ACTA SEDIMENTOLOGICA SINICA

Vol. 21 No. 4 Dec. 2003

文章编号:1000-0550(2003)04-0619-08

中国早古生代若干高硒黑色岩系中层状硅质 岩的地球化学特征及其成因意义®

温汉捷1 要愉卓¹ 凌宏文1 于柄松2 张贵山1 1(中国科学院地球化学研究所 贵阳 550002) 2(中国地质大学 北京 100083)

摘 要 在中国早古生代若干高硒黑色岩系中发育有数层的厚度不等的层状硅质岩, SiO, 含量一般在 90%以上,岩 石富 Fe,相对贫 Mn、Al、Ti。亲石元素大量亏损,但富典型的热水沉积指示元素 Ba、As、Sb,也有一定的铂族元素 (PGE)的异常,稀土元素的配分模式呈左倾,有明显的 Ce 的负异常和轻微的 Eu 的正异常。890Si 值变化范围为 -0.7‰-1.2‰,8¹⁸O 值变化范围为 17.6‰-29.0‰。硅质岩的地球化学表明其为热水沉积作用的产物。文章最后 讨论了热水成因硅质岩的形成与硒富集的关系,认为形成硅质岩的构造环境可能是地壳深部 Se 得以上升到浅部聚集 的前提,而含硅热液则可能是硒的良好的"溶剂"。

关键词 层状硅质岩 硒 黑色岩系 热水沉积 第一作者简介 温汉捷 男 1971 年出生 研究员 地球化学 中图分类号 P595 文献标识码 A

1 引言

黑色岩系是指含硫化物(黄铁矿为主)和有机质较 多(Corg>1%)的暗色硅质岩、泥质岩和碳酸盐岩的组 合。近年来的工作表明,在我国早古生代广布的黑色 岩系中有一系列的高硒地层的存在,如川甘交界的拉 尔玛地区、陕西的紫阳-- 岚皋地区、湘西北地区、鄂西 地区、黔西南地区以及塔里木盆地北部的乌什一阿克 苏一带,个别地区已达到一定的工业富集,如拉尔玛硒 一金矿床。在这些高硒地层中,除了硒的富集外,还有 大量其他元素的富集,如"黑色岩系"中比较特征的变 价元素 V、U、P、Ni、Mo 等,还有典型的热水沉积指示 元素 As、Ba、Sb 等,也有非正常沉积的元素 Au、PGE 等,总体上表现为多元素、非正常的元素组合[1]。显 然,高硒地层中多元素的富集通过正常的沉积途径是 无法达到的。值得注意的是,在这些高硒地层中均有 一层或多层的硅质岩的存在。关于硅质岩的成因,目 前的观点主要有(1)交代成因,即SiO。交代灰岩或陆 源细粒碎屑岩;(2)生物成因,即生物吸收海水中的 SiO₂ 形成富硅生物,这些生物死亡后堆积在海底而分 解,经化学沉淀形成硅质岩;(3)火山来源,火山喷发物 质,经风化、水解形成可溶或胶态的SiO2,达到饱和时 沉淀形成硅质岩;(4)热水成因[2~4]。那么,这些层状 硅质岩的成因与黑色岩系中多元素的富集,特别是与

硒的富集是否存在内在的耦合关系研究,可能是解决 黑色岩系中元素富集的一个重要途径和思路。本文将 通过对中国早古生代高硒黑色岩系中层状硅质岩的地 球化学特征的综合研究,来探讨其成因及其意义。

高硒地层的分布及其岩性组合

中国典型的早古生代高硒地层包括:(1)西秦岭拉 尔玛下寒武统高硒地层:本区下寒武统太阳顶群硒的 背景值为 5.47×10⁻⁶,发育的岩石主要有硅质岩、板 岩,硒含量分别达到 8.70×10^{-6} 和 3.05×10^{-6} 。下寒 武统地层剖面厚度约为 1300 余米, 硅质岩占剖面厚度 的50%~80%, 硅质岩按结构一成因分类法可划分为 球粒硅质岩、泥晶硅质岩和变晶硅质岩, 硅质岩中均含 有1%~2%的有机碳;(2)东秦岭紫阳、岚皋下寒武统 高硒地层:紫阳、岚皋寒武系地层中有一定的硒富集 (包括鲁家坪组、剪竹坝组)。从岩性看,板岩中的硒含 量较高,为 $3.89 \times 10^{-6} (0.1 \times 10^{-6} \sim 24.75 \times 10^{-6})$, 其次为硅质岩,为 2.86 × 10⁻⁶(0.99 × 10⁻⁶ ~ 4.73 × 10-6), 硅质岩重要分布在剖面的底部, 为黑灰色块状 硅质岩,出露厚度约为 18.5 m;(3)湘西北地区下寒武 统高硒地层:湘西北下寒武统牛蹄塘组由三种岩类组 成:①磷块岩层,其中含硒 10×10⁻⁶;②含磷结核碳硅 质页岩,含硒 40×10^{-6} ;③黑色碳质硅质岩,含硒 $20 \times$ 10^{-6} , 硅质岩呈层状或似层状分布, 厚度约 $0.8 \sim 1.3$

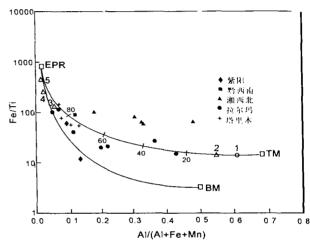
① 国家自然科学基金项目(批准号:60633110,40003008)资助 收稿日期:2002-09-09 收修改稿日期:2002-12-25

m不等,分布上受断裂控制,岩石类型有块状硅质岩、 球粒硅质岩和条带硅质岩[5];(4)鄂西地区寒武系高 硒地层:下寒武统水井沱组为一套含碳硅质岩夹碳质 页岩的岩性组合,其中含黄铁矿及磷质结核,硒平均 含量为 34.64×10⁻⁶(6.60×10⁻⁶~59.47×10⁻⁶, 硅 质岩分布在剖面底部,为含碳硅质岩,出露厚度约为 5.96 m。(5) 塔里木地区下寒武统高硒地层: 主要分 布在塔里木盆地北部乌什—阿克苏—带,向南到巴楚 隆起地区。这套地层在塔里木盆地北部,称为玉尔吐 斯组,层位是下寒武统底部,平行不整合覆于震旦系之 上,根据测试,硒含量变化于 $0.64 \times 10^{-6} \sim 91.1 \times$ 10⁻⁶,平均25.2×10⁻⁶。硅质岩分布于剖面下部,为 含磷硅质岩和泥岩互层,中上部为藻屑灰岩、瘤状灰岩 等,剖面厚度为8~35 m;(6)湘黔地区寒武系高硒地 层:湘黔地区下寒武统的留茶坡组,岩性组合为黑色泥 岩、页岩夹暗色薄层硅质岩,局部夹重晶石结核和透镜 体,硒含量平均为91.7×10⁻⁶,硅质岩呈薄层状产出, 整个剖面硅质岩厚度约为几十厘米到几米,厚度变化 较大。

