Vol. 20, No. 3 Sept., 2000

埋藏后生作用对生物壳体⁸⁷Sr/⁸⁶Sr的影响研究*

p 588.2 p 593 刘秀明_王世杰 贾玉鹤 莆丽敏 化学国家重点实验室 贵阳 550002)

提 要 根据小渡口剖面 28 层有孔虫、介形虫、腹足类生物壳体的微观观察、微量元素及其比值、 ⁸⁷Sr^{,66}Sr与微量元素特征对比以及水 - 岩反应⁸⁷Sr^{,66}Sr的混合模式,显示生物壳体遭受了埋藏后生作用,但 对生物壳体原始的⁸⁷Sr^{,66}Sr比值基本没有改变或影响甚微,推测参与埋藏后生作用的流体与生物壳体具有 相近的 Sr 同位素组成或较悬殊的 Sr 含量。同时,实际研究表明评价和判别埋藏后生作用对生物壳体原始 ⁸⁷Sr^{,66}Sr比值影响的方法较多,但各有其局限性;合理研究方法应以壳体⁶⁷Sr^{,66}Sr比值与微观特征和其他地 球化学特征的对比来判别。

精词 埋藏后生作用 生物壳体 ⁸⁷Sr/⁸⁶Sr

2000年9月

沉积物或沉积岩中碳酸盐矿物和生物壳体 的⁸⁷Sr/⁸⁶Sr比值被广泛地应用于古环境研究,如 研究海相地层层序^[1~4]、反演地质历史时期的化 学风化速率[5~7]、古气候[8]、重建古海洋的演化 历史^[9,10]、阐明造山运动或冰期的时间和规 模[11,12],以及判别海相、过渡相、陆相环境[13~15] 等等。利用 Sr 同位素进行广泛的古环境研究的 基础和前提是碳酸盐矿物和生物壳体中的 ⁸⁷Sr/⁸⁶Sr比值必须是原始的,能真实地反映其沉 积水体的⁸⁷Sr/⁸⁶Sr比值^[16~18]。然而沉积物成岩 或未成岩其在地质过程中可能会遭受埋藏后生作 用(或称成岩作用)影响,可能会对碳酸盐和生物 壳体原始的 Sr 同位素组成进行改造。显然,在没 有很好了解埋藏后生作用对 Sr 同位素组成的影 响及程度之前,应用 Sr 同位素进行的古环境研究 是受限制的或是不可靠的^[19]。可见,判别和评价 埋藏后生作用对原始⁸⁷Sr/⁸⁶Sr信息的改造及程度 对应用⁸⁷Sr/⁸⁶Sr比值的古环境意义研究是至关重 要的。本文选取泥河湾盆地小渡口剖面 28 层有 孔虫及其共生的介形虫、腹足类壳体进行研究,判 断和评价埋藏后生作用对生物壳体 Sr 同位素组 成的影响及程度,试图为进一步利用生物壳体 Sr 同位素古环境意义研究作好铺垫。

* 国家自然科学基金(批准号:49673201)资助

题87/ 1886 祝秋光

1 样品制备与分析方法

本次工作对小渡口剖面含有孔虫化石的 28 层进行连续取样,采样间距为 25cm。取样品 1 000g,在蒸馏水中浸泡 24h 可自行散开。用 0.09mm 孔径的标准筛在蒸馏水中筛洗,筛取样 在 80~90℃烘干,称重。然后,用四氯化碳浮选 富集有孔虫化石。在双目镜下挑选与有孔虫共生 的外表洁净的介形虫和腹足类样品。所有化石样 品在测定前均在 H₂O₂ 中浸泡 1h,再用去离子水 和酒精反复漂洗三次。

将选好的生物壳体用 5% HAC 溶样离心蒸 干。用 1N HCl 转化为氯化物,蒸干。用 1NHCl 溶样后通过 Dowex-50W×8 树脂(200~400 筛 孔)柱,以 1N HCl 为流洗剂,头 30ml 丢掉,收集 '20mlSr 液。再重新通过 Dowex-50W×8 树脂 (100~200 筛孔)柱,对 Sr 进行再次纯化。处理 全过程 Sr 空白浓度为 5×10⁻⁹g。Sr 收集液蒸干 后在地质科学研究院同位素开放实验室 MAT-261 质谱仪上作 Sr 同位素比值测定。Sr 同位素 组成 均 按⁸⁸ Sr ⁶⁶ Sr = 8.375 21 校正,并以 NBS987 监测分析情况,NBS987 结果⁸⁷Sr ⁶⁶Sr = 0.710 296±18(2σ)。

