岩溶水系统对大气 CO₂ 的潜在影响

——基于热力学的研究

蒋 倩^{1,2},李心清¹,丁文慈^{1,2},赵彦龙^{1,2},闫 慧^{1,2}

1. 中国科学院 地球化学研究所 环境地球化学国家重点实验室,贵阳 550002; 2. 中国科学院 研究生院,北京 100049

摘 要:认识不同条件下岩溶水释放或吸收 CO_2 的反应过程是研究碳酸盐岩对碳循环响应的前提和基础。本文从吉布斯自由能的热力学原理出发,对全球不同岩溶地区 162 组岩溶水(河水、溪水、湖水等)进行了热力学研究,结果显示:1) 河水、溪水、湖水和洞穴滴水等岩溶水所处的环境因方解石矿物沉积而释放 CO_2 成为大气 CO_2 一个潜在的源;2) 地下水在所处的环境下由于方解石的溶解而吸收 CO_2 ,成为大气 CO_2 一个潜在的汇;3) 少数出露点的泉水所处的环境既可发生方解石的溶解而吸收 CO_2 ,成为大气 CO_2 的潜在汇,也可发生方解石的沉积而释放 CO_2 ,成为大气 CO_2 的潜在源;4) 在洪水期,泉水的水化学特征变化并未导致对大气 CO_2 潜在贡献在源汇之间的跨跃性转变。162 组岩溶水数据中,所有河水与溪水皆无一例外地在释放 CO_2 。结果表明,从吉布斯自由能的热力学原理出发,研究岩溶水系统对大气 CO_2 潜在源汇的贡献,没有条件约束,是一种较好的途径。

关键词:碳酸盐岩;无机碳库;CO2源;CO2汇;热力学;大气化学;水化学

中图分类号:P59 文献标识码:A 文章编号:1007-2802(2006)03-0226-10

Geochemistry of Water System in Karst Regions and the Atmospheric CO2: Thermodynamic Studies

JIANG Qian^{1,2}, LI Xin-qing¹, DING Wen-ci^{1,2}, ZHAO Yan-long^{1,2}, YAN Hui^{1,2}

State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550002, China;
 Graduate School, CAS, Beijing 100049, China

Abstract: It is believed that to study the CO₂ releasing or absorbing processes of the Karst water corresponding to the dissolution or formation of carbonate in various environments is the precondition and base for studying carbon cycling effect caused by the dissolution or formation of carbonate. By using Gibbs free energy thermodynamic theory, 162 batches of data for waters sampled from rivers, streams, lakes, springs, underground rivers etc. in different Karst regions were collected for thermodynamic study. Our results have revealed that, 1) The waters in rivers, streams, lakes, and dripping waters in caves could release CO₂ to atmosphere due to the deposition of calcite. They could be potential sources for CO₂ in atmosphere; 2) The underground waters could absorb CO₂ due to the dissolution of carbonate. They could be sinks of CO₂ indirectly; 3) The spring waters could not only absorb CO₂ due to carbonate dissolution but also release CO₂ due to carbonate deposition. They could be sinks or sources of CO₂ indirectly; 4) the variation of hydrochemical characters of spring waters in flooding period does not change their original properties as sinks or sources of CO₂ dramatically. It is indicated that all river waters and spring waters are releasing CO₂ into atmosphere, based on 162 batches of data. The results show that the Gibbs free energy thermodynamic theory could be used to study if the water in Karst areas could be the potential sources or sinks of CO₂ in atmosphere without any limitation.

Key words: Carbonatite; inorganic carbon reservior; carbon dioxide source; carbon dioxide sink; thermodynamics; atmosphere chemistry; hydrochemistry

收稿日期:2006-03-21 收到,05-25 改回

基金项目:中国科学院创新团队国际合作伙伴计划资助项目;中国科学院百人计划资助项目(20020723)

第一作者简介:蒋倩(1980-),女,硕士研究生,专业方向:环境地球化学.

碳酸盐岩是地球上最主要的无机碳库;它对全球变化的响应使其成为大气 CO₂ 的一个潜在源或汇。碳酸盐岩地区岩溶水体是对外界气候和环境最敏感的介质,是碳酸盐岩对大气碳库影响的源头。认识不同环境条件下岩溶水体在释放或吸收 CO₂ 时的反应过程是认识这个无机碳库对全球变化响应的前提和基础。近年来岩溶水体对气候和环境变化响应的研究受到了学术界的广泛关注。

目前,有关岩溶作用与大气 CO2 源与 CO2 汇关 系的研究,常用方法有动力学法、溶蚀测量法和水化 学法等等。研究涉及 CO2 吸收模数和通量、释放 CO₂ 通量、碳酸盐溶解及沉积速率等[1~4]。已有的 研究使目前可以估算全球范围内碳酸盐岩对大气 CO₂ 的贡献,但岩溶地区的环境差异较大,这使岩 溶水中碳酸盐矿物沉淀与溶解作用的变化也较大。 例如,岩溶水系统中,地层中石膏的溶解造成 Ca²⁺ 浓度的升高会导致碳酸盐矿物溶解度的降低;而 CaSO² 等离子对的形成,则促使碳酸盐矿物的溶 解[5];CA(碳酸酐酶)是岩溶水中碳循环的重要因 子,受 pH 和光合作用的影响[6]。岩溶水系统受环 境因素的影响,会使水化学特征发生变化[7,8],进而 导致岩溶水对大气 CO₂ 在潜在源汇之间的变化。 因此,岩溶水系统是一个动态平衡过程,它与环境变 化间的关系值得深入研究。

有关碳酸盐岩- CO_2 - H_2O 岩溶系统的研究,前人从热力学平衡常数出发,建立了 WATEQF^[9]、SOLMINEQ88^[10]和 PHREEQE^[11]等计算程序,用来计算系统参数间的平衡关系。如利用这些程序计算系统的温度(T)、各物质或组分的浓度,以及矿物的沉积与溶解等等。

对岩溶水系统,上述思路可通过计算方解石的 饱和指数(SI_c)来判定方解石的沉淀和溶解状态:

$$SI_{c} = \log(IAP / K_{sp})$$
 (1)
式中:离子活度积 $IAP = a_{Ca^{2+}} \times a_{CO_{3}^{2-}}$, 平衡常数 $K_{sp} = a_{Ca^{2+}} (eq) \times a_{CO_{3}^{2-}} (eq)$ 。

具体判别方法为: 当 $SI_c > 0$ 时, 岩溶水系统对方解石处于过饱和状态, 系统因方解石沉淀而释放 CO_2 ; 当 $SI_c < 0$ 时, 岩溶水系统中方解石不饱和, 发生方解石的溶解而吸收 CO_2 ; 当 $SI_c = 0$ 时, 系统处于平衡状态。

应该说上述计算程序大大方便了应用,但每一个程序都有一定的适用范围。如 SOLMINEQ 88 程序仅适用于不可逆模型及高离子强度(I)的矿物-

溶液系统;PHREEQC 程序适用于温度为 25 °C 的条件 (12);WATEQF 程序则未考虑大气压强 (p) 对矿物溶解与沉淀的影响,以及液体 $(H_2 \Omega)$ 、气体 (CO_2) 的体积变化对热力学函数的贡献 (13) 等等。然而,实际的岩溶水系统的外界条件千差万别,因此要利用已有的某个程序计算全球范围的岩溶水系统,需要进一步完善释放或吸收 CO_2 的准确判断。

除了上述计算方法外,还有另一种途径,即基于吉布斯自由能最小原理的热力学法^[12],但目前应用尚不普遍,因为它要有相关物质和组分的热力学数据,而这些热力学数据并不是每种物质和组分都具备的,即使对碳酸盐岩-CO₂-H₂O 岩溶系统也不一定都适用。如很多文献把 HCO₃、CO₃²离子的比热视为常数。本文选用了最新文献中适用于岩溶系统的离子比热随温度变化的关系式^[14],并通过文献数据拟合获得 Ca²⁺、Mg²⁺离子的比热与温度的关系式。随着研究的积累,物质和组分的热力学数据也在不断发展与完善,使多因素影响下的岩溶水系统的平衡热力学的准确计算成为可能。

1 热力学计算原理和源汇判别方法

1.1 计算原理和方法

岩溶水系统是由固态方解石或白云石、液态 $(H_2())$ 、气态 (CO_2) 及离子态物质和组分组成的多相系统:碳酸盐岩- CO_2 - $H_2()$ 系统,系统存在下列热力学平衡:

$$CO_2(g) + H_2O(1) = H^+(aq) + HCO_3^-(aq)$$
 (2)

$$HCO_3^-(aq) = H^+(aq) + CO_3^{2-}(aq)$$
 (3)

$$CaCO_3(s) = Ca^{2+}(aq) + CO_3^{2-}(aq)$$
 (4)

$$CaMg(CO_3)_2(s) = Ca^{2+}(aq) + Mg^{2+}(aq)$$

$$+ 2 CO_3^{2-}(aq)$$
 (5)

$$H_2()(1) = H^+(aq) + ()H^-(aq)$$
 (6)

式(5)表示白云岩地区岩溶水系统的热力学平衡 关系。虽然白云石的化学组成变化较大,但普遍用 CaMg(CO₃)₂ 来表示。本文也用这一成分进行计算。

为描述方便,我们用下式表示上述热力学平衡 关系:

$$aA + bB = cC + dD \tag{7}$$

式中: A 和 B 为反应物, C 和 D 为生成物; $a \ b \ c$ 和 d 分别为 A 、B、C、D 的摩尔数。

式(7)中不同温度(T)和压力(p)条件下,反应 吉布斯自由能的热力学方程式为[$^{[15]}$: $\Delta_r G(T, p) = \Delta_r G^\circ(T, p^\circ) + \int_{0}^r \Delta_r V dp$ (8) 式中: $\Delta_r G(T, p)$ 是任意 T、p 条件下的反应吉布斯自由能,当反应平衡时, $\Delta_r G(T, p) = 0$; $\Delta_r G^\circ(T, p^\circ)$ 是标准条件下的反应吉布斯自由能,可通过 298. 15K 时的标准反应焓、反应熵、比热变化计算。

采用下式计算系统体积变化对反应吉布斯自由 能的贡献:

$$\int_{10^5}^{\rho} \Delta_r V d\rho = \Delta_r V_S^0 (298.15 \text{K}) \times (\rho - 10^5) + R \times T \times \ln K_f^0$$
(9)

