核素累计值预测研究 地理科学, 1987, 7(4): 358~363
- 34 Turekian K K, Benninger L K, Dion E P. ⁷Be and ²¹⁰Pb total deposition fluxes at New Haven. Connecticut and at Bermuda. *Journal of Geophysical Research*, 1983, **88**(C9): 5411~5415

THE DIFFERENTIALS OF FALLOUT ¹³⁷Cs BETWEEN WESTERN YUNNAN AND CENTRAL GUIZHOU: IMPLICATION FOR THE BARRIER EFFECT OF QINGHAI-XIZANG UPLIFT ON GLOBAL ATMOSPHERIC POLLUTANTS IN YUNNAN-GUIZHOU PLATEAU

Wan Guojiang Bai Zhanguo² Liu Tungsheng⁴ Wang Shilu⁴

Chen Jingan^{*} Huang Ronggui

(DState Key Laboratory of Environmental Geochemistry , Institute of

Geochemistry, Chinese Academy of Sciences, Guiyang 550002;

Dikey Laboratory of Plant Natrition Research of Chinese Ministry of Agriculture , Institute of 50d and Pertilizer , Chinese Academy of Agricultural Sciences , Beining 100081;

Constitute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029)

Abstract

Yunnan-Guizhou Plateau, the middle tier on the eastern slope of Qinghai-Xizang Plateau, is a complex geomorphic unit with a large altitude gradient in the South Asia. Impacts of the Qinghai-Xizang uplift on the modern environment in the area mainly embody; (1) barrier effect of global atmospheric pollutants and detaining effect of local atmospheric pollutants;(2) enhancement of regional chemical weathering and altitude-related effect of physical weathering; (3) low-latitude and high-altitude effect of environmental geochemical process of surface earth. Lake sediments embrace materials originating not only from watershed but also from atmospheric deposition.¹³⁷Cs is an excellent tracer for watershed erosion and lake deposition. ⁷Be is an ideal tracer for seasonally transportation of environmental particles. Differentials of 7 Be/137 Cs in the top soils between western Yunnan and central Guizhou show different characteristics of ¹³⁷Cs and ⁷Be deposition-accumulation in the two regions. ⁷Be inventories in the sediments of Erhat Lake correspond to that in the soils of its watershed in the western Yunnan.⁷Be inventories in sediments of Hongfeng Lake are much higher than the average value in the soil profiles of its watershed. ¹³⁷Cs inventories in vediments of Hongfeng Lake is 7.1 times of the Ethai Lake. The model analysis indicated that ⁷Be atmospheric deposition in western Yunnan was similar to central Guizhou. Prior to 1986, ¹³⁷Cs inventories from atmospheric fallout in the western Yunnan and the central Guizhou were (0.11 ± 0.01) Bq/cm² and (0. 37 \pm 0.01) Bq/cm², respectively. This indicates that fallout ¹³⁷ Cs in the western Yunnan was much lower than that in the central Guizhou. The regional differentials of the¹³⁴ Cs fallout reflect that the uplift of Qinghai-Xizang Plateau would have a barrier effect on the precipitation of global atmospheric pollutants in the western Yunnan.

Key words deposition and accumulation of ¹³⁷Cs-⁷Be, barrier effect, Yunnan-Guizhou Plateau, Qinghai-Xizang uplift