分别将每个样品中选好 10 个有孔虫壳体、2 瓣介形虫壳体、1 片腹足类碎片的置于聚四氟乙 烯小杯中,用4 滴高纯 H₂O 沿壁边滴入,然后加1 滴 HNO₃,待泡冒尽后再加1 滴 HNO₃ 然后蒸干,再

ISSN 1000-4734 2000年1月收稿 2000年3月改回 第一作者简介 刘秀明 男 汉 1974年生 博士研究生 环 境地球化学专业

维普资讯 http://www.cqvip.com

315

加1滴 HNO₃,共加5滴 HNO₃,蒸干,加 Rh 标准溶 液至1ml 封样,在中国科学院地球化学研究所电感 偶合等离子体-质谱(ICP-MS)实验室测定 Ca、Sr、 Mn、Rb、Mg、Fe等微量元素,测试过程中空白浓度 分别为 Mg=0.049 8×10⁻⁶,Mn=0.77×10⁻⁹,其 它低于检测下限 $\frac{1}{2}$

为了对比,在小渡口对盆地内流经范围较大的具有(古)陆表水代表意义的桑干河河水进行了 Sr 同位素(测试方法同壳体⁸⁷Sr^{A6}Sr比值测定)及 Sr 含量(在中国科学院地球化学研究所原子吸收 光谱实验室测定)测试。

同时,对测试生物壳体样品在贵州师范大学 扫描电镜(SEM)实验室进行了 SEM 观察及与采 自上海东南的南汇县卢潮港人工堤内开挖的水渠 中采集的"Nonion shansiensis"有孔虫现生种样品 的对比检查。

2.1 微观特征

对在双目镜下观察干净的小渡口剖面有孔虫、 介形虫、腹足类壳体进行 SEM 观察,发现大部分壳 体内、外表明干净,在房室内表面孔隙结构明显,房 室壳保存有立柱状结构;部分样品与现生种相比 内、外表面较"脏",有重结晶、次生加大和溶解现 象,空隙内有其它物质充填,壁有重结晶现象。

2.2 地球化学特征

由表1可以看出,微量元素方面,除腹足类在 Mg、Mn含量与有孔虫、介形虫壳体存在明显差 异外,三类微体生物壳体微量元素特征基本一致 (Fe、Rb均未检测出);Sr同位素方面,有孔虫(0. 711 190~0.712 018)、介形虫(0.710 612~0.712 202)、腹足类(0.710 299~0.712 057)⁸⁷Sr/⁸⁶Sr比 值都显示有出超出测试误差范围的变化特征。

2 结 果

表1 小渡口剖面 28 层微体生物壳体及桑干河的Sr/MSr、微量元素及比值

Table 1. The ⁸⁷Sr/⁸⁶Sr ratios, trace elements and their ratios of microfescile. September Biyer in Xiaotukou