据此,在系统处于热力学平衡时,反应式(8)可写成:

 $0 = \Delta_{\rm r} H^{0} (298.15K) - \Delta_{\rm r} S^{0} (298.15K) \times T + \int_{298.15}^{T} \Delta_{\rm r} C_{p} (T) dT - T \times \int_{298.15}^{T} \left[\Delta_{\rm r} C_{p} (T) / T \right] dT + \Delta_{\rm r} V_{\rm S}^{0} (298.15K) \times (p - 10^{5}) + R \times T \times \ln K_{f}^{0}$

式中:T 是绝对温度(K);p 是大气压(Pa); K_f^o 是反应标准平衡常数;R 是摩尔气体常数,为 8.314 $J/K \cdot mol; \Delta_r H^o$ (298.15K), $\Delta_r S^o$ (298.15K),

 $\Delta_r V_s^0$ (298. 15 K) 分别为 298. 15 K 时反应焓 (J/mol)、反应熵 (J/K·mol)和摩尔体积变化(m^3 /mol)以及 $\Delta_r C_p^0(T)$ 为反应比热 (J/K·mol)与温度的关系式,计算式分别为:

 $\Delta_{\rm r} H^0$ (298. 15K) = $\{ \sum BV_{\rm B} \Delta_{\rm f} H_{\rm m}^0 (B, 298. 15 \text{ K}) \}_{\rm pr} - \{ \sum BV_{\rm B} \Delta_{\rm f} H_{\rm m}^0 (B, 298. 15 \text{ K}) \}_{\rm re}$ (11)

 $\Delta_{\rm r} S^0$ (298. 15 K) = { $\sum BV_{\rm B} S_{\rm m}^0$ (B, 298. 15

K) $_{pr}$ - $\{ \sum BV_{B}S_{m}^{0}(B, 298.15K) \}_{re}$ (12) $\Delta_{r}V_{S}^{0}(298.15 K) = \{ \sum BV_{B}V_{m}^{0}(B, 298.15 K) \}_{re}$

 $(K)_{pr} - \{ \sum BV_B V_m^0 (B, 298.15K) \}_{re}$ (13)

$$\Delta_{\mathbf{r}} C_{p}^{0}(T) = \{ \sum B V_{\mathbf{B}} \triangle_{f} C_{p}, \mathbf{m}^{0}(B, T) \}_{\mathbf{pr}} - \{ \sum B V_{\mathbf{B}} \Delta_{f} C_{p, \mathbf{m}}^{0}(B, T) \}_{\mathbf{rr}}$$

$$(14)$$

在(11)~(14)式中,下标 re、pr 分别表示反应物和产物;B 与 V_B 分别表示平衡式中各物质及其计量系数;平衡式中各项热力学数据如表 1 所示。

式(7)的平衡常数 K_t° 计算方法如下:

$$K_I^0 = a_C^c \times a_D^d / (a_A^a \times a_B^b)_o \tag{15}$$

式中: $a_A \setminus a_B \setminus a_C$ 和 a_D 分别是平衡式(7)中 A、B、C、D 的活度。由于在 0 \sim 100° CO₂ 气体的活度或逸

表 1 T=298.15K, p=10⁵ Pa 标准状态下,本文涉及各物质的热力学数据 Table 1 Thermodynamic data of every substance in the standard situation

	$V_{\mathrm{m}}^{\mathrm{0}}$	$\Delta_f H^0$	$S_{ m m}^0$	å	$\Delta_{\rm r} C_{\rm p}^0 = f(T)$	$\Delta_{\rm r} C_p^0$
	$/\text{cm}^3 \cdot \text{mol}^{-1}$	/kJ • mol ⁻¹ /	J • (mol • K) ⁻¹	/nm	$/J \cdot (mol \cdot K)^{-1}$	/.C.D
H+(aq)	0	0	0	0.90[23]	0	
CaCO ₃ (s)	36.934[20]	-1208.22 ^[20]	92.68[20]		49. 252+0. 1140 $\times T^{[23]}$	$0 \sim 100$
$CaMg(CO_3)_2$	s) 64 365 ^[20]	-2329.86[20]	155. 185 ^[20]		328. $48-25$. 544×0 , $01\times T^{-1/2}-46$. 885	$-23 \sim 27$
Cug (C()3/2(0, 01, 000-	2020,00-	100, 100-		$\times 10^{-5} \times T^{-2} + 79.038 \times 10^{-7} \times T^{-3}$	20 21
$CaMg(C()_3)_2($	s) 64. 365 ^[20]	-2329.86 ^[20]	155. 185 ^[20]		41. $557 + 23$, $952 \times 10^{-3} \times T - 9$, $884 \times 10^5 \times T^{-2[20]}$	$25\sim727$
HCO_3^- (aq)		$-689.9332^{[21]}$	98. 324 ^[21]	0, 45[23]	$-0.67710 + 0.27375 \times T - 10090/(T - 200)^{[14]}$	$0 \sim 110$
CO3- (aq)		$-675.2348^{[21]}$	-49,9988[21]	0, 45 ^[23]	894, 688 $-2.8272 \times T - 21149/(T - 200)$ [14]	$0 \sim 110$
$CO_2(g)$	24465[20]	$-393.52^{[20]}$	$213.69^{[21]}$		24.83+0.041 $\times T^{[25]}$	≤127
$H_2O(1)$	18.068[20]	$-285.83^{[20]}$	69. 91 ^[21]		$58.370 \pm 0.03896 \times T \pm 523.88/(T \pm 200)^{[26]}$	0~110
OH~(aq)		-230.0238[22]	-10.8784 ^[22]	$0.35^{[23]}$	1418. 2-3, 4446 \times T -51473/(T -200) [26]	$0 \sim 110$
G 2+ ()		540 0000[22]	5.0 40.4F223	0 00[23]	$-5371.03329+46.39669 \times T-0.13322 \times T^2+$	0 100
Ca ²⁺ (aq)		-543.0999[22]	- 56. 484	0.60[23]	1, $26301 \times 10^{-4} \times T^{[31]}$	$0 \sim 100$
M=2+()		-465.9595 ^[22]	129_07 2 [22]	0.80[23]	$-11144.31064 + 96.45585 T - 0.27719 T^2 +$	0~100
Mg ²⁺ (aq)		- 400, 9090	- 130, 072	0. 00000	2, $64206 \times 10^{-4} \times T^{(32)}$	0~100

注:本表适用于 0~100 ℃的岩溶水; Ca²+、Mg²+的 Δ, Cb(T)据文献[22] 中 Δ,Cb 值并进行拟合:相关系数(R²)分别为 0.995 和0.997

度系数接近 $1(0.9971 \sim 0.9955)^{[16]}$,计算时我们用 CO_2 分压表示其活度。

(15)式中各物质的活度由下式计算:

$$\alpha_{i} = r_{i} \times c_{i} \tag{16}$$

式中: r_i 是 i 物质的活度系数, c_i 为 i 物质实测浓度 (mol/L)。

活度系数由 Debey- Hückel 极限公式计算:

$$\log r_{i} = -A \times Z_{i} \times \sqrt{I} / (1 + B \times \dot{a} \times \sqrt{I})$$
 (17)

式中: $\overset{a}{a}$ 是水溶液中 Kielland's 离子大小(nm,表1);I 是离子强度(mol/L); Z_i 是 i 离子的价数。计算涉及岩溶水中可检测全部主要离子(K^+ 、 Na^+ 、 Ca^{2+} 、 Mg^{2+} 、 HCO_3^- 、 SO_4^{2-} 、 Cl^-);A 和 B 是 Deby-Hückel 常数。

离子强度 I 可由下式计算:

$$I = 1/2\sum c_i \times Z_i^2 \tag{18}$$

当 I < 0.1 时,Deby-Hückel 极限公式有很好的精确性,适用于岩溶水离子强度的计算。

 $A \setminus B$ 的计算公式^[17]:

A=1.824 829 238
$$\times 10^6 \times \rho^{1/2} (\epsilon \times T)^{-(3/2)}$$

(19)

$$B=50.291~586~49~\times 10^8 \times \rho^{1/2} (\epsilon \times T)$$

(20)

式中:ρ是溶剂的密度(g/cm³);ε是溶剂的介电常数;计算岩溶水时,溶剂为水。

ρ和ε的计算式[18.19]为:

$$\varepsilon = 2727.586 + 0.6224107 \times T - 466.9151$$

$$\times \ln T - 52000.87/T$$
 (21)

$$\rho$$
= 0.19009 + 0.00717 × T - 2.00336 × 10^{-5} × T^2 + 1.69829 × 10^{-8} × T^3

(22)

1. 2 岩溶水系统对大气 CO₂ 潜在影响的判别式

在计算时假设实测 HCO_3 " 浓度为平衡态浓度,根据平衡式(3),计算 CO_3^{3-1} 浓度及对应的活度 $a_{CO_3^{3-1}}$ 。依据前述方解石矿物的饱和指数计算方法,则有:

$$SI_{c} = \log \left[a_{Ca^{2+}} / a_{Ca^{2+}} (eq) \right]$$

=
$$\log \left[c_{Ca^{2+}} / c_{Ca^{2+}} (eq) \right]$$
 (23)

由(23)式可知,仅仅通过计算岩溶水系统 Ca²⁺ 的平衡浓度与 Ca²⁺ 的实测浓度大小的分析,即可得知任一岩溶水系统中方解石的沉淀和溶解状态。对应于 SI。的判别式有:

若 c_{ca^2+} (实测) $> c_{\text{ca}^2+}$ (平衡),则岩溶水系统将 发生方解石矿物的沉淀,释放 CO_2 ,成为大气 CO_2 的潜在源; (24)

若 c_{Ca^2+} (实测) $< c_{\text{Ca}^2+}$ (平衡),则岩溶水系统将 发生方解石矿物的溶解,吸收 CO_2 ,成为大气 CO_2 的潜在汇; (25)

若 $c_{\text{ca}^{2+}}$ (实测) = $c_{\text{ca}^{2+}}$ (平衡),则岩溶水系统处于平衡状态。 (26)