3 样品选择和分析

样品分别选自拉尔玛、紫阳—岚皋、湘西北、黔西南、塔里木下寒武统高硒地层的层状硅质岩,硅质岩常量元素和微量元素在中国科学院地球化学研究所测试,常量元素用湿化学方法测定,微量元素在 Finnigan MAT 公司 ELEMENT 型高分辨率等离子质谱仪(ICP-MS)上进行测试,Se 用原子荧光法测定。硅、氧同位素在中国地质科学院矿产资源研究所测试(MAT-251EM 型质谱计),硅同位素分析精度±0.1‰,氧同位素分析精度±0.2‰。

4 硅质岩的地球化学特征


4.1 硅质岩的岩石化学组成

几个典型高硒地层中层状硅质岩的化学成分见表 1。可以看到, SiO_2 的含量很高,介于 83. 38% \sim 98% 之间,平均高达 93. 67%,个别样品的 SiO_2 含量偏低,可能主要是硅质岩中混有少量的粘土矿物、碳酸盐矿物和磷酸盐矿物。除 SiO_2 外,其它氧化物含量均很低,其中 $FeO_xFe_2O_3$ 含量相对富集,而 $Al_2O_3_xTiO_2_x$ MgO、MnO含量则相对较低。

硅质岩的 Fe、Mn、Al、Ti 是判别硅质岩成因的重要标志,这归因于 Fe、Mn 的富集主要可能与热水沉积作用的存在有关,而 Al、Ti 则与陆源碎屑物质的参与有关^[7]。Bostrom 和王东安根据硅质岩的不同组分比值给出了判别指标(表 1)^[8,9]。从这些判别指标可以

判断,几个典型高硒地层中层状硅质岩均属热水沉积成因。值得注意的是,层状硅质岩中 Mn 含量均偏低,这可能归因于层状硅质岩的产出环境均为裂谷或裂陷盆地,而与大洋环境中产出的热水沉积物有所不同。

在 Fe/Ti—Al/(Al+Fe+Mn)图解上可以看出,除少部分硅质岩样品靠近陆源物质沉积物端元外,绝大部分样品均趋向于 EPR(东太平洋洋隆热水沉积物)端元,可推测硅质岩主要是热水沉积的产物,当然也不排除部分陆源物质的加入,这与地质事实是相吻合的(图 1)。从 Fe-Al-Mn 图解可以看出,除少量样品(2个)落在热水成因硅质岩区(B区)外,其余样品均在热水成因硅质岩的范围之内(图 2)。

1.生物成因硅质岩;2.平均远洋粘土; 3.海渊热水沉积物;4.热水沉积物; BM:生物成因端元沉积物;TM:陆源物质端元沉积物; EPR:东太平洋洋隆热水端元沉积物。

图 1 Fe/Ti-Al(Al+Fe+Mn)图解(底图据王东安,1995)
Fig. 1 Fe/Ti-Al(Al+Fe+Mn) diagram
(Base map from Wang Dong-an, 1995)

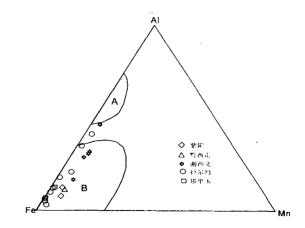


图 2 Al-Fe-Mn 三角图解(底图据 Adachi M 等,1986) Fig. 2 Triangle diagram of Al-Fe-Mn of cherts (modified from Adachi M, et al.,1986)

621

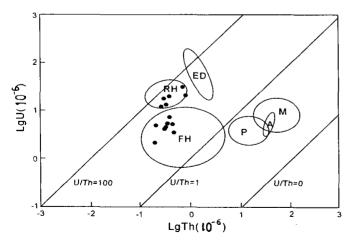
表 1 硅质岩化学成分(%)

Table 1 Chemical composition of cherts(%)

b	1	土	五	Ę.	Al-O	TiO	FeO	Fe,O3	K2O	Na ₂ O	C ₂	MgO	MnO	P ₂ O ₅	烧失量	总计
対区	#4 2	在日本をおけます	省の事の事の	05 01	01 0	000	-	80	0.07	0.03	0.3	0.2	0.05	0.04	2.21	60.66
存	<u> </u>	召唤柱内石	1000年100日	25.01	0.17			9	10	0 03	0 0	-	0.07	0.03	2.99	99.24
H.	Ej-16	含碳硅质岩	鲁家坪组	24.56	0.14	0.02	11.0	0.69	01.10	20.0	7:0	22	0 12	0.071	3. 42	100.19
黔西南	4.9	硅质岩	留茶坡组	93.61	0.3	0.05	08.50	0.60	0.003	0.045			3			11 00
	G-2-4	条带状硅质岩	牛蹄塘组	95.28	98.0	0.024		1.23	0.188	0.125	0.04	0.088	0.125	0.33		77.11
	F.2.3	条带状硅质岩	牛蹄塘组	90.25	0.74	0.02		1.075	0.186	0.04	3.505	0.085	0.11	2.56		18.57
老用卡	6.2.3	拉米祥 盾岩	牛蹄塘组	95.11	0.72	0.017		1.178	0.158	0.028	1.737	0.059	0.1	1.38		100.49
	3 2 2	大公社人工	牛蹄塘组	94	0.51	0.019		1.655	0.115	0.053	0.494	0.154	0.147	0.31		97.46
	77.5	火火剂仪占据非种种	十 縣 華 紀	83 38	1.83	0.025		1.435	0.525	0.027	6.403	0.125	0.095	5.65		99.22
	0-7-1	4.4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	全核组	97.15	0.1	0.018	99.0	0.81	0.092	0.039	0.31	0.054	0.037	0.031	0.72	100.05
	A CARE	火水缸灰台土等并用	** ** ** ** ** ** ** ** ** ** ** ** **	92 79	0.26	0.037	0.48	0.15	0.043	0.04		0.11	0.037	0.085	0.79	100.02
	C O	火火焰灰石土谷存在	40万四年		0.1	0.011	0.76	0.24	0.045	0.096	0.45	0.089	0.006	0.015	0.48	100.29
1	wq-9	火火车双右士士车车车	有不信的	96.84	0.21	0.037	96.0	0.23	0.035	0.035	0.48	0.052	0.005	0.085	0.98	99.95
拉尔玛	wq-11	火火年以右	4 台名 名	07.05	0.35	0 064	0.87	0.14	0.072	0.047	9.0	0.11	900.0	0.071	0.99	100.38
	wq-12	火水低风石 石字群用型	4 4 4 4 4 4 4 4 4 4 4 4 4 4	94 28	1 33	0.075	0.79	0.88	0.08	0.045	0.61	0.071	0.053	0.031	1.37	99.62
	<u>:</u> :	灰水柱灰石井地井	4 左 4 女 4 女 4 女 4 女 4 女 4 女 4 女 4 女 4 女	8	0 77	0.058	0.34	0.38	0.1	0.037	0.33	0.077	0.039	0.081	2.05	100.30
	4.7	火火驻灰台	工作中的研	80 17	95 0	0 074	1 03	2.57	0.17	0.11	1.22	0.34	0.027	0.082	4.68	100.03
	XCM2-2	年万年《台楼园本书》	古小叶MI当 开东早期给	91 10	0.23	0.039	3.57	0.87	0.11	0.1	0.76	0.1	0.03	0.056	2.26	99.56
塔里木	XCM-4	海内岳贝石井町井町井町	古公马赵铅用在某	03.61	0.45	0.068	3.28	0.75	0.078	0.1	0.45	0.081	0.027	0.08	1.21	100.18
	XCM-7-2	海尼姓贝石共同共和国	村外四座出 叶分异素含	02.01	6 0	0.000	3 -	2.15	0.12	0.12	0.83	0.11	0.032	0.074	1.61	86.66
1	XCM-11	海広旺瓜石	五小小五河出	A1/A1+	A1/A1+Fe+Mn			Fe/Ti			MnC	MnO/TiO2			(Fe+	(Fe+Mn)/Ti
五十					0 11			35.43			2	2.03			38	38.0
五月					17			93 66			9	9.00			10	101.4
野田田					27 0			74 39			5	5.63			œ	81.6
発西光					. 3c			78.87			-	1.27			4	49.6
拉尔玛				> (0.40			00.00			· C	0 40			ò	84.2
塔里木				-	60.0			93.50			•	<u> </u>				
杨子妣块('与生物成因?	杨子地块(与生物成因有关的硅质岩)[9]		0	0.55			17.3			•	0.09				
7年中年 24	一世 大工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工	场子协协(与枕水,火川作用有关的硅质岩)[9]	(6)	0	0.42			44			2	2.26			,	
(S)	The Charles of the Ch			V	<0.35			> 20							202	20 > 20 ± 5

