喀斯特森林雨水的地球化学特征

——以贵州茂兰国家级自然保护区为例

韩贵琳¹,唐 杨²,谭 秋³

中国科学院 地球化学研究所 环境地球化学国家重点实验室,贵阳 550002;
 中国科学院 研究生院,北京 100049;3. 贵州师范大学 地理与生物科学学院,贵阳 550001

摘 要:贵州茂兰喀斯特原始森林地区 25个雨水样品的化学组成研究表明,该区雨水的 pH 值为 4.4~7.2,平均为 5.1。雨水样品富 NH₄⁺、Ca²⁺和 SO₄²⁻、Cl⁻。NH₄⁺ 是最主要的阳离子,平均值为 56.8 μ mol/L,占阳离子组成的 26%~74%,Ca²⁺次之,平均值为 14.8 μ mol/L,NH₄⁺和 Ca²⁺之和占了阳离子组成的 71%~94%,SO₄²⁻ 是最主要的阴离子,平均值为 39.2 μ mol/L,占了阴离子组成的 69%~91%,Cl⁻次之,平均值为 9.5 μ mol/L。SO₄²⁻和 Cl⁻占了阴离子组成的 71%~96%。与中国其他 地区的雨水样品相比,茂兰地区雨水离子含量要低 1~2 个数量级;物质来源分析表明茂兰地区雨水中溶质主要来源于自然 过程的输入,人为活动输入可以忽略不计。

关 键 词:雨水;喀斯特森林;茂兰国家级自然保护区;贵州

中图分类号: P592 文献标识码: A 文章编号: 1007-2802(2008) 04-0363-06

Geochemical Composition of Rainwater in Karst forest: Case Study of Maolan Nature Reserve, Guizhou Province

HAN Gui-lin¹, TANG Yang^{1,2}, TAN Qiu³

 The State Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; 2. Graduate School of Chinese Academy of Sciences, Beijing 100049, China;
 School of Geography and Biology Science, Guizhou Normal University, Guiyang 550001, China

Abstract: Twenty-five rainwater samples from Maolan National Natural Reserve, Guizhou Province, have been characterized for their chemical compositions. The pH value varies from 4.4 to 7.2 (mean value is 5.1). NH₄⁺ and Ca²⁺ are the principal cations in the rainwater samples and their mean values are 56.8 and 14.8 μ mol/L, respectively. The sum of NH₄⁺ and Ca²⁺ accounts for 71% -94% of the total cations in the studied rainwater samples. SO₄²⁻ with a mean content of 39.2 μ mol/L is the predominant anion, and Cl⁻ with a mean content of 9.5 μ mol/L is the second important one. The sum of SO₄²⁻ and Cl⁻ together accounts for 71% -96% of the total anions. Compared with rainwater samples of other areas in China, the ion contents of the rainwater samples of Maolan National Natural Reserve are relatively lower in 1 to 2 order of magnitude, which may suggest that the contribution of human activities is negligible and the natural inputs are the major atmospheric sources in Maolan.

Key words: rainwater; karst forest; Maolan National Natural Reserve; Guizhou Province

近年来,由于世界工业化所导致的酸沉降问题 越来越受到人们的重视,大量研究表明这些酸性物 质将会对生态系统造成直接的破坏从而影响人体健 康^[1~3]。上世纪 70 年代以来,我国对煤燃烧导致的 酸雨问题进行了一系列研究^[4~6],但对喀斯特森林 地区降雨的地球化学研究较少。贵州茂兰国家级自 然保护区内的喀斯特森林是世界上同纬度地带所独 有的珍贵森林资源,对喀斯特地貌的发育理论、水文

收稿日期:2008-07-24 收到

基金项目:中国科学院知识创新工程重要方向项目(KZCX2-YW-306);国家自然科学基金资助项目(40673010)

第一作者简介:韩贵琳(1971-),女,博士,研究员,专业方向:地球化学,获第12届侯德封矿物岩石地球化学青年科学家奖.