据此,我们对世界范围内不同岩溶地区 162 组 实测数据^[3,7,8,27~32]进行了计算处理,研究了相应条 件下不同类型岩溶水系统与 CO₂ 的关系。

2 结果与讨论

计算结果显示(表 2),岩溶地区河水(图 1)、溪水(图 2)、湖水(图 3)和洞穴滴水(图 4)的 Ca²⁺ 平衡

浓度均小于 Ca2+ 测定值。式(24)表明,上述四类岩 溶水都处于方解石的过饱和状态,因此都有方解石 的沉淀,同时释放 CO2,成为大气 CO2的潜在源。 这一发现与前人利用 SOLMINEQ88 等程序计算的 结果[7.27.29] 部分不同。这种差异可能源于两个方 面。一方面是热力学途径差异。普遍认为,热力学 化学平衡方法有两种[12]:平衡常数法和吉布斯自由 能最小法。前人以前一种方法研究岩溶系统时,利 用电导法或其他滴定法获得热力学平衡常数与温度 的关系式的回归式。这种平衡常数表达式存在是否 适用于碳酸盐岩系统的问题。并且这些程序计算饱 和指数(SI)误差较大 $(10\%)^{[7.29]}$ 。据此,通过SI值 来判定岩溶水中碳酸盐岩的溶解与沉淀的可靠性有 待研究。本研究用后一种方法,基于各反应物、生成 物的热力学数据 Δ,H°(298.15 K)、Δ,S°(298.15 K)、 $\Delta_r C_p^0(T)$ 、 $\Delta_r V_S^0(298.15 \text{ K})$ 和平衡式(3)或(4) 获得平衡常数与温度的关系式,克服前一种方法的 不足,确保平衡常数适用于碳酸盐岩系统。另一方 面是影响岩溶系统的因素。前人计算时,各程序仅 适用于一定条件下的岩溶水系统,如 SOLMINEQ88 程序仅适用于不可逆模型及高离子 强度(I)的碳酸盐(矿物)-溶液系统,PHREEQC程 序仅适用于温度为 25℃的溶液系统[13],WATEQF 程序则未考虑大气压(ρ)对矿物溶解与沉淀的影响 及液体 (H_2O) 、气体 (CO_2) 对热力学函数的贡 献[33]。这些条件限制了应用性。我们的研究充分 考虑溶剂的密度(ρ)、介电常数(ε)、方解石或白云 石、气体(CO₂)、液体(H₂())溶解时体积变化对吉布 斯自由能($\triangle G^{\circ}$)的贡献。结果表明,在充分考虑这 些因素的情况下,利用吉布斯自由能热力学原理,可 以预测任一岩溶水对大气CO2的潜在源和汇。

与上述四种岩溶水相反,岩溶地区的地下水(图 5)的 Ca^{2+} 平衡浓度均大于实际测定值,据式(25)岩溶地下水在其所处的条件下正发生方解石的溶解,同时吸收 CO_2 ,因而起到大气 CO_2 潜在汇的作用。这与文献[32]中以 p_{CO_2} 的计算值、实测值比较大小的结论一致。

计算结果还显示,泉水在所处条件下既可以沉淀出方解石,又能溶解方解石,即既是大气 CO₂ 的潜在源,又是其潜在汇(图 6)。洪水期水径流量的变化会影响泉水的水化学特征^[3],造成泉水在释放与吸收 CO₂ 间的转变。但我们的计算并没有发现地表水量的变化引起泉水的这种跨跃性转变。

表 2 岩溶水实测值、计算 Ca²⁺浓度及岩溶水系统对大气 CO, 的作用

Table 2 The calculated Ca2+ concentration and the state of water CO2 relation for the water system

-												,			
* ₩ ₩	古	ï	T(K)	$Ca^{2+} \times 10^{-3}$	$\overline{}$	四中伍任沙	本文選定	¥ ¥ ₹	ц #	ñ	TILVI	$Ca^{2+} \times 10^{-3}Ca^{2+} \times 10^{-3}$	$Ca^{2+} \times 10^{-3}$		本文測定
大型で	44	- ud	(W)	(mol/L) ^a	$(mol/L)^b$	コメほねだ	值的结论	火型	ŧ	-ud	(V)	$(mol/L)^a$	(mol/1) ^b	引入阻缩形	值的结论
-	oR1[27]	7.90	298, 45	1,8963	0, 1316	释放 CO2	释放 CO2	38	gR3[27]	6.84	304, 25	1.9462	1,3565	吸收 CO ₂	释放 CO2
2	$\mathbf{oR2}^{\lceil 27 ceil}$	7,82	297, 35	1,8713	0.1617	释放 CO ₂	释放 CO ₂	39	$\mathbf{gR4}^{[27]}$	6.81	304.05	1,9711	1,4571	吸收 CO2	释放 CO ₂
æ	$\mathbf{oR3}^{[27]}$	7,93	297.95	1,8963	0.1227	释放 CO2	释放 CO2.	40	$\mathbf{gR}5^{\parallel27}$	6.81	303,55	1.9462	1,4421	吸收 CO2	释放 CO ₂
4	$\mathbf{oR4}^{[27]}$	8.09	295.85	1.8713	0.0920	释放 CO ₂	释放 CO2	河 41	$htR3[^{28}]$	8, 12	291.15	1.6470	0.2626	1	释放 CO ₂
വ	$\mathbf{oR}5^{[27]}$	8.08	296.35	1.7466	0.0944	释放 CO ₂	释放 CO ₂	42	$htR4^{[28]}$	8, 33	295,05	1,6230	0.1375	l	释放 CO ₂
9	$\mathbf{oR6}^{[27]}$	8. 10	294.65	1.6967	0.0964	释放 CO2		43	$\mathbf{h_{SR3}}^{[28]}$	8, 23	291.15	1,5940	0.2149	1	释放 CO2
7	$oR7^{[27]}$	8.11	294.75	1.6717	0.0932	释放 CO ₂		* 44	$hsR4^{[28]}$	8, 47	293, 65	1.4450	0.1172	1	释放 CO ₂
∞	${ m oR8}^{[27]}$	8.09	294.75	1.6967	0.0983	释放 CO2		45	$hIR3^{[28]}$	8.24	290,55	1,7020	0.2172	1	释放 CO ₂
6	${ m oR}9^{[27]}$	8.08	294.45	1,6218	0.1022	释放 CO2		46	$hIR4^{[28]}$	8.37	293.55	1,4980	0,1383	1	释放 CO2
10	$\mathbf{oR10}^{[27]}$	8.08	294,25	1.6468	0.1020	释放 CO2		47	$hR^{[28]}$	8, 12	291.15	1,6500	0.2567	1	释放 CO ₂
Ξ	$oR11^{[27]}$	8.06	293,85	1,6717	0, 1095	释放 CO2	释放 CO2	1	IC1[27]	6.79	303, 45	1.9462	1,5017	吸收 CO2	释放 CO2
12	$\mathbf{oR12a}^{[27]}$	8.09	293, 75	1,6717	0.1020	释放 CO2	释放 CO ₂	2	$lhCla^{[27]}$	69.9	303, 25	2,0709	1,800	吸收 CO,	释放 CO,
13	$oR12b^{[27]}$	8.09	294.65	1,6218	0,0995	释放 CO2	释放 CO ₂	~	15(115[27]	6 79	303 15	2.0460	1 9445	時地でい	数据でした。
14	$oR13^{[27]}$	8.08	294.45	1.5969	0.1043	释放 CO ₂	释放の2	•	(21[22]		2000	0111	1.0410	数	年及 502
15	$\mathbf{oR14}^{[27]}$	8, 12	294.25	1.6218	0.0952	释放(10)2		*	در ۱۳۰۱	96.7	296.73	1,9711	0.2988		神及りい
16	oR15 ^[27]	8.08	292, 45	1,5470	0.1121	释放 CO2	释放 CO ₂	rc	$cC2^{[27]}$	7.77	296.75	1.9462	0.1929	释放 CO2	释放 CO2
17	$\mathbf{oR16}^{\llbracket 27 brace}$	8.15	292, 25	1,5719	0.0985	释放 CO2		9	$cC3^{[27]}$	7.86	294.35	1.8713	0, 1725	释放 CO2	释放 CO ₂
18	$\mathbf{oR17}^{[27]}$	8, 13	293, 75	1.5719	0.0964	释放 CO2		7	$cC4^{\lceil 27 ceil}$	7.88	293,05	1,7965	0, 1763	释放 CO2	释放 CO2
河 19	$\mathbf{oR18}^{[27]}$	8, 13	293.65	1.5470	0.0981	释放 CO2	释放 CO2	∞	$cC5^{[27]}$	7.95	293, 75	1,7965	0, 1486	释放 CO2	释放 CO2
20	$oR19^{[27]}$	8. 10	293, 55	1,4971	0.1065	释放 CO2	释放 CO2	6	$^{\mathrm{cC6}[z_{7}]}$	8, 13	293, 25	1.6717	0, 1019		
\star 21	$\mathbf{oR}20^{\lceil 27 \rceil}$	8.10	293, 45	1,4721	0.1076	释放 CO2	释放 CO ₂	10	cC7[27]	8, 12	293, 45	1.6468	0.0892	释放 CO2	释放 CO2
22	$\mathbf{gR1}^{[27]}$	7.21	299, 75	1,8963	0.6524	释放 CO2	释放 CO2	11	$IC2[z_7]$	6.92	302, 95	1,9462	1, 1279	释放 CO2	释放 CO ₂
23	$\mathbf{gR2}^{[27]}$	7.81	295, 25	1, 9212	0.1899	释放 CO2	释放 CO ₂	12	IC3[27]	7.16	300, 75	1,9212	0,6931	释放 CO2	释放 CO ₂
24	$\mathbf{gR6}^{[27]}$	7.22	299, 75	1.9711	0.6427	释放 CO2	释放 CO2	13	1C4[27]	7, 53	299.35	1,9212	0,3085	释放 CO2	释放 CO2
25	gR7[27]	7, 44	298. 75	1.9711	0.3870	释放 CO,		1	[C5[27]	8.01	296,85	1.8464	0.1123		释放 CO ₂
3.6	GP 0[27]	7 68	297.55	1 9711		数本「○。		15	$[C6^{[27]}]$	7.98	294,65	1,7965	0, 1303		释放 CO2
01 6	E.D.10[27]	7 03	905 95	1 0919		本	4 4 50.2	16	IC7[27]	8.04	291.85	1,6967	0, 1278	释放 CO2	释放 CO2
7 6	gn10 ^[27]		290,00	1.3212	0.1303	年 Q C C 2 4 A C C 5	存成で記載	17	IC8[27]	8, 32	294,85	1.6218	0.0623	释放 CO2	释放 CO ₂
87	gKIIch	1.93	295.05	1. 946Z	0. 1536	神及でい		18	IC9a 27	7.24	297, 65	1,6967	0,6714	释放 CO2	释放 CO2
29	$gR12^{\lfloor 27 \rfloor}$	8.02	294.85	1.8963	0, 1261	释放 CO ₂		19	$1C10^{[27]}$	7, 42	298.05	1,7965	0, 4261	释放 CO2	释放 CO ₂
30	$\mathbf{gR13}^{[27]}$	8.05	294.35	1.8214	0, 1198	释放 CO ₂		20	$1C12^{[27]}$	8. 15	293, 45	1,5719	0.0964	释放 CO2	释放 CO2
31	$\mathbf{gR14}^{[27]}$	8.02	294.85	1.8214	0.1274	释放 CO ₂		21	$\mathbf{lhC}_{0}^{[27]}$	7,26	299.85	1.9711	0.5534	释放 CO2	释放 CO ₂
32	$\mathbf{gR1}5^{[27]}$	8.05	294.65	1,8214	0.1186	释放 CO2		22	$Colless^{[27]}$	6.99	299, 45	1,9212	1.0677	释放 CO2	释放 CO ₂
33	$\mathbf{gR16}^{[27]}$	8.08	294.95	1.8214	0.1100	释放 CO2	释放 CO ₂	23	$^{\mathrm{lhC2}^{[27]}}$	7, 46	298, 45	1.9462	0,3606	释放 CO2	释放 CO2
34	$\mathbf{gR17}^{[27]}$	8.08	294.75	1.8214	0.1113	释放 CO2		24	$^{\mathrm{LC3}^{[27]}}$	7,55	297, 75	1, 9711	0.0300	释放 CO2	释放 CO2
35	$\mathbf{gR18}^{\lfloor 27 floor}$	8.08	294.75	1,7965	0.1116	释放 CO2		25	1hC4[27]	7,47	297, 75	1.9711	0.3567	释放 CO2	释放 CO ₂
36	$gR19^{[27]}$	8. 11	295, 15	1.5719	0.0982			26	$^{\mathrm{IhC5}[27]}$	7.76	297,55	1,9711	0,1868	释放 CO2	释放 CO ₂
37	gR20 ^[27]	8.08	295, 45	1,5220	0.1039	释放 CO2	释放 CO ₂	27	1hC6 ^[27]	7.83	297.15	1,9711	0.1613	释放 CO2	释放 CO2