売体类型	CaCO ₃ /µg	Mg/10 ⁻⁶	Mn/10 ⁻⁶	Sr/10 ⁻⁶	Sr/Mn	⁸⁷ Sr / ⁸⁶ Sr
夏足类 28-7	438.9	206.4	58.24	883.7	15.17	0.711160±12#
廈足类 28-8	258.9	294.2	\$6.83	1391	24.47	0.710911 ± 17
腹足类 28-11	192.7	370.5	44.22	1 567	35.43	0.710 299±17
腹足类 28-12	190.1	473.3	69.26	1 437	20.74	0.711 141 ± 11
腹足类 28-14	476.4	206.5	\$2.03	1052	20.22	$0.711\ 111\pm 17$
廈足类 28-15	1 218	185.6	69.31	962.8	13.89	0.710 968±12
廈足类 28-16	1 237	172.5	95.12	1 344	14.13	0.711 272 ± 16
廈足类 28-17	1 095	157.1	72.12	1 059	14.68	0.712 057±14
介形虫 28-7	24.07	6 055	1 126	755.1	0.671	0.712 202 ± 21
介形虫 28-8	8.262	20 678	1 030	1 \$56	1.510	0.711 249±12
介形虫 28-11	33.21	\$ 690	1 492	1 791	1.200	0.710878 ± 14
介形虫 28-12	14.06	8 616	715.9	1 021	1.426	0.710 612 ± 15
介形虫 28-14	35,76	4 025	844 6	609.7	0.722	0.711 247 ± 11
介形虫 28-15	31.00	7 623	1 099	758.7	0.690	0.711 359±16
介形虫 28-16	30.21	5 321	1846	2 051	1.1 12	0.711 48 1 ± 14
介形虫 28-17	32.96	5 678	939.9	884.1	0.941	0.711 351±14
有孔虫 28-2	17.91	7 534	1 210	1 103	0 911	
有孔虫 28-3	19.61	6 088	789.9	1 088	1.377	0.711 616±13
有孔虫 28-5	17.93	6 658	863.9	1 014	1.174	0.711 594±15
有孔虫 28-6	20.85	6 357	742.8	950.6	1.279	
有孔虫 28-7	28.29	7 464	766.5	960.3	1.253	
有孔虫 28-9	33.37	6 651	696.3	1 055	1.515	$0.711\ 369 \pm 12$
有孔虫 28-10	26.13	5 717	622.5	987.8	1.587	
有孔虫 28-11	51.25	8 451	1 012	951 1	0.939	0.711 546±13
有孔虫 28-12	32.75	5 824	780.3	1 028	1.317	0.711 190±25
有孔虫 28-13	18.58	7 456	625.1	980.8	1.569	0.711 502 ± 15
有孔虫 28-15	36.64	11 624	1 162	1 314	1.130	0.711667 ± 10
有孔虫 28-16	26.87	13 058	1 297	1 012	0.781	0.712018 ± 14
有孔虫 28-17	24.12	6 865	610.1	1 070	1.754	$0.711\ 296 \pm 14$
桑干河				0.920		0.711508 ± 8

注; キ. 平均标准误差

2000年

报

根据表1各壳体的Sr、Mn含量数据及图1 可以看出腹足类 Mn 含量(44.22×10⁻⁶~72.12 ×10⁻⁶)不足 100×10⁻⁶,相对保持一致,Sr 含量 (883.7×10⁻⁶~1 567.3×10⁻⁶)变化较大。而有 孔虫则是 Sr 含量(950.6×10⁻⁶~1 103.3× 10⁻⁶)相对保持稳定, Mn 含量(610.13×10⁻⁶~ 1 296.91×10⁻⁶)变化较大。只有介形虫壳体 Sr 含量(609.7×10⁻⁶~2 051.6×10⁻⁶)和 Mn 含量 (462.8×10⁻⁶~1 845.7×10⁻⁶)都显现出较大的 变化特征,且可以粗略地分出部分壳体的 Sr 随 Mn 含量增大而增大,部分 Sr 随 Mn 含量减消而 增大两种趋势。在 Sr/Mn 比值方面,有孔虫、介 形虫、腹足类壳体分别为0.781~1.754,0.671~ 1.510,13.89~35.43,其中有孔虫、介形虫壳体 Sr/Mn 都>0.5, <2;腹足类 Sr/Mn 都远>2,大 于或极接近15。

Fig. 1. Sr-Mn plot of organic shells.

(3)

从⁸⁷Sr/⁸⁶Sr-Sr 图解(图 2a)中可以看出壳体 的⁸⁷Sr/⁸⁶Sr-Sr 含量没有大小对应关系,也 没出现⁸⁷Sr/⁸⁶Sr-Sr 有拟合成双曲线的趋势;在 ⁸⁷Sr/⁸⁶Sr-Mg 及⁸⁷Sr/⁸⁶Sr-Mn 图解(图 2b、图 2c) 中腹足类 Mg、Mn 含量相对较低,但其和有孔虫、 介形虫一样⁸⁷Sr/⁸⁶Sr比值与 Mg、Mn 的增减也没 有相关性。表明壳体的⁸⁷Sr/⁸⁶Sr比值不随 Sr、 Mg、Mn 的变化而变化。同时,⁸⁷Sr/⁸⁶Sr比值随 Sr/Mn 比值的增大而增大或减小的现象;各同层 或不同层壳体的⁸⁷Sr/⁸⁶Sr比值超出测试误差范围 的变化性,也说明了壳体 Sr 同位素特征没有出现 均一化的趋势。