注:湘西北数据引自文献[6]

表 2 硅质岩微量元素含量(10-6)


Table 2 Content of trace elements of cherts (10^{-6})

	Sr	Th	Ta	Nb	Zr	Hf	Ba	As	Sb	U	Co	Ni	Cu	Zn
紫阳	6.12	0.40	0.03	1.73	31.2	0.63	622	_	_	9.0	0.26	16.7	65.1	17.3
黔西南	10.4	0.31	0.02	0.60	11.1	0.16	249	9.8	2.22	17.3	2.93	29.8	51.3	33.5
湘西北	64.7	0.37	0.02		158	0.09	209	59	3.58	15.2	2.24	25.1	-	_
拉尔玛	21.9	0.29	0.02	0.54	47.9	0.56	1617	205	33.9	13.6	0.66	18.7	212	109
塔里木	223	0.37	0.03	0.66	5.7	0.15	4772	12.1	1.6	4.4	4.8	26.3	92.5	63.5
克拉克值	480	5.8	1.6	19	130	1.5	390	2.2	0.62	1.7	25	89	63	94

4.2 硅质岩的微量元素组合

大量的研究表明, As、Sb、Ba 在硅质岩中的大量富 集是其热水成因的可靠证据。如表 2 所示,除部分样 品外,硅质岩中 As、Sb、Ba 的含量均远大于地壳克拉 克值,平均的富集系数分别高达 26,13.3,3.8,表现出 热水沉积硅质岩的微量元素特征。Rona 的统计表明, 约13%的大洋扩张中心热水沉积物中发现重晶 石[10,11]。在几个高硒地层中均可发现呈薄层状和透 镜状的重晶石分布,也暗示了其热水沉积作用的存在。 在硅质岩中还检出较高含量的 PGE 元素,如拉尔玛地 区硅质岩中 Pt(3.20×10⁻⁹)、Pd(4.9×10⁻⁹)、Os (1.40×10^{-9}) ,湘西北地区硅质岩中 Os (0.5×10^{-9}) 、 $Ru(0.75\times10^{-9})_{\gamma}Rh(0.5(\times10^{-9})_{\gamma}Ir(1.75\times10^{-9})_{\gamma}$ Pt(3×10⁻⁹)、Pd(3.25×10⁻⁹),显示了硅质岩中非正 常沉积的元素特征,研究表明,PGE 的富集既非地外 物质提供,也非正常海水沉积的产物,而可能主要与海 底热水喷流作用有关[12]。同时,硅质岩中大部分的亲 石元素(Sr、Th、Ta、Nb、Zr、Hf等)均远小于地壳克拉 克值,也从侧面反映了硅质岩的非正常沉积的特征。

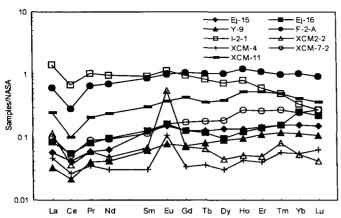
Rona 的研究表明热水沉积物的 U/Th>1,而 U/

ED. 东太洋热水沉积区; RH. 红海热卤水沉积区; FH. 石化热水沉积区; M. 锰结构区; A. 铝土矿区; P. 普通深海沉积区

图 3 硅质岩的 lgU-lgTh 关系图解(底图据 Rona, 1978) Fig. 3 lgU-lgTh diagram of cherts (from Rona, 1978)

Th<1则指示正常沉积物的 U/Th 比值(图 3)^[10]。本区的硅质岩样品 U/Th 比值均大于 1, 所有的样品均投影在石化热水沉积区和红海热卤水沉积区, 反映了本区硅质岩的热水成因。

硅质岩的稀土元素地球化学特征是区分热水沉积 和非热水沉积的重要标志。Fleet、陈多福、Michard 和 周永章研究认为热水沉积物具 REE 总量低, Ce 呈负 异常,Eu有弱的正异常、HREE(包括Y)相对富集,海 相热水沉积物稀土经北美页岩标准化后,模式曲线近 于水平或向左倾的特点[13~16]。从本区硅质岩的稀土 元素特征看(表3),稀土总量较低,除湘西北的2件样 品外(可能硅质岩中混有较多的粘土矿物),其余样品 中最高为 35.97×10⁻⁶,最低只有 4.31×10⁻⁶,平均 18.42×10⁻⁶。LREE 相对富集,LREE/HREE 的比值 变化范围在 1.5~9.9。如果重稀土中加上 Y,则 HREE 相对富集,这与 Fleet 的结论是一致的。Ce 呈 弱负异常,Eu 呈弱正异常。稀土元素经北美页岩标准 化后呈弱的左倾趋势(图 4)。因此,从本区硅质岩上 述的稀土元素特征可判断硅质岩为热水沉积的产物。 同时,我们也注意到本区硅质岩与典型的热水沉积物 (如 EPR, Galapagos 等)对比,其稀土分布模式十分相 似,从一个侧面佐证了其热水作用的存在。如果对比 典型的海水中的稀土配分模式,除弱正 Eu 异常外,两 者也较为一致,可能主要由下渗的海水经循环产生热 水,硅质岩继承了部分海水的稀土特征。