蒋 倩等/岩溶水系统对大气 CO2 的潜在影响——基于热力学的研究

	(mol/L) ^b 7人出海路 0.1230 釋放 CO ₂ 0.1220 釋放 CO ₂ 0.1192 释放 CO ₂ 0.1076 释放 CO ₂ 0.1437 释放 CO ₂ 0.0982 释放 CO ₂	估价件次	大型で	ţ	hi	N)	(mol/L)	(mol/L)	コ人国名の	** +/ +/ +/
28 lhC7[27]	释释释释释释辞 放放放放放放 放	1目的4年化								但的结论
IhC7a(zz)	释释释释释释 故故故故故故 故	释放 CO ₂	6	glS25 ^[3]	7.02	292, 55	2, 1001	2, 2062	吸收 CO ₂	吸收 CO2
InC8[27]	释释释释释辞		10	$xgS3^{[3]}$	6.48	331, 15	2,5675	0.9343	释放 CO2	释放 CO2
hCg[27]	释释释释 放放放放		1	ssS3[28]	7.34	290.05	1, 1620	1.4366	ļ	版表 CO ²
IhClo[c27]	释释释a 放放放址		12	ssS4[28]	7.05	290,05	0.9100	2, 7253	ļ	数 数 で の が
IhCitoa 27 8 111 295.05 IhCitoa 27 8 08 293.45 IhCito 27 8 08 293.05 whS2 71 8 28 28.95 whS4 71 8 35 282.95 whS6 71 8 48 284.15 cSTR6 8 6 65 308.15 cSTR7 8 7 00 300.15 cSTR7 8 7 10 298.15 cSTR-Dis 7 24 295.15 cSTR-Dis 7 34 298.15 sSTR-Dis 7 34 298.15 sSTR-Fils 7 88 296.95 sSTR-Fils 8 35 294.15 sSTR-Fils 8 31 291.65 sSTR-Fils 7 86 280.95 sGdS 31 7 20 346.15 sSTR-Fils 7 86 381.15 sSTR-	辑 辑 故 故 故	释放 C()2	13	$seS4^{[28]}$	7.32	289.85	1.0700	1,5602	l	場域 CO2
hC10b ^[27] 8.08 295.15 hC11 ^[27] 8.02 293.45 hC13 ^[28] 8.02 293.45 hC13 ^[28] 8.02 293.45 hC13 ^[28] 9.23 291.85 whS1 ^[7] 7.69 282.45 whS2 ^[7] 8.28 28.95 whS4 ^[7] 8.28 28.95 whS6 ^[7] 8.42 282.95 whS6 ^[7] 8.48 284.15 cSTRg ^[8] 6.71 308.15 cSTRg ^[8] 7.43 305.15 cSTRg ^[8] 7.24 298.15 cSTRg ^[8] 7.24 298.15 sSTR-D ^[8] 7.34 298.15 sSTR-D ^[8] 7.34 298.15 sSTR-F ^[8] 8.17 296.15 sSTR-F ^[8] 8.35 294.15 sSTR-F ^[8] 7.86 280.95 gdS ^[3] 7.20 346.15 sdSTR-F ^[8] 7.86 280.95 gdS ^[3] 7.20 346.15	韓韓	释放 C()2	14	$^{\mathrm{pbS3}^{[28]}}$	8.70	289.75	1,2160	0.0537	1	释放 C() ²
IhC11[27] 8 02 293.45 IhC12[27] 8 08 293.45 IhC13[27] 8 08 293.45 IhC13[28] 9 23 291.85 whS2[7] 8 03 282.45 whS2[7] 8 03 282.95 whS3[7] 8 28 28 29 28 29 29 29 29 29 29 29 29 29 29 29 29 29	14 23	释放 C()2	15	$\mathrm{pbS4}^{[28]}$	8.59	292, 35	0.9810	0.0681	1	释放 C()2
IhC12[27] 8.08 293.45 IhC13[27] 8.02 293.05 IhC13[27] 8.02 293.05 whS2[7] 7.69 282.45 whS3[7] 8.03 282.65 whS4[7] 8.28 282.95 whS6[7] 8.48 283.95 whS6[7] 8.48 283.95 whS6[7] 8.48 284.15 whS7[7] 8.48 284.15 whS6[7] 8.48 284.15 whS6[7] 8.48 284.15 whS6[7] 8.42 284.15 cSTR8[8] 6.65 308.15 cSTR8[8] 6.45 308.15 cSTR7[8] 7.24 298.15 cSTR7[8] 7.24 298.15 cSTR7[8] 7.24 298.15 sSTR-D18] 7.25 298.15 sSTR-D18] 7.36 298.15 sSTR-F18] 8.17 296.15 sSTR-F18] 8.18 294.15 sSTR-F6[8] 8.35 294.15 sSTR-F6[8] 8.35 294.15 sSTR-F6[8] 8.31 291.65 sSTR-F6[8] 8.31 291.65 sdSTR-F6[8] 8.31 291.65 sdSTR-F6[8] 8.33 294.15 sdSTR-F6[8] 8.33	年及	释放 CO ₂	16	$alS3[^{28}]$	7.88	290.85	1.2700	0.4167	J	释放 C()2
IhCl3{z} hCl3{z} hCl3{z} hCl3{z} hCl3{z} whS1{z} whS1{z} whS2{z} whS4{z} xh4 284 284.15 xh4 284.15	释放	释放 CO2	17	$alS4^{[28]}$	7.30	291.15	1,7830	0.9689	-	释放 C()2
phC3[28] 9, 23 291.85 whS1[7] 7, 69 282.45 whS2[7] 8, 03 282.65 whS2[7] 8, 28 282.95 whS6[7] 8, 48 283.55 whS6[7] 8, 48 283.55 whS6[7] 8, 48 284.15 whS8[7] 8, 48 284.15 whS8[7] 8, 48 284.15 whS8[7] 8, 48 284.15 whS8[7] 8, 42 284.15 cSTRg[8] 6, 65 308.15 cSTRg[8] 7, 38 305.15 cSTRg[8] 7, 24 295.15 cSTRg[8] 7, 24 295.15 cSTRg[8] 7, 24 295.15 cSTR-D[8] 7, 24 298.15 sSTR-D[8] 7, 24 298.15 sSTR-F[8] 7, 38 294.15 sSTR-F[8] 8, 18 294.15 sSTR-F[8] 7, 06 346.15 sdRS[3] 7, 20 346.15 sdRS[3] 7, 20 346.15 sdRS[3] 7, 20 346.15	0.1296 释放 CO ₂	释放 CO2	18	$\mathbf{pfS}3^{\lfloor 28 floor}$	7.73	291.65	1,6210	0.3994	ŧ	释放 C()2
whS1 ^[7] 7. 69 282.45 whS2 ^[7] 8. 03 282.65 whS3 ^[7] 8. 28 282.95 whS4 ^[7] 8. 42 283.25 whS6 ^[7] 8. 48 284.15 whS6 ^[7] 8. 48 284.15 whS8 ^[7] 8. 48 284.15 whS8 ^[7] 8. 42 284.15 whS8 ^[7] 8. 42 284.15 cSTR9 ^[8] 6. 65 308.15 cSTR7 ^[8] 7. 38 305.15 cSTR7 ^[8] 7. 70 300.15 cSTR2 ^[8] 7. 24 295.15 cSTR-D1 ^[8] 7. 24 295.15 cSTR-D1 ^[8] 7. 24 295.15 cSTR-D1 ^[8] 7. 38 294.15 sSTR-D1 ^[8] 7. 34 298.15 sSTR-D1 ^[8] 7. 34 298.15 sSTR-F1 ^[8] 7. 34 298.15 sSTR-F1 ^[8] 8. 17 296.15 sSTR-F1 ^[8] 7. 34 294.15 sSTR-F1 ^[8] 8. 35 294.15 sSTR-F1 ^[8] 8. 35 294.15 sSTR-F1 ^[8] 8. 35 294.15 sSTR-F1 ^[8] 7. 26 380.95 sSTR-F1 ^[8] 7. 26 346.15 sSTR-F1 ^[8] 7. 26 346.15 sSTR-F1 ^[8] 7. 20 341.15 strangled 1. 201.65 strangled 2. 202.203 strangled	,	释放 CO ₂	19	$\mathrm{pfS4}^{[28]}$	8.01	290, 25	1.4450	0.6889	ļ	释放 C()2
whS2 ^[7] 8.03 282.65 whS3 ^[7] 8.28 28.95 whS4 ^[7] 8.42 283.25 whS6 ^[7] 8.48 284.15 whS6 ^[7] 8.48 284.15 whS8 ^[7] 8.48 284.15 whS8 ^[7] 8.48 284.15 cSTRg ^[8] 6.65 308.15 cSTRg ^[8] 7.13 308.15 cSTRg ^[8] 7.24 295.15 cSTRg ^[8] 7.24 295.15 cSTRg ^[8] 7.24 295.15 cSTRg ^[8] 7.38 305.15 cSTRg ^[8] 7.38 294.15 sSTR-D[^{8]} 7.35 298.15 sSTR-D[^{8]} 7.35 298.15 sSTR-F[^{8]} 7.34 296.15 sSTR-F[^{8]} 7.34 294.15 sSTR-F[^{8]} 8.17 296.15 sSTR-F[^{8]} 8.18 294.15 sSTR-F[^{8]} 8.18 294.15 sSTR-F[^{8]} 8.13 291.65 sSTR-F[^{8]} 8.13 291.65 sSTR-F[^{8]} 8.13 291.65 sSTR-F[^{8]} 7.26 380.95 sSTR-F[^{8]} 7.26 346.15 sSTR-F[^{8]} 8.13 291.65 sSTR-F[^{8]} 7.20 346.15 sSTR-F[^{8]} 7.20 346.15 sSTR-F[^{8]} 7.20 346.15 sSTR-F[^{8]} 7.20 346.15	0.7253 释放 CO ₂	释放 CO2	泉 20	$^{ m phS3}$	7.58	291.95	1,6620	0.5774	1	释放 C() ₂