此外,各壳体较低的 Rb 含量(低于检测下限)及放射性母体⁸⁷ Rb 较长的半衰期(T^{1/2}=4.7×10¹⁰年),对较年轻的地质体——小渡口剖面第四系生物壳体来说,壳体中⁸⁷ Rb 对⁸⁷ Sr 的贡献是可以忽略不计的。

3 水-岩反应的⁸⁷Sr/⁸⁶Sr混合模式

埋藏后生作用主要涉及到流体与沉积物之间 的相互作用,流体影响、制约着碳酸盐矿物和生物 壳体的溶解、重结晶及 Sr 同位素地球化学特征。 埋藏后生作用中的 Sr 同位素地球化学行为不同 于混合水体的⁶⁷Sr/⁶⁶Sr简单混合模式,其体现为 水-岩反应中的混合模式。

假设碳酸盐与流体的体系为开放体系,反应 达到平衡态,碳酸盐中的孔隙被流体充分浸满。 根据质量平衡原理,在体系中 Sr 含量 C^S。有如下 等式:

$$C_{o}^{Sr} = F(C_{1,o}^{Sr}) + (1 - F)(C_{s,o}^{Sr}) = F(C_{1,o}^{Sr} - C_{s,o}^{Sr}) + C_{s,o}^{Sr}$$
(1)

C?。----反应前流体的 Sr 含量

Cs-──反应前碳酸盐的 Sr 含量

F----系统中参与反应流体的重量百分数, 涉及到水-岩比:

在忽略了 Sr 同位素分馏作用影响情况下,体 系中⁸⁷Sr/⁶⁶Sr比值有等式(2)。根据推导及省 略^[20,21](2)式可由式(3)代替;由(3)可得在成岩 后生作用中原始⁸⁷Sr/⁸⁶Sr比值的改变量式(4)。 (⁸⁷Sr/⁸⁶Sr)。=

$$\frac{(\chi^{87} \mathrm{Sr}_{\mathrm{f},o})(C_{\mathrm{f},o}^{\mathrm{Sr}})F + (\chi^{87} \mathrm{Sr}_{\mathrm{s},o})(C_{\mathrm{s},o}^{\mathrm{Sr}})(1-F)}{(\chi^{86} \mathrm{Sr}_{\mathrm{f},o})(C_{\mathrm{f},o}^{\mathrm{Sr}})F + (\chi^{86} \mathrm{Sr}_{\mathrm{s},o})(C_{\mathrm{s},o}^{\mathrm{Sr}})(1-F)}$$
(2)

$$\frac{(^{87}\text{Sr}/^{86}\text{Sr})_{o}}{(C_{f,o}^{Sr})F + (^{87}\text{Sr}/^{86}\text{Sr})_{s,o}(C_{s,o}^{Sr})(1-F)}{(C_{f,o}^{Sr})F + (C_{s,o}^{Sr})(1-F)}$$

$$\frac{(^{87}\text{Sr}/^{86}\text{Sr})_{s=o} = (^{87}\text{Sr}/^{86}\text{Sr})_{f,o} - \frac{(^{87}\text{Sr}/^{86}\text{Sr})_{f,o}(C\frac{\text{Sr}}{f,o})F + (^{87}\text{Sr}/^{86}\text{Sr})_{s,o}(C\frac{\text{Sr}}{s_{s,o}})(1-F)}{(C\frac{\text{Sr}}{f,o})F + (C\frac{\text{Sr}}{s_{s,o}})(1-F)}$$

 $(^{87}Sr/^{86}Sr)_{3-0} =$

$$\frac{(C_{\rm f,o}^{\rm Sr})F|(^{87}{\rm Sr}/^{86}{\rm Sr})_{\rm s,o} - (^{87}{\rm Sr}/^{86}{\rm Sr})_{\rm f,o}|}{F(C_{\rm f,o}^{\rm Sr} - C_{\rm s,o}^{\rm Sr}) + C_{\rm s,o}^{\rm Sr}}$$
(4)