地质效应和森林群落的研究有重要价值。笔者研究 了贵州茂兰国家级自然保护区雨水的化学组成,以 了解雨水中溶质的物质来源及其对生态-水文系统 的潜在影响,并为整个西南喀斯特水循环系统的水 文地球化学研究提供背景值。

1 样品采集和分析

荔波县位于贵州省黔南布依族苗族自治州,地 处亚热带南部,属亚热带季风湿润气候,四季分明, 雨量充沛,雨热同季。根据荔波县气象站(海拔 423.9 m)记录,年均气温 18.3℃,年均降水量 1320 mm,每年 4~10 月降水量为 1162 mm,占年降水量 的 80 %^[7]。茂兰国家级自然保护区在荔波县境内 黔、桂交界地带,地理位置为东经 107°52′10″~108° 05′40″,北纬 25°09′20″~25°20′50″,总面积 2 万公 顷,是世界同纬度地区独有的残存原生性强、相对集 中、相对稳定的喀斯特原始森林生态系统。由石炭 系、二叠系碳酸盐岩组成的茂兰向斜南北贯穿全区, 控制着地层、岩石的分布。茂兰喀斯特森林区的岩 石主要为石灰岩和白云岩,仅个别地点有石英砂岩 及夹于其中的少量页岩。 采样点位于茂兰西北部喀斯特森林湿地保护项 目点(拉桥水族寨)。从 2007 年 5 月到 2008 年 3 月 共收集雨水样品 25 件。样品多收集于雨季的 6~8 月。样品分析前均储存于 4℃的冰箱中。

降雨结束后现场测定雨水温度(T)、电导 (EC)、酸碱度(pH),用酸碱滴定法测定雨水中 HCO₃⁻ 含量。雨水样品过滤(0.22 μ m Millipore 滤 膜)后装入 100 mL 预净化处理过的聚乙烯瓶中,在 实验室中用离子色谱(Dionex DX-120)测定阴离子 含量(F⁻,Cl⁻,SO₄²⁻,NO₃⁻)。用于测定阳离子的样 品立即加入超纯 HNO₃,将样品酸化到 pH < 2 保 存,用原子吸收光谱(PE-601)测定其中阳离子 (K⁺,Na⁺,Ca²⁺,Mg²⁺)含量。NH₄⁺ 用纳氏试剂分 光光度法测定。

2 结果与讨论

2.1 主要离子的组成变化特征

样品的各主要理化指标和离子浓度组成见表 1。雨水 pH 值普遍较低(4.41~7.2),平均值为 5.1。研究^[8,9]表明,由于 CO₂、NO_x和 SO₂常常溶 解于云层的水滴中,使即便无污染的雨水也都偏酸

µmol/L

表 1 茂兰地区雨水样品的化学组成 Table 1 The chemical composition in rainwater samples from Maolan