whS3 ^[7] 8. 28 28. 95 whS4 ^[7] 8. 35 whS4 ^[7] 8. 42 283. 25 whS6 ^[7] 8. 42 283. 55 whS6 ^[7] 8. 48 284. 15 whS9 ^[7] 8. 48 284. 15 whS9 ^[7] 8. 48 284. 15 cSTRg ^[8] 6. 65 308. 15 cSTRg ^[8] 6. 71 308. 15 cSTRg ^[8] 7. 38 305. 15 cSTRg ^[8] 7. 24 295. 15 cSTRg ^[8] 7. 24 296. 15 sSTR-D[^{8]} 7. 38 296. 95 sSTR-F ^[8] 7. 38 296. 95 sSTR-F ^[8] 8. 17 296. 15 sSTR-F ^[8] 8. 17 296. 15 sSTR-F ^[8] 8. 18 294. 15 sSTR-F ^[8] 8. 33 294. 15 sSTR-F ^[8] 8. 33 294. 15 sSTR-F ^[8] 8. 31 291. 65 sSTR-F ^[8] 8. 31 291. 65 sSTR-F ^[8] 7. 86 395. 165 sSTR-F ^[8] 7. 86 396. 15 sSTR-F ^[8] 8. 31 294. 15 sSTR-F ^[8] 8. 31 294. 15 sSTR-F ^[8] 8. 33 294. 15 sSTR-F ^[8] 7. 26 346. 15 sdc ^[3] 7. 20 346. 15 sdc ^[3] 7. 20 346. 15	0.3286 释放 CO ₂			ssS3(30) [28]	9.24	288.35	1.0540	0.0197	I	数 (C) (C)
whS4[7] 8.35 283.25 whS5[7] 8.42 283.55 whS6[7] 8.48 283.95 whS6[7] 8.48 284.15 whS8[7] 8.48 284.15 whS8[7] 8.48 284.15 cSTR9[8] 6.65 308.15 cSTR7[8] 7.38 305.15 cSTR7[8] 7.43 305.15 cSTR2[8] 7.24 295.15 cSTR2[8] 7.24 295.15 cSTR-D[8] 7.35 300.15 cSTR-D[8] 7.24 298.15 sSTR-D[8] 7.25 298.15 sSTR-D[8] 7.32 293.15 sSTR-F6[8] 8.17 296.15 sSTR-F6[8] 8.18 294.15 sSTR-F6[8] 8.35 294.15 sSTR-F6[8] 8.35 294.15 sSTR-F6[8] 8.31 291.65 sSTR-F6[8] 8.33 294.15 sdtS[3] 7.20 346.15	0.1824 释放 CO ₂	释放 CO2		seS3[28]		291.75	1, 1350	0.6254	t	春 秋 (CO)
whS6 ^[7] 8.42 283.55 whS6 ^[7] 8.48 284.15 whS7 ^[7] 8.48 284.15 whS8 ^[7] 8.48 284.45 whS8 ^[7] 8.42 284.25 cSTR8 ^[8] 6.65 308.15 cSTR8 ^[8] 6.71 308.15 cSTR8 ^[8] 7.43 305.15 cSTR8 ^[8] 7.24 298.15 cSTR ^[8] 7.24 298.15 cSTR-D1 ^[8] 7.24 298.15 sSTR-D1 ^[8] 7.24 298.15 sSTR-D1 ^[8] 7.25 298.15 sSTR-F1 ^[8] 7.32 293.15 sSTR-F1 ^[8] 7.34 298.15 sSTR-F1 ^[8] 8.17 296.15 sSTR-F1 ^[8] 8.17 296.15 sSTR-F1 ^[8] 8.18 294.15 sSTR-F6 ^[8] 8.35 294.15 sSTR-F6 ^[8] 8.35 294.15 sSTR-F6 ^[8] 8.35 294.15 sSTR-F6 ^[8] 8.31 291.65 mS6 ^[3] 7.26 361.15 sdxSTR-F6 ^[8] 7.26 346.15 stranger 3.20 346.15	1532 释放	释放 CO2	№ 23	$\mathbf{bS3}^{\lfloor 29 \rfloor}$	6.95	280, 35	4.3420	2.0612		幕 対 :
whSe ^[7] 8.48 283.95 whS7 ^[7] 8.48 284.15 whS8 ^[7] 8.42 284.15 whS9 ^[7] 8.42 284.25 cSTRg ^[8] 6.71 308.15 cSTR ^[8] 7.38 305.15 cSTR ^[8] 7.00 300.15 cSTR ^[8] 7.24 295.15 cSTR ^[8] 7.24 295.15 cSTR ^[8] 7.25 298.15 sSTR-D ^[8] 7.32 293.15 sSTR-F ^[8] 8.17 296.15 sSTR-F ^[8] 8.17 296.15 sSTR-F ^[8] 8.18 294.65 sSTR-F ^[8] 8.18 294.15 sSTR-F ^[8] 8.18 294.15 sSTR-F ^[8] 8.18 294.15 sSTR-F ^[8] 8.31 291.65	释放	释放 CO ₂	24	$\frac{1}{2}$	6.61	283.85	4.7741	3, 3916		本 表 以 S S S S S S S S S S S S S S S S S S
whSq ^[7] 8.48 284.15 whSg ^[7] 8.48 284.45 whSg ^[7] 8.48 284.45 cSTRg ^[8] 6.65 308.15 cSTRg ^[8] 7.38 305.15 cSTRg ^[8] 7.43 305.15 cSTRg ^[8] 7.24 295.15 cSTRg ^[8] 7.24 295.15 cSTRg ^[8] 7.24 295.15 cSTRg ^[8] 7.25 298.15 sSTR-Dl ^[8] 7.25 298.15 sSTR-Fl ^[8] 7.88 296.95 sSTR-Fl ^[8] 8.17 296.15 sSTR-Fl ^[8] 8.17 296.15 sSTR-Fl ^[8] 8.18 294.15 sSTR-Fl ^[8] 8.18 294.15 sSTR-Fl ^[8] 8.35 294.15 sSTR-Fl ^[8] 8.35 294.15 sSTR-Fl ^[8] 8.36 280.95 gdS ^[3] 7.06 346.15 sdRs ^[3] 7.06 346.15 sdRs ^[3] 7.20 361.15 ltS ^[3] 7.20 333.15	释放	释放 CO ₂	25	$\mathbf{bS2}^{\lfloor 2g \rfloor}$	6.53	284.05	4.8068	3,9978		春 な に い い い い い い い い い い い い い い い い い い
whSg ^[7] 8, 48 284, 45 whSg ^[7] 8, 42 284, 25 cSTRg ^[8] 6, 65 308, 15 cSTRg ^[8] 6, 71 308, 15 cSTRg ^[8] 7, 43 305, 15 cSTRg ^[8] 7, 24 295, 15 cSTRg ^[8] 7, 24 295, 15 cSTRg ^[8] 7, 24 298, 15 sSTR-D[^{8]} 7, 25 298, 15 sSTR-D[^{8]} 7, 32 293, 15 sSTR-F[^{8]} 7, 34 298, 15 sSTR-F[^{8]} 8, 17 296, 15 sSTR-F[^{8]} 8, 17 296, 15 sSTR-F[^{8]} 8, 18 294, 15 sSTR-F[^{8]} 8, 18 294, 15 sSTR-F[^{8]} 8, 33 294, 15 sSTR-F[^{8]} 8, 34 294, 15 sSTR-F[^{8]} 8, 35 294, 15 sSTR-F[^{8]} 8, 37 294, 15 sSTR-F[^{8]} 8, 37 294, 15 sSTR-F[^{8]} 8, 37 294, 15 sSTR-F[^{8]} 7, 26 361, 15 ltS ^[3] 7, 20 361, 15 ltS ^[3] 7, 20 346, 15 zdtS ^[3] 7, 20 333, 15	1115 释放	释放 CO,	<u>5</u> 6	S31a ^[30]	7.08	292.35	2, 2581	1, 7939		春 (CO)
whSg[7] 8, 42 284, 25 cSTRg[8] 6, 65 308, 15 cSTRR[8] 6, 71 308, 15 cSTRR[8] 7, 38 305, 15 cSTRR[8] 7, 43 305, 15 cSTRR[8] 7, 24 295, 15 cSTR-D[8] 7, 24 295, 15 cSTR-D[8] 7, 24 298, 15 sSTR-D[8] 7, 25 298, 15 sSTR-D[8] 7, 34 298, 15 sSTR-F[8] 7, 34 298, 15 sSTR-F[8] 8, 17 296, 15 sSTR-F[8] 8, 18 294, 15 sSTR-F[8] 8, 18 294, 15 sSTR-F[8] 8, 35 294, 15 sSTR-F[8] 8, 35 294, 15 sSTR-F[8] 8, 31 291, 65 sSTR-F[8] 8, 31 291, 65 sSTR-F[8] 8, 31 291, 65 sSTR-F[8] 7, 26 361, 15 sGR[3] 7, 20 361, 15 sdtS[3] 7, 20 346, 15 sdtS[3] 7, 20 346, 15	1214 释放	释放 CO,	27	$S29a^{\lfloor 30 \rfloor}$	7. 10	292. 15	2, 2099	1.8885		春秋 (CC)
cSTRg ^[8] 6, 65 308, 15 cSTRg ^[8] 6, 71 308, 15 cSTRg ^[8] 7, 38 305, 15 cSTRg ^[8] 7, 43 305, 15 cSTRg ^[8] 7, 24 295, 15 cSTR-D ^[8] 7, 24 295, 15 cSTR-D ^[8] 7, 25 298, 15 sSTR-D ^[8] 7, 32 298, 15 sSTR-D ^[8] 7, 34 298, 15 sSTR-F ^[8] 7, 34 298, 15 sSTR-F ^[8] 8, 17 296, 15 sSTR-F ^[8] 8, 17 296, 15 sSTR-F ^[8] 8, 18 294, 15 sSTR-F ^[8] 8, 35 294, 15 sSTR-F ^[8] 8, 35 294, 15 sSTR-F ^[8] 8, 31 291, 65 sSTR-F ^[8] 7, 86 280, 95 sSTR-F ^[8] 7, 26 346, 15 sdc ^[3] 7, 20 346, 15 sdc ^[3] 7, 20 346, 15 sdc ^[3] 7, 20 346, 15	1530 释放	释放 CO2	28	S291a ¹³⁰ 1	7, 19	292, 03	2.0657	1.5703	塚枝 CO ₂	春秋 での は
cSTR8 8 6,71 308.15 cSTR7 8 7,38 305.15 cSTR3 8 7,43 305.15 cSTR3 8 7,00 300.15 cSTR2 8 7,24 295.15 cSTR2 8 7,29 298.15 sSTR-D2 8 7,32 298.15 sSTR-D2 8 7,34 298.15 sSTR-F1 8 7,34 298.15 sSTR-F1 8 7,34 298.15 sSTR-F2 8 8,17 296.15 sSTR-F2 8 8,18 294.15 sSTR-F2 8 8,35 294.15 sSTR-F6 8 8,35 294.15 sSTR-F6 8 8,31 291.65 mS3 7,20 361.15 radis 7,20 346.15 zdtS 3 7,20 346.15	7010	释放 CO2	62	S31b[30]	7.32	292.45	2, 2339	1.0354	帯及 COs	は な な な な な い じ い り に り こ り り り り り り り り り り り り り り り り