*X*⁸⁷Sr_{f,o},*X*⁸⁶Sr_{f,o}—一反应前流体的⁸⁷Sr和 ⁸⁶Sr摩尔分数;

*X*⁸⁷Sr_{s.o}, *X*⁸⁶Sr_{s.o}——反应前碳酸盐的⁸⁷Sr 和⁶⁶Sr鹰尔分数:

(⁸⁷Sr/⁸⁶Sr)_{f,o}——反应前流体的⁸⁷Sr/⁸⁶Sr比 值;

(⁸⁷Sr/⁸⁶Sr)_{s,o}——反应前碳酸盐的⁸⁷Sr/⁸⁶Sr 比值:

(⁸⁷ Sr/⁸⁶ Sr)。——体系达到平衡时⁸⁷ Sr/⁸⁶ Sr 比值;

(⁸⁷Sr/⁸⁶Sr)_{s-o}-----碳酸盐原始⁸⁷Sr/⁸⁶Sr 比值 的改变量。

当流体的⁸⁷Sr/⁸⁶Sr比值小于原始碳酸盐 ⁸⁷Sr/⁸⁶Sr比值时,碳酸盐⁸⁷Sr/⁸⁶Sr比值的改变量为 正值;反之,则为负值。

虽然在地质过程中制约因素较多,但从式(1) 及纯理想混合模式(4)式中可以看出碳酸盐原始 ⁸⁷Sr/⁶⁶Sr的改变量取决于参与成岩作用的流体与 碳酸盐之间⁸⁷Sr/⁶⁶Sr比值及 Sr 含量的差异性,其 中两者的 Sr 含量的差异分两种情况。①当流体 的 Sr 含量大于碳酸盐的 Sr 含量时,差值越小对 原始的⁸⁷Sr/⁶⁶Sr比值的改变量就越小;差值越大, 对原始⁸⁷Sr/⁶⁶Sr比值改变越大。②当流体的 Sr 含量小于碳酸盐的 Sr 含量时,差值越小对原始的 ⁸⁷Sr/⁶⁶Sr比值的改变量就越大。

4 讨 论

SEM 是一种放大倍数较大的、可进行微区观察的技术手段,可以清晰地观察到壳体矿物的溶解-重结晶现象和生物壳体的结构、房室孔隙充填及内壁的次生长情况。在光学镜下挑选的"干净"的壳体 SEM 微观特征不仅表明小渡口剖面 28 层部分生物壳体遭受了埋藏后生作用的影响,而且说明光学显微镜的放大倍数较低,仅能粗略地判

2000年

别壳体的干净程度。其它实际研究也得出相同的 结论^[22]:在光学显微镜下观察为较干净的样品, 用 SEM 检查却发现重结晶、次生长现象明显;在 光学显微镜下观察为很"脏"的样品,用 SEM 检 查可能为孔隙中空、次生长微弱。有研究^[23]认为 壳体在经过后生作用后仍可保持原始的⁸⁷Sr /⁸⁶Sr 值;同时,也有相反的研究结果,如由于重结晶作 用没有产生物理挤压、或胶结物存在于壁孔中,用 SEM 观察认为是"干净"的壳体也是有可能受到 了成岩后生作用影响^[24],其⁸⁷Sr /⁸⁶Sr值仍可能出 现较大的偏差(大于分析测试的误差或不确定 性)^[16]。

一般认为碳酸盐的埋藏后生作用会导致 Sr、 Na 的亏损及 Fe、Mn 的富集^[25]。小渡口剖面 28 层各生物壳体仅达到 Sr/Mn>0.5^[23]的未受埋藏 后生作用影响的最低判别标准,只有腹足类全部 达到了 Sr/Mn>2^[23]的判别标准,部分腹足类达 到了 Montanez 等^[26]提出的 Sr/Mn>15 的判别 标准。在 Mn 含量方面,除了腹足类,有孔虫、介 形虫壳体的 Mn 含量远没达到小于 300×10⁻⁶的 判别埋藏后生作用影响标准^[23]。仅根据这些微 量元素指标来判断,生物壳体尤其是有孔虫、介形 虫可能受到了埋藏后生作用的影响。然而,除了 介形虫类部分壳体有 Mn 高 Sr 低的特征,其它壳 体 Mn 和 Sr 没有这种对应关系,甚至部分介形虫 壳体出现了 Mn 高 Sr 高的现象(图1)。