4.3 硅质岩的硅、氧同位素特征

不同来源的 SiO₂ 有不同的 δ^{30} Si 值,如热水来源 SiO₂ 的 δ^{30} Si 变化范围为 $-1.5\%\sim0.8\%$,生物成因 硅质岩 δ^{30} Si 变化范围为 $-1.1\%\sim1.7\%$,交代成因硅质岩的 δ^{30} Si 变化范围为 $-1.1\%\sim1.7\%$,交代成因硅质岩的 δ^{30} Si 值最大,为 $2.4\%\sim3.4\%$ $(17\sim19)$ 。高硒地层中硅质岩 δ^{30} Si 变化范围在 $-0.7\%\sim1.2\%$,平均 0.35%,其值落在热水成因和生物成因硅质岩的范围。对比一些典型的热水成因硅质岩(如广西大厂、陕西风太、信江盆地石炭纪硅质岩等),拉尔玛地区硅质岩的 δ^{30} Si 值略为偏大,可能是本区部分硅质岩的重结晶作用导致硅同位素的分馏。同时,考虑到在一些高硒地

表 3 层状硅质岩的稀土元素组成(10-6) Table 3 REE content of bedded cherts(10-6)

6条 鲁条 用茶 牛蹄 十分 0.711 1.10 0.711 0.712 0.711 0.711 0.711 0.711 0.711 0.712 0.723 0.721 0.723 0.721 0.723 0.721 0.723 0.721 0.723 0.723 0.723 0.723 0.723 0.723 0.723 0.723 0.723 0.	区	124	华 阳	緊死極	経	州四縣				拉尔玛						塔里木	
9.6 (4) 6.6 (4) 7.7 (4) 6.7 (4) 7.7 (4) <	样号	Ej-15	Ej-16	6-Y		1-2-1	NWQ-4	NWQ-5	6-bm	wq-11		L-1-1	1,4	XCM2-2	XCM-4	XCM-7-2	XCM-11
1.84 2.72 1.06 19.6 45.2 0.80 2.43 0.711 4.79 2.08 8.97 6.69 3.62 1.51 3.24 3.01 3.99 1.36 2.06 50.6 1.39 4.55 1.41 8.00 2.77 5.74 4.68 2.64 1.96 3.75 0.475 0.475 0.647 0.647 0.647 0.647 2.79 2.79 2.79 2.79 0.727 0.721 2.11 3.23 1.34 8.27 0.189 0.732 0.191 1.192 0.47 2.93 2.20 0.44 0.758 0.191 1.192 0.44 4.68 2.64 1.96 3.75 0.11 0.724 0.348 0.023 0.734 0.734 0.744 0.68 0.735 0.194 0.758 0.184 0.738 0.184 0.738 0.184 0.788 0.739 0.194 0.688 0.739 0.184 0.688 0.739 0.194	层位	中 水 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表	鲁 茶 斑	留茶坡组	4 格组	牛蹄	希格组	希格组	拉尔玛组	希格	希格组	^备 格 组	希格组	玉尔吐斯组	玉尔吐 斯组	玉尔吐 斯组	玉尔吐 斯组
3.01 3.99 1.5K 20.6 1.39 4.55 1.41 8.00 2.77 5.74 4.68 2.64 1.96 3.75 0.475 0.645 0.315 5.14 8.27 0.732 0.141 1.192 0.47 2.93 2.20 0.47 1.93 2.20 0.77 0.721 0.778 0.778 0.778 0.778 0.778 0.778 0.779 0.778 0.7	تـ ا	1.84	2.72	1.06		45.2	0.809	2.43	0.711	4.79	2.08	8.97	69.9	3.62	1.51	3.24	7.95
0.445 0.644 0.345 0.44 0.445 0.445 0.445 0.445 0.644 0.345 0.445 0.189 0.732 0.149 0.732 0.149 0.734 0.149 0.734	చ	3.01	3.99	1.56		50.6	1.39	4.55	1.41	8.00	2.77	5.74	4.68	2.64	1.96	3.75	7.33
2.11 3.23 1.39 23.2 31.4 0.723 3.40 0.787 5.13 1.78 14.5 10.47 1.57 1.02 3.11 0.701 0.724 0.348 5.00 5.32 0.204 0.738 1.04 0.514 3.94 4.27 0.383 0.175 0.662 0.180 0.203 0.204 0.738 0.034 0.689 1.28 0.687 0.133 0.204 0.656 0.654 0.375 5.66 5.11 0.162 0.794 0.689 2.29 2.83 0.366 0.179 0.795 0.11 0.101 0.070 0.88 0.72 0.045 0.060 0.193 0.118 0.89 0.79 0.789 0.189 0.799 0.789 0.789 0.799 0.789 0.789 0.789 0.193 0.799 0.193 0.193 0.193 0.193 0.194 0.608 0.299 0.899 0.199 0.789 0.189 0.125	Pr	0.475	0.64	0.315		8.27	0.189	0.732	0.191	1, 192	0.47	2.93	2.20	0.47	0.277	0.721	1.67
0.184 0.234 0.234 0.204 0.734 0.233 1.04 0.514 0.514 0.514 0.514 0.513 1.04 0.513 1.04 0.514 0.513 0.079 0.238 0.184 1.28 0.687 0.173 0.070 0.184 0.203 0.203 0.193 0.079 0.258 0.184 1.28 0.687 0.133 0.201 0.656 0.203 0.193 0.079 0.258 0.184 1.28 0.687 0.193 0.019 0.184 0.608 0.184 0.608 0.193 0.018 0.184 0.608 0.193 0.118 0.529 0.40 0.029 0.189 0.118 0.125 0.494 0.608 0.190 0.189 0.118 0.125 0.234 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.184	PZ	2.11	3.23	1.39		31.4	0.723	3.40	0.787	5.13	1.78	14.5	10.47	1.57	1.02	3.11	7.92
0.656 0.0584 0.123 0.184 0.184 1.28 0.184 0.587 0.184 0.201 0.656 0.654 0.355 0.143 0.075 0.044 0.058 0.184 0.688 0.29 0.386 0.179 0.923 0.11 0.016 0.88 0.72 0.047 0.050 0.049 0.048 0.18 0.29 0.18 0.18 0.29 0.18 0.19 0.099 0.099 0.090 0.090 0.090 0.090 0.090 0.090 0.019 0.052 0.23 0.23 0.248 0.052 0.090 0.090 0.052 0.043 0.019 0.052 0.019 0.052 0.23 0.23 0.045 0.050 0.050 0.052 0.23 0.053 0.045 0.050 0.052 0.053 0.052 0.053 0.052 0.053 0.052 0.053 0.052 0.053 0.052 0.053 0.052 0.053 0.052 0.053 0.054	Sm	0.701	0.724	0.348	5.00	5.32	0.204	0.758	0.233	1.04	0.514	3.94	4.27	0.383	0.175	0.662	1.73
0.656 0.654 0.375 5.66 5.11 0.162 0.614 0.251 0.944 0.608 2.29 2.83 0.366 0.179 0.923 0.111 0.101 0.070 0.88 0.72 0.040 0.193 0.118 0.52 0.40 0.056 0.019 0.193 0.118 0.52 0.40 0.056 0.019 0.060 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.100 0.125 0.238 0.699 0.050 0.109 0.528 0.119 0.529 0.239 0.119 0.050 0.119 0.120	Щ	0.189	0.203	0.098	1.23	1.44	0.055	0.193	0.079	0.258	0.184	1.28	1.58	0.687	0.133	0.201	0.465
0.11 0.101 0.070 0.88 0.72 0.096 0.060 0.193 0.118 0.52 0.40 0.056 0.031 0.156 0.786 0.555 0.514 6.06 4.25 0.261 1.70 1.25 3.35 3.26 0.056 0.18 1.09 0.143 0.127 0.126 0.284 0.045 0.136 0.130 0.755 0.485 1.40 1.11 2.96 0.552 0.053 0.045 0.189 0.275 0.485 1.40 1.11 2.96 0.152 0.055 0.081 0.101 0.525 0.236 0.149 0.171 0.236 0.161 0.711 0.296 0.171 0.199 0.171 0.236 0.161 0.171 0.171 0.199 0.171 0.171 0.296 0.161 0.171 0.171 0.172 0.171 0.172 0.171 0.172 0.172 0.172 0.172 0.172 0.172 0.172 0.172 0.172 0.1	PS	0.656	0.654	0.375	5.66	5.11	0.162	0.614	0.251	0.944	0.608	2.29	2.83	0.366	0.179	0.923	2.22