CSTR7 ^[8] 7. 38 305.15 CSTR3 ^[8] 7. 43 305.15 CSTR3 ^[8] 7. 24 295.15 CSTR2 ^[8] 7. 19 298.15 SSTR-D1 ^[8] 7. 25 298.15 SSTR-D3 ^[8] 7. 34 298.15 SSTR-F1 ^[8] 7. 34 298.15 SSTR-F1 ^[8] 7. 88 296.95 SSTR-F5 ^[8] 8. 17 296.15 SSTR-F5 ^[8] 8. 18 294.15 SSTR-F6 ^[8] 8. 35 294.15 SSTR-F6 ^[8] 8. 43 294.15 SSTR-F6 ^[8] 8. 43 294.15 SSTR-F6 ^[8] 8. 31 291.65 InSa ^[3] 7. 86 280.95 gdS ^[3] 7. 20 36.15 zdtS ^[3] 7. 20 34.15	释放	释放 CO ₂	9 1	\$29b[30]	7. 43	292, 15	2.1258	1.0638	存成でした。	有及のことは
cSTR6[8] 7, 43 305, 15 cSTR3[8] 7, 00 300, 15 cSTR2[8] 7, 24 295, 15 cSTR2[8] 7, 19 298, 15 sSTR-D1[8] 7, 25 298, 15 sSTR-D3[8] 7, 32 293, 15 sSTR-F1[8] 7, 34 298, 15 sSTR-F4[8] 8, 17 296, 15 sSTR-F5[8] 8, 17 296, 15 sSTR-F5[8] 8, 31 291, 65 sSTR-F6[8] 8, 43 294, 15 sSTR-F6[8] 7, 20 361, 15 ltS[3] 7, 20 346, 15 zdtS[3] 7, 20 333, 15	释放	释放 CO2	31	5291b22 61[3]	7.95	292, 23	1.95//	0.9639	# 及 C C 2 2 4 4 4 5 5 5 5 4 4 4 5 5 5 6 4 4 4 4 5 6 6 6 6	存取りの
cSTR3[8] 7.00 300.15 cSTR1[8] 7.24 295.15 cSTR2[8] 7.19 298.15 sSTR-D1[8] 7.25 298.15 sSTR-D3[8] 7.32 293.15 sSTR-F1[8] 7.34 298.15 sSTR-F4[8] 8.17 296.15 sSTR-F5[8] 8.17 296.15 sSTR-F5[8] 8.35 294.15 sSTR-F6[8] 8.31 291.65 nSSTR-F6[8] 8.43 294.15 sSTR-F6[8] 8.31 291.65 nSSTR-F6[8] 8.31 291.65 sSTR-F6[8] 8.31 291.65	释放	释放 CO ₂	20	S2IC3	7.96	200, 13	4.0920	1,0474	年及 くじ 株女 こう	有様でして
cSTR1[8] 7. 24 295.15 cSTR2[8] 7. 19 298.15 sSTR-D1[8] 7. 25 298.15 sSTR-D2[8] 7. 32 293.15 sSTR-F3[8] 7. 34 298.15 sSTR-F3[8] 8. 17 296.15 sSTR-F5[8] 8. 17 296.15 sSTR-F5[8] 8. 33 294.15 sSTR-F6[8] 8. 43 294.15 sSTR-F6[8] 8. 31 291.65 ltS[3] 7. 20 361.15 ltS[3] 7. 20 346.15 zdtS[3] 7. 20 346.15	释放	释放 CO ₂	3.5	535 [8]	7 15	200, 15	4.1006	1.0270	存成での	本様のでは、
STR2[8] 7, 19 298, 15 SSTR-D1[8] 7, 25 298, 15 SSTR-D2[8] 7, 32 293, 15 SSTR-P1[8] 7, 34 298, 15 SSTR-P3[8] 8, 17 296, 95 SSTR-F2[8] 8, 17 296, 15 SSTR-F2[8] 8, 35 294, 15 SSTR-F2[8] 8, 31 294, 15 SSTR-F6[8] 8, 31 294,	1.2914 释放 CO ₂	释放 CO2	5 -	3.22- 21D2[28]	8 60	280 25	1 0810	0 1071	1+1X CO2	お存むこの
SSTR-D1[8] 7, 25 298, 15 SSTR-D2[8] 7, 32 293, 15 SSTR-P1[8] 7, 34 298, 15 SSTR-F1[8] 7, 88 296, 95 SSTR-F4[8] 8, 17 296, 15 SSTR-F5[8] 8, 18 294, 65 SSTR-F6[8] 8, 31 294, 15 SSTR-F6[8] 7, 20 361, 15 AddS[3] 7, 20 346, 15	释放		高大	alDd[28]	8.96	285 25	0.9810	0. 2988	J	存在でいる。
SSTR-D2 ^[8] 7. 32 293.15 sSTR-D3 ^[8] 7. 34 298.15 sSTR-F1 ^[8] 8. 17 296.15 sSTR-F2 ^[8] 8. 17 296.15 sSTR-F2 ^[8] 8. 35 294.15 sSTR-F6 ^[8] 8. 31 294.15 sSTR-F6 ^[8] 7. 86 280.95 gdS ^[3] 7. 26 346.15 zdtS ^[3] 7. 20 333.15	释放		1 -	h1.S-2[28]	8.26	297.95	1.2460	0.1820	1	格技 CO
SSTR-D3[8] 7, 34 298, 15 SSTR-F1[8] 7, 88 296, 95 SSTR-F4[8] 8, 17 296, 15 SSTR-F5[8] 8, 18 294, 15 SSTR-F6[8] 8, 43 294, 15 SSTR-F6[8] 8, 31 291, 65 ISSTR-F6[8] 7, 26 361, 15 ItSST 7, 20 361, 15 ZdtS[3] 7, 20 346, 15 ZdtS[3] 7, 20 333, 15	释放		5	hL-2-3m ^[28]	8.11	297, 15	1, 2330	0.2636	J	奉放 CO
SSTR-F1 ^[8] 7. 88 296.95 SSTR-F3 ^[8] 8. 17 296.15 SSTR-F5 ^[8] 8. 18 294.15 SSTR-F6 ^[8] 8. 43 294.15 SSTR-F6 ^[8] 8. 31 291.65 ISS ^[3] 7. 86 280.95 gdS ^[3] 7. 20 361.15 ItS ^[3] 7. 20 346.15 zdtS ^[3] 7. 20 346.15	8482	释放 CO2	8	hl,-2-6m ^[28]	8. 19	295, 65	1, 2590	0,2161	ţ	释放 CO2
SSTR-F3 ^[8] 8.17 296.15 SSTR-F5 ^[8] 8.18 294.65 SSTR-F5 ^[8] 8.35 294.15 SSTR-F6 ^[8] 8.31 291.65 ISSI 7.86 280.95 gdS _[3] 7.20 361.15 ItS _[3] 7.20 346.15 zdtS ^[3] 7.20 333.15	释放		菱	$hI_{J}-2-10^{[28]}$	7.59	294.15	1,2980	0.8989	j	释放 CO
SSTR-F4 ^[8] 8.18 294.65 SSTR-F5 ^[8] 8.35 294.15 SSTR-F6 ^[8] 8.43 294.15 SSTR-F6 ^[8] 8.31 291.65 mSg ^[3] 7.86 280.95 gdS ^[3] 7.20 361.15 ltS ^[3] 7.06 346.15 zdtS ^[3] 7.20 333.15	释放		5	上第 LS[28]	8.32	297, 35	1, 2060	0.1672	1	释放 CO
sSTR-F5[8] 8.35 294.15 sSTR-F6[8] 8.43 294.15 sSTR-F6[8] 8.31 291.65 nS8[3] 7.86 280.95 gdS[3] 7.20 361.15 ltS[3] 7.06 346.15 zdtS[3] 7.20 333.15	奉!		9 ¥	$h1,-2-3m[^{28}]$	8.40	297, 15	1.1930	0.1448	1	释放 CO
sSTR-F2 ^[8] 8.43 294.15 sSTR-F6 ^[8] 8.31 291.65 nS8 ^[3] 7.86 280.95 gdS ^[3] 7.20 361.15 ltS ^[3] 7.06 346.15 zdtS ^[3] 7.20 333.15	幕(7	$h1,-2-6m[^{28}]$	8.17	296.15	1,2330	0.2147	1	释放 C()2
SSTR-F6 ^[8] 8, 31 291, 65 nSg ^[3] 7, 86 280, 95 gdS ^[3] 7, 20 361, 15 ltS ^[3] 7, 06 346, 15 zdtS ^[3] 7, 20 333, 15	释放	释放 CO ₂	∞	$h_{\rm L}-2-9m^{[28]}$	7.99	295, 15	1,2850	0.3522	ŀ	释放 CO
nS8 ^[3] 7.86 280,95 gdS ^[3] 7.20 361,15 ltS ^[3] 7.06 346,15 zdtS ^[3] 7.20 333,15	0.1806 释放 CO ₂	释放 CO ₂	6	$hL-2-13^{[28]}$	7,54	293, 65	1,3110	0.9978	1	释放 CO,
gdS ^[3] 7. 20 361.15 ltS ^[3] 7. 06 346.15 zdtS ^[3] 7. 20 333.15	释放	释放 CO ₂	-	pG[31]	7.07	291.15	0,0550	43, 1659	1	吸收 CO2
7, 06 346, 15 7, 20 333, 15	释放	释放 CO2	2	$m\mathbf{x}\mathbf{G}1^{[32]}$	7.07	288, 15	1.8955	3, 4289	1	吸收 CO ₂
7, 20 333, 15	释放	释放 CO ₂	33	$mxG2^{[32]}$	7, 12	288.65	1,7770	3, 2354	1	吸收 CO ₂
7 000 01 0 LeJo	华 汉士	本 検 は CO ₂	- 	$mxG3^{[32]}$	7.20	288, 15	1,7795	2,6116	1	吸收 CO2
yycS ^[3] 6.40 302.15	存	春及 CO ₂	★	$mxG4^{[32]}$	7,25	288, 15	1,9743	2, 2939	1	吸收 CO ₂
6 zh C ^[3] 6,41 Z/9,45 5,0401 7cc ^[3] 6 10 220 15 1 0000	5.9333 被权 CC2		9	$mxG5^{[32]}$	7.21	289,65	1,8955	2, 4823	ļ	吸收 CO2
x830°-3 0.19 520.15	첫 F 文 구		7	mxG6[32]	7.02	288, 35	1,8165	3, 7271	1	吸收CO