由上可见,纯粹的微观观察和微量元素及比 值的分析对壳体原始⁸⁷Sr/⁸⁶Sr比值改造及程度是 无法作出直接判断和评价的,因为微量元素的改 变并不一定意味着⁸⁷Sr/⁸⁶Sr比值的变化,如次生 方解石中的 Sr 若仅来自原生矿物的溶解作用,那 么其⁸⁷Sr/⁸⁶Sr比值是不变的^[22];同时,微量元素 保持相对稳定并不一定意味着原始⁸⁷Sr/⁸⁶Sr比值 不受影响^[16]。水一岩反应的⁸⁷Sr/⁸⁶Sr的混合模 式(式4)也说明了壳体的⁸⁷Sr/⁸⁶Sr 组成受埋藏后 生作用影响及程度取决于参与作用的流体与壳体 之间 Sr 及 Sr 同位素的差异性,与其它元素的地 球化学行为没有必然的关联。因此,判断埋藏后 生作用对壳体 Sr 同位素组成的合理方法还得针 对壳体⁸⁷Sr/⁸⁶Sr比值本身进行对比^[22]。图 2 中 ⁸⁷Sr/⁸⁶Sr - Sr 图解、⁸⁷Sr/⁸⁶Sr - Mg 图解、 ⁸⁷Sr/⁸⁶Sr-Mn 图解说明,生物壳体的⁸⁷Sr/⁸⁶Sr比值 与Sr、Mg、Mn含量没有对应关系,也就是说没有 出现随 Sr、Mn 含量的增大壳体87 Sr/86 Sr比值减小

或增大的规律性;⁸⁷Sr/⁸⁶Sr-Sr 图解中壳体也没出 现⁸⁷Sr/⁸⁶Sr值有拟合成双曲线的趋势,与经历了 埋藏后生作用之 Sr 同位素组成遭受改变的现象 不同^[17]。同时,⁸⁷Sr/⁸⁶Sr-Sr/Mn 图解(图 2d)上 没有显现出生物壳体⁸⁷Sr/⁸⁶Sr比值随 Sr/Mn 指标 值的下降而减小的特征。生物壳体的⁶⁷Sr/⁸⁶Sr比 值超出误差范围的变化性,也与遭受了埋藏后生 作用后⁸⁷Sr/⁸⁶Sr比值趋向均一的特征不相一致。 以上说明了生物壳体 Sr 同位素组成没有遭受埋 藏后生作用影响或参与埋藏有时后生作用的流体 ⁸⁷Sr/⁸⁶Sr比值与壳体原始⁸⁷Sr/⁸⁶Sr比值接近。水-岩反应的⁶⁷Sr/⁸⁶Sr理想模式虽然不能实际定量求 解埋藏后生作用对壳体⁸⁷Sr/⁸⁶Sr比值的改变量, 但结合小渡口剖面 28 层生物壳体的高 Sr 含量以 及生物壳体赋存层位及区域地质特征分析[27],有 如下情况:①参与埋藏后生作用流体为海水、同期 海水较壳体有较大的⁸⁷Sr/⁸⁶Sr比值差别(同期海 水⁸⁷Sr/⁸⁶Sr比值为0.709^[28]),但海水相对于壳体 具有较低的 Sr 含量值 $(8 \times 10^{-6})^{[28]}$,这种埋藏后 生作用对壳体的⁸⁷Sr/⁸⁶Sr组成影响其微;②参与 埋藏后生作用流体为(古)陆表水,其不但 Sr 含量 (0.920×10⁻⁶)与壳体有更为悬殊的差异,而且 有着较相近的⁸⁷Sr/⁸⁶Sr比值(桑干河⁸⁷Sr/⁸⁶Sr比值 为0.711 508),也说明这种埋藏后生作用对壳体 的⁸⁷Sr/⁸⁶Sr比值影响是微弱的。