样品编号	采样日期	pН	$\rm NH_4^+$	K ⁺	Na ⁺	Ca ²⁺	Mg ²⁺	F	Cl-	NO ₃ -	SO ²
LB-01	2007-5-12	5,23	37.78	10.72	10.65	35.75	7.61	3.91	37.96	3.40	50.37
LB-02	2007-5-20	5.80	241.17	3.44	9.50	28.35	5.60	5.07	14.20	9.19	135.72
LB-03	2007-5-24	4.41	43.56	7.15	2.83	33.60	4.59	1.66	5.04	4.70	67.05
LB-04	2007-5-29	5.11	45.50	3.44	2.86	13.85	5.80	1.26	6.06	2.45	40.49
LB-05	2007-6-1	5.37	30.00	2.35	2.06	6.40	0.82	0.10	2.64	2.06	15.80
LB-06	2007-6-6	4.95	31.94	3.82	3.35	6.80	1.19	1.02	8.51	2.13	18.18
LB-07	2007-6-12	5.04	30.00	2.00	1.49	7.18	1.23	0.35	3.47	1.07	18.72
LB-08	2007-7-1	5.06	55.22	5.65	6.30	10.43	2.06	1.19	7.22	2.08	32.38
LB-09	2007-7-2	5.54	68.78	7.69	10.76	9.33	2.51	2.82	12.97	2.49	36.36
LB-10	2007-7-6	5.21	57.83	6.05	9.26	29.05	4.24	9.27	10.21	3.83	59,57
LB-11	2007-7-12	5.34	19.89	5,70	6.75	12.55	3.17	0.62	10.64	0.80	9.95
LB-12	2007-7-24	7.20	49.33	5.47	8.81	10.75	1.28	1.43	10.04	1.77	13.73
LB-13	2007-7-26	5.12	69.22	6.42	33.20	19.53	5.35	2.04	40.82	2.92	40.29
LB-14A	2007-8-21(上午)	5.19	42.22	8.95	4.09	12.83	1.40	1.16	0.56	4.03	13.29
LB-14	2007-8-21(晚上)	5.26	53.11	5.82	6.00	39.51	2.35	1.04	6.27	2.75	38.87
LB-15	2007-8-22	4.56	56.89	4.92	3.35	8.23	1.11	0.61	3.75	2.96	54.55
LB-16	2007-8-23	4.59	35.11	3.95	3.87	5.45	0.91	0.33	3.06	1.24	34.63
LB-17	2007-8-23	4.96	27.50	2.03	1.49	2.65	0.37	0.07	2.18	0.85	15.58
LB-18	2007-8-24	5.21	37.00	3.74	2.52	4.93	0.78	0.55	2.74	1.20	16.75
LB-19	2007-8-26	5.43	22.78	0.68	0.80	3.95	0.21	0.68	3.55	0.55	6.03
LB-20	2007-9-8	4.81	42.67	5.49	1.91	6.23	0.66	1.11	4.88	2.85	35.94
LB-21	2007-12-21	4.90	63.56	11.85	2.17	26.98	4.24	0.84	9.70	3.68	61.56
LB-22	2007-12-22	5.36	67.33	15.90	6.96	16.13	2.06	0.74	10.21	2.55	41.98
LB-23	2008-3-9	4.41	126.11	16.77	6.87	17.10	3.05	1.16	16.36	9.50	93.99
LB-24	2008-3-21	4.51	64.44	9.54	2.52	5,60	0,86	0.63	5.08	2 81	28 13

性,pH值为5.0~5.6。雨水 pH值低于5.0可能 是受人为活动输入的酸性污染物的影响,而 pH 值 高于 5.6 表明有碱性物质存在。样品中只有 1 个样 品的 pH 值高于 7.0,大部分样品的 pH 值在 5.0~ 5.2,约有 40%的样品的 pH 值低于 5.0。低 pH 值 也许与雨水中天然的 H₂SO₄、弱的有机酸或人为活 动带来的 H₂SO₄、HNO₃ 有关。从表 1 可以看出, 阳离子组成 $(TZ^+ = K^+ + Na^+ + Ca^{2+} + Mg^{2+})$ 超出 阴离子组成 $(TZ^{-} = F^{-} + Cl^{-} + NO_{3}^{-} + SO_{4}^{2-})$,其 差别可以归因于未检测雨水样品中的有机酸。表1 还表明,茂兰地区雨水样品中离子浓度变化范围较 大,采样期间的离子平均含量顺序为:NH⁺>SO²⁻ >Ca²⁺>Cl⁻>Na⁺>K⁺>NO₃ 。NH₄ 是最主要 的阳离子,变化范围为 24.7~241 μmol/L(平均值 为 56.8 µmol/L)。其次是 Ca²⁺ (2.7~35.8 µmol/ L),平均为 14.8 µmol/L。NH⁴ 和 Ca²⁺之和占总

阳离子的 71%~94%。SO₄⁻ 是最主要的阴离子, 变化范围为 15.6~135.7 μ mol/L(平均值为 39.2 μ mol/L),其次为 Cl⁻(0.6~40.8 μ mol/L),平均值 为 9.5 μ mol/L,SO₄²⁻ 和 Cl⁻之和占总阴离子的 71%~96%。表明这 4 种离子是影响茂兰地区雨水 化学性质的主导性离子。

表 2 列出了雨水样品中离子间的相关关系。 Na⁺与 Cl⁻之间有非常好的相关关系;由于 SO₂和 NO₂在大气化学性质中的相似性,NO₃⁺和 SO₄²⁻之 间也有非常好的相关关系。NH₄⁺、Ca²⁺和 Mg²⁺与 SO₄²⁻、NO₃⁻之间的相关系数分别为:0.88,0.61, 0.59 以及 0.85,0.52,0.47,这表明 NaCl、MgCl₂、 NH₄SO₄、(NH₄)₂SO₄、CaSO₄、MgSO₄和 NH₄NO₃ 是茂兰雨水中的主要化合物,往往形成于大气沉降' 过程。