注:序号表示本文整理序列号。样号中的小写字母表示岩溶地名,见参考文献;大写字母表示岩溶水类型;S 为泉水,G 为地下水,STR 为溪水,R 为河水,L 为谢水,LS 为表层湖水。一为引文中 无数据。数字为所引用文献的取样编号。a 为引文值,b 为计算值

1. 引文实际测定的 cca²+;2. 本文计算 的 cca²+(图 1 至图 8 中 均是以方解石计算结果)

图 1 河水的 c_{Ca}^{2+} - pH图 Fig. 1 $-c_{Ca}^{2+}$ concentration vs. pH in river

图例同图 1 图.2 溪水的 c_{Ca}^{2+} - pH 图 Fig. 2 c_{Ca}^{2+} concentration vs, pH in stream

图例同图 1 图 3 湖水的 $c_{\mathrm{Ca}^{2+}}$ -pH图 Fig. 3 $c_{\mathrm{Ca}^{2+}}$ concentration vs. pH in lake

除上述通过 Ca^{2+} 平衡浓度与实测浓度的对比来判断岩溶水系统对大气 CO_2 的潜在源汇贡献外,还可通过 $logc_{Ca^{2+}}$ -pH 的平衡曲线进行判定。平衡曲线上方为方解石的沉淀区,下方则为其溶解区。若实测 Ca^{2+} 浓度对数值落在平衡线上,则表明岩溶

图 4 滴水的 cca²⁺-pH 图

Fig. 4 c_{Ca}^{2+} concentration vs. pH in cave drips

图 5 地下水的 c_{Ca²⁺} - pH 图

Fig. 5 $c_{\text{Ca}^{2+}}$ concentration vs. pH in groundwater

图 6 泉水的 c_{Ca}^{2+} - pH 图 Fig. 6 c_{Ca}^{2+} concentration vs. pH in spring

水系 统 处 于 平 衡 状 态。以 〇' Shanassy 河 水 $(oR1)^{[27]}$ 为例(图 7),实测 Ca^{2+} 浓度为 1.8963 × 10^{-4} mol/L,同一 pH 值下平衡曲线上 Ca^{2+} 浓度为 1.316 × 10^{-4} mol/L,可见其实测 Ca^{2+} 浓度对数值 位于平衡曲线的上方,表明岩溶水中方解石处于沉

淀状态,因而释放 CO_2 。由图中曲线的变化趋势还可以看出,岩溶水的 pH 值对平衡态 Ca^{2+} 浓度对数的影响很大,有随着 pH 值增大而降低的趋势。

图 7 方解石的 $\log c_{\text{Ca}^{2+}}$ -pH图 Fig. 7 Changes of $c_{\text{Ca}^{2+}}$ concentration vs. pH (carbonate as calcite)

岩溶水地区的岩石类型对计算结果也有影响。 化学特征相同的岩溶水若以方解石和白云石分别进行计算,结果表明它对大气 CO₂ 的潜在贡献可能有别。这种差异对泉水与地下水等岩溶水来说尤为明显。虽然用两种矿物分别计算了河水、溪水、湖水及滴水的平衡 Ca²⁺浓度,并在判定大气 CO₂ 潜在源汇时得到相同的结论,但是二者计算的平衡 Ca²⁺浓度相差可达三个数量级(图 7 与图 8)。由岩溶水系统的平衡式(1)~(3)可以看出,两种方法计算的 CO₂ 释放量也相差三个数量级。

图 8 白云石的 logc_{Cs}²⁺-pH图 ·

Fig. 8 Changes of c_{Cs}²⁺ concentration vs. pH

(carbonate as dolomite)

我们的计算表明,影响岩溶水的关键因素是pH值和 HCO_3^- 浓度。全球 162 组岩溶水的 pH值为6. $19 \sim 9.24$,在 pH>8 的岩溶水中,无论是白云岩地区还是石灰岩地区碳酸盐岩矿物均没有溶解。由于本文在计算时,假设实测 HCO_3^- 浓度为平衡态值,因此,其准确度在计算平衡 Ca^{2+} 浓度时起着关键的作用。

3 结 论

不同岩溶地区地表水系统由于区域与环境的差异会引起岩溶水释放或吸收 CO₂,这可以通过热力学方法进行预测。本文采用吉布斯自由能热力学方法,对全球不同地区 162 组岩溶水数据(河水、溪水等)进行了热力学研究,结果显示:

- (1)河水、溪水、湖水和洞穴滴水所处的环境使 方解石沉淀而释放 CO₂,成为大气 CO₂ 的潜在源。
- (2)地下水会因方解石的溶解而吸收 CO_2 ,成为大气 CO_2 的潜在汇。
- (3)泉水既会因为方解石的溶解而吸收 CO_2 ,成为大气 CO_2 的潜在汇,也会因为方解石的沉淀而释放 CO_2 ,成为大气 CO_2 的潜在源。
- (4)洪水期泉水的水化学特征变化并未导致它对大气 CO₂ 的潜在贡献,换句话说,不会发生源与 汇间的跨跃性转变。

我们的研究表明,从吉布斯自由能的热力学原理出发,利用岩溶水系统各物质或组分的热力学数据,可以克服已有的计算程序在应用时的限制,能准确地预测区域岩溶环境差异对碳循环的驱动作用,它是一个研究岩溶水对大气 CO₂ 潜在贡献的理想工具。

参考文献(References):

- [1] 张永祥、董英、陈鸿汉、李绪谦、黄继国、北方半旱区不同岩溶系统的碳循环研究[J]、中国岩溶、1997、16 (4), 296—303.

 Zhang Yongxiang, Dong Ying, Chen Honghan, Li Xuqian, Huang Jiguo. Carbon cycle study of different karst system in semi-arid area of the North China[J]. Carsologica Sinica, 1997, 16 (4), 296—303. (in Chinese with English abstract)
- [2] 徐胜友, 蒋忠诚. 我国岩溶作用与大气温室气体 CO₂ 源汇关系的初步估算[J]. 科学通报, 1997, 42 (9); 953—956. Xu Shengyou, Jiang Zhongcheng. The estimate between the karst process in China and the source-sink of greenhouse atmosphere CO₂[J]. Chinese Science Bulletin, 1997, 42 (9); 953—956. (in Chinese)

- [3] Liu Zaihua, Yuan Daoxian, He Shiyi, Zhang Meiliang, Zhang Jiagui. Geochemical features of the geothermal CO₂-water-carbonate rock system and analysis on its CO₂ sources[J]. Science in China (series D), 2000, 43(6); 569-576.
- [4] 李彬,袁道先.岩溶区碳循环与大气 CO₂ 的源汇关系——以贵州岩溶区为例[J].中国岩溶,1996,15(1-2);1-14.