0.786 0.555 0.514 6.06 4.25 0.231 0.710 1.25 3.35 3.26 0.26 0.26 0.26 0.120 0.787 0.610 1.70 1.25 3.35 3.26 0.053 0.045 0.18 0.143 0.127 0.126 0.130 0.522 0.238 0.669 0.552 0.053 0.069 0.048 0.090 0.0506 0.482 0.190 0.575 0.485 1.40 1.11 2.96 2.122 0.17 1.138 0.909 0.079 0.078 0.060 0.580 0.025 0.081 0.071 0.236 0.167 0.308 0.411 0.041 0.079 0.179 0.186 0.187 0.186 0.187 0.186 0.187 0.186 0.187 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.18	Tb	0.11	0.101	0.070	0.88	0.72	0.027	960.0	0.060	0.193	0.118	0.52	0.40	0.056	0.031	0.156	0.313
0.143 0.127 0.102 1.28 0.045 0.120 0.522 0.238 0.669 0.552 0.045 0.587 0.120 0.522 0.238 0.669 0.552 0.045 0.287 0.287 0.120 0.522 0.238 0.141 0.041 0.052 0.171 0.236 0.167 0.187 0.167 0.308 0.411 0.041 0.041 0.099 0.171 0.236 0.167 0.186 0.167 0.186 0.411 0.104 0.111 0.236 0.167 0.186 0.111 0.236 0.167 0.186 0.187 0.186	Ą	0.786	0.555	0.514	90.9	4.25	0.231	0.785	0.610	1.70	1.25	3.35	3.26	0.26	0.18	1.09	2.30
0.506 0.482 0.380 3.73 2.06 0.190 0.575 0.485 1.40 1.11 2.96 2.122 0.17 1.138 0.909 0.079 0.078 0.078 0.048 0.047 0.025 0.167 0.236 0.167 0.308 0.167 0.029 0.167 0.029 0.167 0.029 0.167 0.029 0.167 0.029 0.167 0.029 0.167 <td>H_e</td> <td>0.143</td> <td>0.127</td> <td>0.102</td> <td>1.28</td> <td>0.84</td> <td>0.045</td> <td>0.138</td> <td>0.120</td> <td>0.522</td> <td>0.238</td> <td>699 .0</td> <td>0.552</td> <td>0.053</td> <td>0.045</td> <td>0.287</td> <td>0.555</td>	H _e	0.143	0.127	0.102	1.28	0.84	0.045	0.138	0.120	0.522	0.238	699 .0	0.552	0.053	0.045	0.287	0.555
0.079 0.078 0.060 0.508 0.25 0.081 0.071 0.236 0.167 0.368 0.167 0.236 0.167 0.236 0.167 0.236 0.167 0.039 0.117 0.039 0.167 0.036 0.167 0.041 0.040 0.017 0.041 0.046 0.048 0.058 0.048 0.059 0.058 0.053 0.049 0.079 0.015 0.029 0.049 0.015 0.015 0.049 0.015 0.029 0.049 0.015 0.049 0.118 0.036 0.036 0.039 0.017 0.049 0.017 0.049 0.017 0.049 0.017 0.049 0.017 0.049 0.017 0.049 0.017 0.049 0.017 0.049 0.017 0.049 0.017 0.049 0.017 0.049 0.050 0.049 0.050 0.049 0.050 0.049 0.050 0.049 0.050 0.049 0.050 0.049 0.050 0.049 0.050	ᅜᅼ	0.506	0.482	0.380	3.73	2.06	0.190	0.575	0.485	1.40	1.11	2.96	2.122	0.17	1.138	0.909	1.82
0.484 0.792 0.353 3.17 1.06 0.226 0.618 1.867 1.36 2.29 1.65 0.168 0.174 0.779 0.072 0.107 0.051 0.484 0.16 0.226 0.618 0.623 0.232 0.365 0.349 0.02 0.03 0.132 11.2 14.4 6.67 96.5 157 4.31 15.2 5.75 27.6 12.9 50.1 41.5 10.5 5.88 16.1 2.9 4.0 2.5 3.4 9.9 3.6 4.0 1.5 2.8 1.5 2.9 2.6 8.3 6.3 2.6 0.70 0.66 0.59 0.48 0.77 0.78 0.73 0.61 0.27 0.44 0.66 0.53 1.22 1.30 1.19 1.02 1.21 1.33 1.24 1.45 1.45 1.87 1.87 0.69 0.174 0.773	Tm	0.020	0.078	090.0	0.508	0.25	0.025	0.081	0.071	0.236	0.167	0.308	0.411	0.041	0.029	0.139	0.248
0.072 0.107 0.081 0.081 0.115 0.326 0.232 0.365 0.349 0.02 0.03 0.132 11.2 14.4 6.67 96.5 157 4.31 15.2 5.75 27.6 12.9 50.1 41.5 10.5 5.88 16.1 2.9 4.0 2.5 3.4 9.9 3.6 4.0 1.5 2.8 1.5 2.9 2.6 8.3 6.3 5.6 0.70 0.66 0.59 0.45 0.77 0.74 0.83 0.73 0.61 0.24 0.27 0.44 0.66 0.53 1.22 1.30 1.19 1.02 1.21 1.33 1.24 1.45 1.45 1.87 1.87 0.99 8.06 0.53 0.13	Ϋ́	0.484	0.792	0.353		1.06	0.226	0.618	0.629	1.867	1.36	2.29	1.65	0.168	0.174	0.779	1.28
11.2 14.4 6.67 96.5 157 4.31 15.2 5.75 27.6 12.9 50.1 41.5 10.5 5.88 16.1 2.9 4.0 3.6 4.0 1.5 2.8 1.5 2.9 2.6 8.3 6.3 5.6 0.70 0.66 0.59 0.45 0.77 0.74 0.83 0.73 0.61 0.24 0.27 0.44 0.66 0.53 1.22 1.30 1.19 1.02 1.21 1.33 1.24 1.43 1.14 1.45 1.87 1.99 8.06 3.30 1.13	ڐ	0.072	0.107	0.051	0.448	0.13	0.404	0.109	0.115	0.326	0.232	0.365	0.349	0.05	0.03	0.132	0.177
2.9 4.0 2.5 3.4 9.9 3.6 4.0 1.5 2.8 1.5 2.9 2.6 8.3 6.3 2.6 0.70 0.66 0.59 0.45 0.77 0.74 0.83 0.73 0.61 0.24 0.27 0.44 0.66 0.53 1.22 1.30 1.19 1.02 1.21 1.33 1.24 1.43 1.14 1.45 1.87 1.99 8.06 3.30 1.13	SREE	11.2	14.4	6.67		157	4.31	15.2	5.75	27.6	12.9	50.1	41.5	10.5	5.88	16.1	36.04
0.70 0.66 0.59 0.45 0.57 0.74 0.83 0.73 0.61 0.24 0.27 0.44 0.66 0.53 1.22 1.30 1.19 1.02 1.21 1.33 1.24 1.43 1.14 1.45 1.87 1.99 8.06 3.30 1.13	LREE/ HREE	2.9	4.0	2.5		6.6	3.6	4.0	1.5	2.8	1.5	2.9	2.6	8.3	6.3	2.6	3.0
1.22 1.30 1.19 1.02 1.21 1.33 1.24 1.43 1.14 1.45 1.87 1.99 8.06 3.30 1.13	ಜ್ಞ	0.70	0.66	0.59	0.45	0.57	0.77	0.74	0.83	0.73	0.61	0.24	0.27	0.44	99.0	0.53	0.44
	δEu	1.22	1.30	1.19	1.02	1.21	1.33	1.24	1.43	1.14	1.45	1.87	1.99	8.06	3.30	1.13	1.04