表 2 茂兰雨水样品中主要离子的相关系数

Table 2	The correlation	coefficients	of ionic	concentrations	in	rainwater	samples	from	Maolan
---------	-----------------	--------------	----------	----------------	----	-----------	---------	------	--------

	H+	NH ‡	K+	Na ⁺	Ca ²⁺	Mg ²⁺	F-	Cl-	NO ₃	SO ₄ ²⁻
H+	1									<u></u>
NH4	0.03	1								
K^+	0.33	0.25	1							
Na ⁺	-0.21	0.27	0.18	1						
Ca ²⁺	0.01	0.37	0.38	0.32	1					
Mg ²⁺	-0.08	0.39	0.30	0.50	0.81	1				
F^-	-0.22	0.41	0.07	0.35	0.57	0.55	1			
Cl-	-0.14	0.24	0.35	0.84	0.48	0.71	0.37	1		
NO_3^-	0.35	0.85	0.49	0.18	0.52	0.47	0.40	0.27	1	
SO ²	0.30	0.88	0.36	0.20	0.61	0.59	0.50	0.30	0.89	1

2.2 主要离子的来源

一般大气气溶胶主要来源于海相输入、陆生输 人(矿物尘)、火山灰、生物材料以及人为活动的输 入,而雨水溶质的主要化学组成受大气化学组成的 影响^[10~12]。通常受人为活动或沙尘影响的雨水样 品富集 Ca²⁺,而受海相输入影响的雨水样品富集 Na⁺和 Cl⁻,而相对亏损 SO₄²⁻ 和 NO₃⁻。

阴阳离子三角图不仅可以表示雨水中主要离子 组成的变化,还可以初步判别溶质的主要来源。阴 离子三角图上,受海相输入影响的雨水的溶质通常 富含 Cl⁻,而 SO²₄⁻和 NO⁻₃ 含量较低,因此数据点应 落在靠近 Cl⁻离子一端;人为活动产生较高的 SO²₄⁻ 和 NO⁻₃,数据点应落在 SO²₄⁻ – NO⁻₃ 线上;人为活 动或尘埃影响大的雨水数据点通常应落在靠近 Ca²⁺一端或 Ca²⁺ – Mg²⁺线上,海相输入影响大的 雨水数据点通常落在靠近 Na⁺ + K⁺一端。阴阳离 子三角图(图1)显示了茂兰地区雨水中主要离子组 成的变化,所引用的中国其他地区雨水的化学组成 特征以供对比。与南宁、广州等城市雨水相比,茂兰 地区雨水样品 Ca2+ 的相对含量较低, 而 NH4 相对 高得多,这是由于雨水中的 Ca2+ 主要来源于局地尘 土的贡献,表明城市建设施工产生的尘埃往往使城 市雨水中 Ca2+ 的相对含量较高; NH4 主要来源于 农业活动中农药和化肥的使用以及碱性土壤中 NH₃的释放。茂兰原始森林植被覆盖密度大,气候 湿润,扬尘对雨水中的 Ca²⁺ 贡献小,而周边农业活 动对雨水中的 NH⁺ 贡献大;与中国东南部(福建地 区)雨水相比,茂兰雨水中 K⁺+Na⁺相对含量低得 多,这与福建的地理位置有关,K++Na+受海相输 人的影响较大,而茂兰地处内陆输入的 K⁺+Na⁺ 自 然少得多。与贵阳、南宁、广州等城市雨水的阴离子 组成特征相比,城市地区雨水的 NO3 相对含量远高

于茂兰地区,这主要归因于城市工厂高温燃烧过程、 汽车的尾气排放等因素;而东南部(福建地区)雨水的 Cl⁻相对含量远高于茂兰雨水样品,同样是因为地理 环境之使然,海相输入的 Cl⁻ 是其最主要的阴离子。 茂兰雨水样品的高 NH⁺ 以及相对较高的 Ca²⁺ 含量 主要是受区内农业活动和局地飞尘的影响。