综上,小渡口剖面 28 层微体生物壳体遭受了 埋藏后生作用的改造,但壳体⁸⁷Sr/⁶⁶Sr比值信息 仍基本保存。

5 小 结

(1)碳酸盐水-岩反应的⁸⁷Sr^{/66}Sr混合模式及 ⁸⁷Sr^{/66}Sr-微量及微量元素比值的各种图解说明 了泥河湾盆地小渡口剖面 28 层微体生物-有孔-虫、介形虫、腹足类壳体遭受到了不同程度的埋藏 后生作用影响,但其⁸⁷Sr^{/66}Sr比值原始信息基本保 存。参与埋藏后生作用的流体与生物壳体具有相 近 Sr 同位素特征或为具有比较悬殊的低 Sr 含量。

(2)通过微观特征、微量元素及比值、 ⁸⁷Sr/⁴⁶Sr-微量元素及比值的对比研究表明,无论 是微观观察还是微量元素指标判别,都无法直接、 单独地判别埋藏后生作用对壳体⁸⁷Sr/⁸⁶Sr的影响 及程度,其仅能作为判断是否遭受了埋藏(成岩) 后生作用的一种参考。合理方法应是直接针 ⁸⁷Sr/⁶⁶Sr比值本身,以壳体⁸⁷Sr/⁶⁶Sr比值与其他微

维普资讯 http://www.cqvip.com

319

观、地球化学特征的对比来判别埋藏后生作用对 壳体⁸⁷Sr/⁴⁶Sr比值的影响及程度。

参考文献

- 1 Burke W H, Denison R E and Hetherington E A, et al. Variation of seawater 87 Sr/86 Sr through Phanerozoic. Geology, 1982, 10:516~519
- 2 Faure G. The marche-strontium geochronometer. In: Odin, G.S. (Ed.), Numerical Dating in Stratigraphy. Woley, 1:73~79
- 3 Farrell J W, Clenens S C and Gromet L P. Improved chronostratigraphic reference curve of Late Neogene seawater ⁸⁷Sr^{,66}Sr. Geology, 1982,23:403~406
- 4 Patterson R T, Blenkinsop J and Cavazza W. Planktic foraminiferal biostratigraphy and ⁸⁷Sr /⁸⁶Sr isotopic stratigraphy of the Oligocene-to-Pleistocene sedimentary sequence in the southeastern Calabrian microplate, southern Italy. J. Paleontol., 1995,69;7~20
- 5 Capo R C and Depaolo D J. Seawater strontium isotopic variations; 2.5 Ma to the present. Science, 1990, 249:51~55
- 6 Palmer H t, Edmond J M. Controls over the smontium isotope composition of river water. Geochim. Cosmochim. Acta, 1992, 56:2099~ 2111
- 7 Richter F M, Rowley D B and Depaolo D J. Sr isotopic evolution of seawater: the role of tectonics. Earth Planet. Sci. Lett., 1992.109: 11~23
- 8 Azrny K, Veizer J and Wenzel B, et al. Silurian strontium isotope stratigraphy. CSA Bulletin, 1999, 111(4):475~483
- 9 Veizer J. Strontium isotopes in seswater through time. Annual Reviews of Earth and Planetary Science. 1989, 17:141~167
- 10 McArthur J M. recent trends in strontium isotope stratigraphy. Terra Nova, 1994,6:331~358
- 11 Raymo M E, Ruddiman W F and Froelich P N. Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology, 1988, 16:649~653
- 12 Hodell D A, Mueller P A and Garrido J R. Variation in the strontium isotopic composition of seawater during the Neogene. Geology, 1991, 19:24~27
- 13 Holmden C, Creaser R A and Muchlenbachs K. Palaeosalinities in ancient brackish water systems determined by ⁸⁷Sr/⁶⁶Sr ratios in carbonate fossils: A case study from the wester Canada sedimentary basin. *Geochim. Cosmochim. Acta*, 1997,61(10):2105~2118
- 14 Reinhardt E G, Stanley D J and Patterson R T. Strontium isotopic palaeonological method as a high-resolution paleosalinity tool for lagoonal environments. *Geology*, 1998,26(11):1003~1006
- 15 Resenthal Y, Katz A and Tchernov E. The reconstruction of quaternary freshwater lales from the chemical and isotope composition of gastropod shell: the Dead Sea Rift. Palaeogeography, Palaeoclimatology, Palaeocology, 1989, 74:241~253
- 16 Banner J L and Kaufman J. The isotopec record of ocean chemistry and diagenesis preserved in non-luminescent brachiopods from Mississippian carbonate rocks. *Illionois and Missouri*: Geological Society of America Bulltin, 1994,106:1074~1082
- 17 Clauer N, Chaudhuri S and Subramanium R. Strontium isotopes as indicators of diagenetic recrystallization scales within carbonate rocks. Chemical Geology, 1989,80:27~34
- 18 Gao G and Land L S. Geochemistry of Cambro-Ordovician Arbuckle limestone, Oklahoma: Implications for diagenetic δ¹⁸O alteration and secular δ¹³C and ⁸⁷Sr/⁶⁶Sr variation. Geochim. Cosmochim. Acta., 1991,55;2911~2920
- 19 Richter F M and Depaolo D J. Diagenesis and Sr isotopic evolution of seawater using data from DSDP 590B and 575. Earth and Planetary Science Letters, 1988,90:382~394
- 20 沈渭洲等.稳定同位素地质.北京:原子能出版社,1987:247
- 21 Baner J L and Hanson G N. Calculation of simultaneous isotopic and trace variations during water-rock interaction with applications to carbonate diagenesis. Geochim. Cosmochim. Acta., 1990, 54:3123~3137
- 22 Bralower T J, Fullagar P D and Paull C K, et al. Mid-Cretaceous strontium-isotope stratigraphy of deep-sea sections. GAS Bulletin, 1997, 109(10): 1421~1442
- 23 Denison R E, Koepnick R B and Fletcher A, et al. Criteria for the retention of original seawater ⁸⁷Sr/⁸⁶Sr in ancient shelf limestones. Chemical Geology, 1994,112:131~143
- 24 Mitchell S F, Ball J P and Crowley S F, et al. Isotope data from Cretaceous chalks and foraminifera: Environmental or diagenetic signals? Geology, 1997,25(8):691~694
- Veizer J. Chemical diagenesis of carbonates: Theor and plication of trace element technique. In Stable Isotope in Sedimentary Geology (ed. M. A. Arthur et al.), SEPM Short Course: 3.1~3.100
- 26 Montanez I P, Banner J L and Osleger D A, et al. Integrated Sr isotope variation and sea-level history of Middle to Upper Cambrian platform carbonates: Implications for the evolution of Cambrian seawater ³⁷Sr/⁶⁶Sr. Geology, 1996,24(10):917~920
- 27 王世杰,刘秀明,贾玉鹤等. 泥河湾盆地第四系有孔虫化石群锶同位素及其古环境意义. 第四纪研究,2000,20(3):302
- 28 Palmer M R, Edmond J M. The strontium isotopic budget of the modern ocean. Earth Planet. Sci. Lett., 1989,92:11~26