注:湘西北数据引自文献[6]

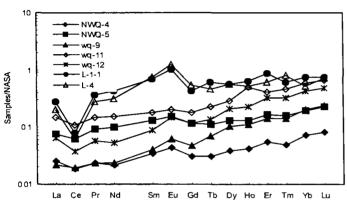


图 4 硅质岩的稀土配分模式 Fig. 4 REE distribution pattern of cherts

层尽管发育众多的生物球粒硅质岩,但目前从球粒结构所作的鉴定表明,球粒主要是一些钙藻的残余结构,尚未发现硅藻的结构,似乎可以排除生物成因的可能性。总体上看,尽管硅质岩的 δ³⁰ Si 值不是很特征,但综合分析主要是热水沉积的产物。

尽管已有很多的学者利用氧同位素来判定硅质岩 的成因,如 Clayton 和 Savin 等人认为不同成因的石 英,其 δ^{18} O 值不同,火成石英的 δ^{18} O 值为8.3%~ 11.2‰,平均为 9‰;变质石英的 δ¹⁸O 值为11.2‰~ 16.4‰;热泉华石英的 δ18○ 值为12.2‰~23.6‰;成 岩石英的 δ¹⁸O 值为 13‰~36‰;现代海滩石英的δ¹⁸O 值为10.3%~12.5%[18,20]。但是可以看出,不同成因 石英的 δ18Ο 值有较大的重叠,无法准确判断硅质岩的 成因。同时考虑到,对于热水成因的硅质岩,离热水喷 口的远近的水体温度不同,它的氧同位素分馏也是不 同的,因此,即使在同一硅质岩层,它的氧同位素有较 大的差别也是可以预见的,如在马里亚纳海槽硅质烟 卤 δ¹8 ○ 值为11.3‰~35.1‰,变幅达 24‰^[22]。从总 体上看,几个高硒地区硅质岩的 δ^{18} O 值均落在热泉华 石英的范围内(塔里木地区硅质岩 δ¹⁸O 值略偏大),也 落在马里亚纳海槽硅质烟囱 δ18O 值的范围内,从侧面

. . .

反映几个高硒地区的硅质岩可能是热水沉积的产物。

同时,应注意的是,多数学者根据石英一水间的氧同位素平衡分馏方程估算硅质岩的形成温度,由此判定硅质岩是否为热水成因,但海水在水一岩反应中多增大其8¹⁸O值,因此硅质岩的估算温度应代表其最低形成温度,而非原始热液流体的温度,所以这种平衡温度的估算对于具有高8¹⁸O值的硅质岩是无法判定的。

表 4 硅质岩的硅、氧同位素

Table 4 The silicon and oxygen isotope compositions of cherts

样号	采样 地区	样品 名称	δ ³⁰ Si _{NBS~28} /‰	S ¹⁸ O _{SMOW} ∕‰
Y9	黔西南	含碳硅质岩	0.7	23.2
Ei-15	紫阳	含碳硅质岩	-0.7	25.5
XCM-7-2	塔里木	含碳硅质岩	-0.7	28.3
XCM-2-2	塔里木	含碳硅质岩	-0.2	28.3
XCM-4	塔里木	含碳硅质岩	-0.2	29.0
XCM-11	塔里木	含碳硅质岩	-0.7	27.7
Si-1	拉尔玛	隐晶硅质岩	0.8	
Si-2	拉尔玛	泥晶硅质岩	1.1	
Si-3	拉尔玛	纹层状硅质岩	1.2	
Si-4	拉尔玛	泥晶球粒硅质岩	1.1	
Si-5	拉尔玛	泥晶球粒硅质岩	1.0	
Si-6	拉尔玛	条带状硅质岩	0.4	
Si-7	拉尔玛	亮晶球粒硅质岩	0.8	
LE-4	拉尔玛	块状硅质岩		17.6
LW-7	拉尔玛	层纹状硅质岩		17.95
LE-64	拉尔玛	条带状硅质岩		18.45
LE-27	拉尔玛	生物球粒硅质岩	•	20.92
LE-65	拉尔玛	泥晶硅质岩		23.08
LE-66	拉尔玛	泥晶硅质岩		23.24
F-2-4	湘西北	条带状硅质岩		20.5
G-2-1	湘西北	条带状硅质岩		20.9
G-2-5	湘西北	块状硅质岩		17.6
K-2-A	西北湘	泥质硅质岩		20.9