2.3 阴离子的主要来源

Na 一般可以作为海相来源气溶胶的指示剂,陆 生成因的 Na 对雨水的贡献非常小。因此,可以用 其他元素与 Na 的离子浓度比值来鉴别雨水中溶质 的海洋来源。图 2 为茂兰地区雨水样品的元素-Na 标准化图。由图 2 可知,大部分样品的 Cl⁻/Na⁺值 高于海水(Cl⁻/Na⁺=1.17^[16]),表明有其他来源的 Cl⁻输入。Cl⁻可能来源于含氯有机化合物(如聚氯 乙稀)的燃烧和分解^[17],造纸工业的漂白剂也会产 生 HCl 气体。采样点周围没有造纸厂和垃圾场,因 此雨水中的 Cl⁻只能来源于自然过程或含 Cl⁻污染 物质的远距离输送。

一般而言,NO₃ 及 SO² 为主要的致酸物质, 由硫氧化物(SO₂)与氦氧化物(NO,NO₂)转化而 来。雨水中的 NO₃ 归因于工厂高温燃烧过程和汽 车尾气排放的输入,因此 NO₃ 可以作为人为活动 的示踪剂^[18,19]。茂兰雨水样品的 NO₃ 浓度非常 低,表明人为活动对茂兰雨水的影响较小。相反, SO² 的来源较复杂,既有海洋来源(海水的 SO² / Na⁺=0.12^[20]),也有人为活动的输入。由图 2 可 知,所有样品的 SO² /Na⁺值都高于海水,表明雨水 中海相输入的 SO² 贡献很小。研究表明,中国燃 煤占能源的 70%,大量 SO₂ 气体的释放是中国酸雨 的最主要成因^[6]。采样点周围居民很少,几乎没有 什么与燃煤有关的工业活动,因此虽然样品中 SO² 含量较高,但不可能是当地燃煤所致;应该是来自其 他地区燃煤产生的 SO₂ 的远距离输送,也可能来自 原始森林生物地球化学产物的输入。考虑到贵阳一 柳州一南宁一带是南方主要的酸雨沉降带,因此样 品中相对高含量的 SO²⁻应该主要来自 SO₂ 的远距 离输送。生物地球化学产物的输入量尚需同位素研 究工作的验证。

2.4 阳离子的主要来源

通常雨水中 SO₄²⁻ 和 NO₃⁻ 以硫酸和硝酸的形 式存在,因此雨水样品的酸度取决于 Ca²⁺、NH₄⁺、 SO₄²⁻ 和 NO₃⁻ 的相对浓度,高的 SO₄²⁻ 和 NO₃⁻ 浓 度通常导致低的 pH 值。但茂兰地区雨水样品中 H⁺与 SO₄²⁻ 和 NO₃⁻ 离子相关关系不明显,SO₄²⁻ 和 NO₃⁻ 浓度高,pH 值未必低。这主要是 NH₄⁺ 和 Ca²⁺等碱性离子的中和作用。NH₄⁺ 主要源于农药 和化肥的使用^[21]。另外,NH₃ 的浓度随土壤 pH 值 的增加而增高,茂兰喀斯特森林地区的土壤 pH 值 为 7~8^[7],使雨水样品中的 NH₄⁺ 也较高。

雨水中 Ca²⁺ 来源的鉴别对研究酸雨问题极其 重要,因为 Ca²⁺ 不仅是中和酸性物质最主要的离 子,也是植物生长不可缺少的元素。雨水中的 Ca²⁺ 主要来自:1)人为活动,如城市建设、交通、水泥厂的 尘埃均会释放出大量的 Ca²⁺,建筑物释放出的 Ca²⁺也会形成气溶胶在大气圈中传播^[19];2) 岩石、 土壤的风化,如碳酸盐岩的风化和土壤中 CaCO₃ 的 溶解;3) 长距离土壤尘的传输。但风能吹起的颗粒 物直径远远大于 2.5 μm,而大的颗粒物很快从大气

图 2 茂兰地区雨水样品的元素-Na 标准化图 Fig. 2 Element-to-Na⁺ ratios of rainwater composition from Maolan

圈中沉积下来,从而导致大的颗粒物在大气中驻留时间较短^[22],因此 CaCO₃ 一般都是当地来源。土壤尘中方解石的溶解也会导致高浓度的 Ca²⁺,茂兰地区的石灰岩和白云岩应该是雨水中高 Ca²⁺的主要原因。