 Li Bin, Yuan Daoxian. Relationship between carbon cycle in karst areas and CO₂ source-sink of atmosphere Case of Guizhou karst[J]. Carsologica Sinica, 1996, 15(1-2); 41-50. (in Chinese with English abstract)
- [5] 刘再华, Dreybrodt W, 韩军, 李华举, CaCO₃-CO₂-H₂O 岩溶系统的平衡化学及其分析[J]. 中国岩溶, 2005, 24 (1): 1-14. Liu Zaihua, Dreybrodt W, Han Jun, Li Huaju. Equilibrium chemistry of the CaCO₃-CO₂-H₂O system and discussions[J]. Carsologica Sinica, 2005, 24 (1): 1-14. (in Chinese with English abstract)
- [6] 李西腾, 吴治友, 郝建朝. 喀斯特地区碳酸酐酶与环境的关系及意义[J]. 矿物岩石地球化学通报, 2005, 24(3); 252-257.

 Li Xiteng, Wu Yanyou, Hao Jianchao. Relationship between carbonic anhydrase and environment in karst area and its significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2005, 24(3); 252-257. (in Chinese with English abstract)
- [7] Dreybrodt W, Buhmann D, Michaelis J, Usdowski E. Geothemically controlled calcite precipitation by CO₂ outgassing: Field measurements of precipitation rates in comparison to theoretical predictions [J]. Chemistry Geology, 1992, 97: 285— 294.
- [8] Herman J S, Lorah M M. CO₂ outgassing and calcite precipitation in Falling Spring Creek, Virginia, USA[J]. Chemistry Geology, 1987, 62: 251-262.
- [9] Plummer L N, Jones B F, Truesdell A H. WATEQF A F()RTRAN IV version of WATEQ, a computer program for calculating chemical equilibrium of natural waters [R]. U. S. Geology Survey, Water-Resources Investigation, 1976, (76— 13); 63.
- [10] Kharaka Y K, Gunter W D, AggarwalP K, Perkins E H, Debraal J D. SOLMINEQ. 88—A computer program for geochemical modeling of water rock interactions [R]. U. S. Geology, Survey, Water-Resources, Investigation, Rep., 1988. No. 88—4227; 207.
- [11] Parkhurst D L, Thorstenson D C, Plummer L N. PHRE-EQE-A computer program for geochemical calculations[R].
 U. S. Geological Survey, Water-Resources Investigations, 1980, (80-96); 193.
- [12] Dreher G B. Elements of computer-assisted thermodynamic chemical equilibrium modeling as applied to waste treatment at coal mines [J/OL]. 1996: 173 181. http://www.

- mcrcc, osmre, gov/PDF/Forums/CCB/6-2, pdf.
- [13] Mattigod S V. Chemical equilibrium and reaction models: Applications and future trends[Z]. Chemical Equilibrium and Reaction Models, SSSA Special Publication Number 42, Soil Science Society of America, 1995, American Society of Agronomy, Madison, WI: 1-5.
- [14] Thomsen K, Rasmussen P, Gani R. Correlation and prediction of thermal properties and phase behavior for a class of aqueous electrolyte systems[J]. Chem. Eng. Sci., 1996, 51 (14): 3675-3683.
- [15] 殷辉安. 岩石学相平衡[M]. 北京:地质出版社, 1988. 83-84.

 Yin Huian. Petrologic phase equilibria[M]. Beijing:Geological Publishing House, 1988. 83-84. (in Chinese)
- [16] Houghton G, McLean A M, Ritchie P D. Compressibility, fugacity, and water-solubility of carbon dioxide in the region 0-36 atm and 0-100°C[J]. Chem. Eng. Sci., 1957, 6: 132-137.
- [17] Helgeson H C, Kirkham D H. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. III. Equation of state for aqueous species at infinite dilution[J]. Am. J. Sci., 1976, 276: 97—240
- [18] Shock E L, Helgeson H C. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kbar and 1000 C[J]. Geochim. Cosmochim. Acta, 1988, 52; 2009-2036.
- [19] Helgeson H C, Kirkham D H. Theoretical prediction of the thermodynamic behavior of aqueouselectrolytes at high pressures and temperatures. I. Summary of the thermodynamic/electrostatic properties of the solvent[J]. Am. J. Sci. 1974, 274; 1089-1198.
- [20] Helgeson H C, Delany J M, Nesbitt H W, Bird D K. Summary and critique of the thermodynamic properties of rockforming minerals [J]. Am. J. Sci., 1978, 278-A; 229.
- [21] Robert L B, Cecil E V. Thermodynamics of carbon dioxide and carbonic acid; (a) the standard enthalpies of solution of Na₂CO₃(s), NaHCO₃(s), and CO₂(g) in water at 298. 15 K; (b) the standard enthalpies of formation, standard Gibbs energies of formation, and standard entropies of CO₂(aq), HCO₃⁻ (aq), CO₃⁻ (aq), NaHCO₃(s), Na₂CO₃(s), Na₂CO₃ H₂O(s), and Na₂CO₃ 10H₂O(s)[J]. The Joural of Chemical Thermodynamics, 1978, 10(12); 1113—1136.
- [22] Tanger J C, Helgeson H C. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Revised equations of state for the standard partial molal properties of ions and electrolytes [J]. Am. J. Sci., 1988, 288: 19-98.

- [23] Nordstrom D K, Munoz J L. Geochemical thermodynamics
 [M] Boston: Blackwell Scientific Publications, Inc., 1994.
- [24] Berman R G. Internally—Consistent thermodynamic data for minerals in the system Na₂()-K₂()-Ca()-Mg()-Fe()-Fe₂()₃-Al₂O₃-SiO₂-TiO₂-H₂()-CO₂[J]. J. Petrology, 1988, 29; 45 –522.
- [25] Konigsberger E, Konigsberger L C, Gamsjager H. Low-temperature thermodynamic model for the system Na₂CO₃ Mg-CO₃ CaCO₃ H₂O[J]. Geochim, Cosmochim. Acta, 1999, 63 (19/20); 3105-3119.
- [26] Thomsen K, Rasmussen P. Modeling of vapor-liquid-solid. quilibrium in gas-aqueous electrolyte systems [J]. Chem. Eng. Sci., 1999, 54; 1787-1802.
- [27] Drysdale R N, Taylor M P, Ihlenfeld C. Factors controlling the chemical evolution of travertine-depositing rivers of the Barkly karst, northern Australia [J]. Hydrol. Processes, 2002, 16: 2941-2962.
- [28] 白占国,万国江、碳酸盐岩区域侵蚀的地球化学[A].万国江,等.碳酸盐岩与环境(卷一)[M].北京:地震出版社,1995.21-22.
 - Bai Zhanguo, Wan Guojiang, Geochemical weathering in the carbonate rock region[A]. Wan Guojiang, et al, eds. The carbonatite and environment(Vol. 1)[M]. Beijing: Seismological Press, 1995. (in Chinese)

- [29] Liu Z, Zhang M, Li Q, You S. Hydrochemical and isotope characteristics of spring water and travertine in the Baishuitai area (SW China) and their meaning for paleoenvironmental reconstruction[J]. Environ. Geol., 2003, 44: 698-704.
- [30] Liu Zaihua, Groves Chris, Yuan Daoxian, Meiman Joe, Jiang Guanghui, He Shiyi, Li Qiang. Hydrochemical variations during flood pulses in the southwest China peak cluster karst: Impacts of CaCO₃-H₂O-CO₂ interactions[J]. Hydrol, Processes, 2004, 18(13): 2423-2437.
- [31] Herbert B E. Application of geochemical speciation models for groundwater chemistry modeling and evaluation of remediation technologies [J/OL]. Geochemical Speciation Modeling: 1-20. http://geoweb. tamu. edu/courses/geol641/docs/Speciation Modeling Review.pdf.
- [32] 陈强,朱宝龙,胡厚田. 地下水对混凝土侵蚀性的热力学研究[J]. 中国铁道科学,2003,24(6):57-60.

 Chen Qiang, Zhu Baolong, Hu Houtian. Thermodynamics study on concrete corroded by underground water[J]. China Railway Science, 2003, 24(6):57-60. (in Chinese)
- [33] James W B, Kirk N D. User's manual for WATEQ4F, with revised thermodynamic data base and test cases for calculation speciation of major, trace, and redox elements in natural waters[R]. U. S. Geological Survey Open-File Report, 1991, 9: 1-183.

・学会之声・

首届亚洲流体包裹体研究国际会议纪要

由国家自然科学基金委员会、中国矿物岩石地球化学学会、南京大学、中国科学院地球化学研究所、中国科学院广州地球化学研究所、中石化勘探开发研究院等单位联合主办的首届亚洲流体包裹体研究国际会议于 2006 年 5 月 26~28日在南京大学召开。会议共收到学术论文 163 篇。来自英国、法国、德国、美国、加拿大、澳大利亚、日本、俄罗斯、奥地利、乌兹别克斯坦、印度、泰国和突尼斯等 13 个国家的 36 名代表与我国 150 名学者进行了热烈的学术交流。会后在黄山进行了为期 3 天的花岗岩野外地质考察。

流体包裹体研究已有一百多年历史,在上个世纪 60 年代发展成一门独立的分支学科。随后,相继在欧美分别建立了流体包裹体协会,每两年定期召开 ECROFI(European Current Research on Fluid Inclusion)(欧洲流体包裹体国际

会议)和 PACR()FI(Pan American Current Research on Fluid Inclusion)(泛美流体包裹体国际会议)。

本次由南京大学倪培教授主持召开的首届亚洲流体包裹体研究国际会议(ACROFI I)是与上述两个国际会议并列的会议。会议涉及热液系统与成矿过程的流体作用、岩浆过程的流体作用、变质过程的流体作用、沉积与成藏过程的流体作用、构造运动与流体作用、地质流体的热力学,以及流体包裹体分析试验新技术、新方法等七个议题;交流了国际包裹体研究前沿领域的成果,集中讨论了当前的研究热点和重点,对我国学者颇有启迪。

经投票表决,会议决定第二届亚洲流体包裹体研究国际会议(ACROFI II)于 2008 年在印度召开。

(丁俊英 供稿)