THE EFFECT OF DIAGENESIS ON ⁸⁷Sr /⁸⁶Sr RATIOS IN ORGANIC SHELLS

Liu Xiuming Wang Shijie Jia Yuhe Dong Limin

(State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002)

Abstract: The subtle difference in texture detected by SEM and trace element concentrations of the fossil samples of foraminifera, ostracode, gastropod from the 28th bed of the Xiaodukou profile in Nihewan, Hebei, shows that some modifications of organic shells result from diagenetic alteration. However, the model of water-rock interaction implies that the modification of strontium isotope is dependent on the differences in strontium contents and ⁸⁷Sr/⁶⁶Sr ratios between fluids and organic shells during water-rock interaction. The diagrams of Sr-Mn, ⁸⁷Sr/⁶⁶Sr-Sr, ⁸⁷Sr/⁶⁶Sr-Mn, ⁸⁷Sr/⁶⁶Sr-1/Sr indicate that the Xiaodukou fossil shells record the original ⁸⁷Sr/⁶⁶Sr ratios. Meanwhile, some criteria with shortcomings are not always the reliable indicators. The ⁸⁷Sr/⁶⁶Sr ratios of shells compared with textural and other geochemical methods may be a sound criteria to evaluate the effect of diagenetic alteration on ⁸⁷Sr/⁶⁶Sr ratios in organic shells. **Key words:** diagenesis; organic shell; ⁸⁷Sr/⁶⁶Sr