注: 拉尔玛数据和湘西北数据分别引自文献[21]和[6]

5 硅质岩成因与硒富集的关系

上述的大量研究已经表明,几个高硒地层中层状 硅质岩是热水沉积的产物,但这种热水成因的硅质岩 与硒的富集是否有必然的和内在的联系,仍是一个疑 而未决的问题。

关于硅质岩中硅质的来源,可能主要由于循环热水与围岩发生碱交代的结果。如在绝大多数热液矿床中普遍发育有石英脉,而在这些矿床中或其下部,均有大量的碱交代岩与之共生。这可能反映了这些矿床中的 SiO₂ 系通过碱交代而提供的。实验也证明了 SiO₂ 的溶解度在碱性溶液中远大于在中、酸性溶液中^[23]。此外,热液的其它蚀变过程,如绿泥石化、绢云母化等也会产生游离的 SiO₂,但其规模较小。据上可知,这些高硒地层中层状硅质岩的形成,可能与海底喷流热

水系统与围岩发生碱交代提供的 SiO₂ 有关。

可以设想深部循环热液带出大量硅质的同时,也 有大量 Se 的带出。含硅溶液中 Se 的携带能力目前尚 无明确的资料。间接的证据表明:

- (1) Se 是一种亲地核(40×10⁻⁶)的元素,对比地壳克拉克值(0.08×10⁻⁶),富集系数达到 500。在地球的演化历史中,Se 倾向于在地幔和地核中富集。且常见的 Se 的产出往往与火山作用有关,如里巴利岛的火山硫中含硒达 18%,夏威夷岛的火山硫中含硒 20%^[24]。目前硒的工业来源主要局限于与火山作用有关的一些矿床中,如与火山作用有关的金银矿床,与贱金属有关的块状硫化物矿床等,其它硒的来源甚少^[25~27]。因此,Se 来源正常沉积的可能性不大,可能来自于较深的构造环境。
- (2) 硅质岩的形成多受控于拉张的裂谷环境、或断陷盆地、或同生沉积的大断裂。这种构造环境中循环的热液往往可将深部的 Se 携带上来而形成富 Se 的沉积。如在现代的洋中脊环境中,均有不同程度硒的富集^[28]。
- (3) 无论在热液体系或冷水体系中, Se 的含量与硅的含量有明显的正相关关系, 根据 Measures 对海水的实测数据显示, 随着海水深度的增加, 海水中 Se 和 Si 的浓度呈正相关的同步增长, 相关系数达到 0.89^[29]。
- (4) 更为重要的是,在这些高硒地层的下伏基底中均有一定的硒的异常,如在拉尔玛含 Se 建造的下伏基底震旦系白依沟群中也含有一定的 Se 的异常(富集系数为 3.20),同时也包含 Au(富集系数为 12.71)、Cu、Mo、Pb、W 等元素的异常,在紫阳地区震旦系陡山沱组中也有 Se 的异常(0.158×10⁻⁶)。可以设想 Se 的来源与硅质的来源是一致的。而这种高硒基底岩系的形成则是需要进一步研究的问题。

因此,可以推测,形成硅质岩的构造环境可能是地 壳深部 Se 得以上升到浅部聚集的前提,而含硅热液则 可能是 Se 的良好的"溶剂"。

6 结论

- (1) 从几个高硒地层中层状硅质岩的岩石化学成分、微量元素和稀土元素以及硅、氧同位素数据均明确的表明硅质岩是热水沉积的产物,可以初步得出结论,在高硒地层中热水成因的硅质岩的出现是普遍的和广泛的。
- (2) 热水成因层状硅质岩的形成多受控于拉张的裂谷环境、或断陷盆地、或同生沉积的大断裂,这种构造环境可能是地壳深部 Se 得以上升到浅部聚集的

前提,而含硅热液则可能是 Se 的良好的"溶剂"。

(3) 黑色岩系中有大量金属元素和非金属元素的富集,元素组合也异常复杂,显然传统的正常沉积(化学沉积或物理沉积)难以很好的解释这种多元素的富集,通过热水沉积作用理论引入,可能是解决这一难题的一个重要的思路和突破口。

参考文献(References)

- 1 Wen Hanjie and Qiu Yuzhuo. Geology and Geochemistry of Se-Bearing Formations in Central China[J]. International Geology Review, 2002, 44(2): 164~178
- 2 伊海生,曾允孚,夏文杰. 扬子地台东南大陆边缘上震旦统硅质岩的超微组构及其成因[J]. 地质学报,1994,68(2):132~140[Yi Haisheng, Zeng Yunfu and Xia Wenjie. Ultramicrofrabrics and genesis of upper Sinian chert on the southeast continental margin of the Yangtze platform[J]. Acta Geologica Sinica, 1994,68(2):132~140]
- 3 Herzig P M. Hydrothermal silica chimney field in the Galapagos Spreeding Center at 86W[J]. Earth and Planet Science Letters, 1988, 89 (1): 281~320
- 4 Adachi M, Yamamoto K, Suigisk R. Hydrothermal chert and associated siliceous rocks from the Northern Pacific: Their geological significance as indication of ocean ridge activity[J]. Sedimentary Geology, 1986, 47(1): 125~148
- 5 张爱云, 伍大茂, 郭丽娜, 等. 海相黑色页岩建造地球化学与成矿意义[M]. 北京:科学出版社, 1987. 72~73[Zhang Aiyum, Wu Damao, Guo Lina, et al. Geochemistry and mineralized significance of marine black shale formation[M]. Beijing; Science Press, 1987. 72~73]
- 6 李有禹. 湘西北下寒武统黑色页岩伴生元素研究新进展[J]. 矿床 地质, 1995,14(4):346~353[Li Youyu. New advances in the study of associated elements in lower Cambrian black shale of northwestern Human[J]. Mineral Deposit, 1995,14(4):346~353]
- 7 彭军, 田景春, 伊海生, 等. 扬子板块东南大陆边缘晚前寒武纪热水沉积作用[J]. 沉积学报, 2000, 18(1): 107~113[Peng Jun, Tian Jingchun, Yi Haisheng, Xia Wenjie. The late Precambrian hot water sedimentation of the southeast Yangtze plate continental margin[J]. Acta Sedimentologica Sinica, 2000, 18(1): 107~113]
- 8 Bostrom K. Genesis of ferromanganese deposits-diagnostic criteria for recent and old deposits[A]. In: Rona P A, et al. Hydrothermal processes at seafloor spreading centers [C]. New York: Plenum Press, 1983. 473~483
- 9 王东安,陈瑞君. 雅鲁藪布發合带硅岩得地球化学成因标志及其地质意义[J]. 沉积学报, 1995,13(1): 27~31[Wang Dongan, Chen Ruijun. Geochemistry genetic criteria of silicolites in Yuluzangbu suture belt and their geological significance[J]. Acta Sedimentologica Sinica, 1995,13(1): 27~31]
- 10 Rona. Criteria for recognition of hydrothermal mineral deposits in Occanic[J]. Economic Geology, 1978, 73(2);212~214
- 11 Rona. Hydrothermal processes at seafloor spreading centers[M]. New York: Plenum Press, 1983
- 12 李胜荣,高振敏. 湘黔寒武系底部黑色岩系贵金属元素来源示踪 [J]. 中国科学(D), 2000, 30(2): 169~174 [Li Shengrong, Gao Zhenmin. Source tracking of noble metals in the bottom of the Cambri-

- an black shales in Hunan and Guizhou[J]. Science in China(Series D), $2000,\ 30(2):\ 169{\sim}174$]
- 13 Fleet A J. Hydrothermal and hydrogeneous ferromanganese deposits [A]. In: Rona P A, et al, eds. Hydrothermal processes at seafloor spreading centers[C]. New York: Plenum Press, 1983. 537~570
- 14 陈多福,陈光谦,潘晶铭,等、广东云浮大降坪大型黄铁矿矿床的热水沉积特征[J]、地球化学,1998,27(1):12~19[Chen Duofu, Chen Guangqian, Pan Jingming, Ma Shaogang, et al. Characteristics of the hydrothermal sedimentation of the Dajiangping superlarge pyrite deposit in Yunfu, Guangdong[J]. Geochemica, 1998, 27(1): 12~19]
- 15 Michard A. The REE content of some hydrothermal fluids[J]. Chemical Geology, 1986,55:51~60
- 16 周永章, 涂光炽, Chown E H, Guha J,等. 粤西古水剖面震旦系顶部层状硅质岩的热水成因属性:岩石学和地球化学证据[J]. 沉积学报, 1994, 12(3): 1~11[Zhou Yongzhang, Tu Guangchi, Chown E H, Guha J, et al. Hydrothermal origin of top Sinian chert formation at Gusui, Weastern Guangdong, China: Petrologic and Geochemical Evidence[J]. Acta Sedimentologica Sinica, 1994, 12(3): 1~11]
- 17 宋天锐,丁悌平、硅质岩中的硅同位素(δ³4Si)应用于沉积相分析的 新尝试[J]、科学通报, 1989.1 408 [Song Tian-rui, Ding Ti-ping. New attempt on silicon isotope applying to analysis of sedimentary facies[J]. Chinese Science Bulletin, 1989.1 408]
- 18 Clayton R N. High temperature isotope effect in the early solar system [A]. In: Valley, et al. eds. Reviews in Mineralogy[C]. 1986, 16: 129~139
- 19 Douthitt C B. The geochemistry of the stable isotope of silicon[J]. Geochimica et Cosmochimica Acta, 1982, 46(8): 1149~1458
- 20 Savin S M, Epstein S. The oxygen isotopic composition of coarse grained sedimentary rocks and minerals [J]. Geochimica et Cosmochimica Acta, 1970, 34(3): 323~329
- 21 刘家军. 论西秦岭喷流沉积硅岩建造及其控制的金矿床[D]. 成都:成都理工大学,1996. [Liu Jiajum. Chert formation of hydrothermal sedimentary and relative gold deposits[D]. Chengdu: Chengdu U-

- niversity of Sciences and Technology, 1996]
- 2 侯增谦, 吴世迎, Urabe T. 四川呷村黑矿型矿床硅质岩的硅、氧同位素组成及其与现代海底硅质烟囱比较研究[J]. 地质论评, 1996, 42(6):531~539[Hou Zengqian, Wu ShiYing, Urabe T. Silicon and oxygen isotopic composition of cherts from the Gacun kurokotype deposit, Sichuan, and comparison with silica chimneys from the modern seafloor[J]. Geological Review, 1996, 42(6): 531~539
- 23 Barnes H L. Geochemistry of hydrothermal ore deposits [M]. New York: Wiley-Interscience, 798
- 24 年保磊、元素地球化学[M]、北京:北京大学出版社,1999、227 [Mou Baolei、Element geochemistry[M]、Beijing: Beijing University Press, 1999、227]
- 25 Bjerkgard T, Bjorlykke A. Sulfide deposits in Folldal, southern trondheim region caledonides, Norway: source of metals and wall-rock alterations related to host rocks[J]. Economic Geology, 1996, 91: 676 ~696
- 26 Huston D L. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I: Proton microprobe analyses of pyrite, chalcopyrite and sphalerite, and Part II: Selenium levels in pyrite: comparison with δ³⁴S values and impications for the source of sulfur in volcangenic hydrothermal systems[J]. Economic Geology, 1995, 90: 1 167~1 196
- 27 So C-S, Dunchenko V Y, Yun S-T, Park M-E, et al. Te-and Se-bearing epithermal Au-Ag mineralization, Prasolovskoye, Kunasir Island Arc[J]. Economic Geology, 1995, 90: 105~117
- 28 侯增谦,補边撤郎. 古代与现代海底黑矿型块状硫化物矿床矿石地球化学比较研究[J]. 地球化学,1996,25(3):228~241[Hou Zengqian, Urabe T. A comparative study on geochemistry of sulfide ores from the kuroko-type deposits on ancient and modern sea-floor [J]. Geochimica, 1996, 25(3):228~241]
- 29 Measures C L, Burton J D. The vertical distribution and oxidation states of dissolved selenium in the northeast Atlantic ocean and their relationship to biological processes [J]. Earth and Planetary Science Letters, 1980, 46:385~396

Geochemistry and Genesis of Bedded Cherts in Some Typical Eopaleozoic High Selenium Black Shales, China

WEN Han-jie¹ QIU Yu-zhuo¹ LIN Hong-wen¹ YU Bing-song² ZHANG Gui-shan¹ (Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002) 2(China University of Geosciences, Beijing 100083)

Abstract Bedded cherts, with varying thickness, are widely distributed in some typical eopaleozoic high Se black shales in China. Bedded cherts are mainly composed of SiO_2 in chemical composition, generally more than 90% with relatively high content of Fe and low content of Mn, Al, Ti. Lithophile elements deplete in cherts, however some elements like As, Ba, Sb, etc., which are typically indicative elements for hydrothermal sedimentation, are rich in cherts. REE distribution pattern show obvious left slope with clearly negative Ce anomaly and slightly positive Eu anomaly. δ^{30} Si values of cherts range from -0.7% to 1.2%, and δ^{18} O values of cherts range from 17.6% to 29.0%. Above much evidence suggests that origin of bedded cherts mghit be ascribed to hydrothermal sedimentation. At last of the paper, the relationship between hydrothermal cherts and enrichment of Se is discussed. Based on some indirect evidence, it can be concluded that the tectonic environment that hosts cherts should be a prerequisite for the ascension of Se from the deep depth in the crust and for its enrichment at the shallow depth. In the meantime, Si-bearing hydrothermal solutions might be a desirable "solvent" for Se.

Key words bedded chert, selenium, black shales, hydrothermal sedimentation