3 小 结

表 3 列出了中国其他城市雨水的 pH 值和离子

组成。从表 3 可见,除北京外,茂兰地区的 pH 值最 高,几乎等同于未受污染的天然雨水的 pH 值。同 样,茂兰雨水样品中的所有离子浓度均远低于其他 城市的雨水样品。即使茂兰雨水样品中 SO²⁻ 含量 远高于其他阴离子,但相对于其他城市雨水来说,还 是低一个数量级以上,这表明研究区几乎未受人为 活动的影响。笔者认为茂兰地区雨水样品的化学组 成代表了典型的喀斯特原始森林雨水的地球化学特

表 3 中国部分地区雨水的化学组成和 pH 值

	Table 3	Comparision of the major ions concentration in Maolan with other sites in China								
地区	pН	Cl-	NO ₃	SO ²	NH ∔	K+	Na ⁺	Ca ²⁺	Mg ²⁺	文献
北京	6.74	59.1	81	168.8	224.4	38.2	77.4	380		[4]
成都	4.4	42.3	30.4	215.8	250. 7	20.8	22.6	96	16.6	[23]
重庆	4.6	40.3	43.2	210.9	386.6	15.2	39.8	103.6	6.6	[23]
贵阳	4.53	21.2	48.2	94	-	11	4	56.6	12.7	[13]
长沙	4.32	9.6	21.8	71.5	70.4	3.8	3.9	31	2.8	[24]
南京	5.09	154	34.5	106	289	10.5	13	143.5	15	[24]
上海	4.49	58.3	49.8	99.8	80.9	14.9	50.1	102	14.8	[25]
南宁	4.95	39.1	45.15	142.6	131.26	12.08	27.36	91.2	9.93	[14]
广州	4.48	41.93	37.89	170,7	177.62	28.64	31.77	150.4	11.68	[14]
茂兰	5.14	9.5	2.9	39.2	56.8	6.85	6.0	14.8	2.6	本次研究

注:"一"表示未检出

征,可以作为西南喀斯特地区水文地球化学的基础 数据。目前看来,尽管 SO²⁻相对含量较高,但绝对 浓度并不高,pH 值表明雨水没有明显的酸化趋势, 但茂兰处在贵阳一柳州一南宁强酸雨沉降区之间, 人为活动引起的水体酸化将可能导致这片独有的喀 斯特原始森林的退化和破坏,应当引起高度关注。

参考文献 (References):

- Lara L B L S, Artaxo P, Martinelli L A, et al. Chemical compotition of rainwater and anthropogenic influences in the Piracicaba River Basin, Southeast Brazil[J]. Atmospheric Environment, 2001, 35, 4937-4945.
- [2] Hu G P, Balasubramanian R, Wu C D. Chemical characterization of rainwater at Singapore[J]. Chemosphere, 2003, 51: 747-755.
- [3] Mouli P C, Mohan SV, Reddy, S J. Rainwater chemistry at a regional representative urban site: Influence of terrestrial sources on ionic composition[J]. Atmospheric Environment, 2005, 39: 999-1008.
- [4] Zhao D, Xiong J, Xu Y, et al. Acid rain in southwestern China
 [J]. Atmospheric Environment, 1988, 22: 349-358.
- [5] Larssen T, Lydersen E, Tang D, et al. Acid rain in China
 [J]. Environmental Science & Technology, 2006, 40: 418-425.
- [6] Aas W, Shao M, Jin L, et al. Air concentrations and wet deposition of major inorganic ions at five non-urban sites in China, 2001 2003[J]. Atmospheric Environment, 2007, 41: 1706 1716.
- [7] 周政贤. 茂兰喀斯特森林科学考察集[M]. 贵阳: 贵州人民出版社, 1987.
 Zhou Zhengxian. Scientific survery of the Maolan Karst Forest
 [M]. Guiyang:Guizhou Renmin Press, 1987(in Chinese).
- [8] Charlson R J, Rodhe H. Factors controlling the acidity of natural rainwater[J]. Nature, 1982, 295: 683-685.
- [9] Galloway J N, Savoie D L, Keene W C, et al. The temporal and spatial variability of scavenging ratios for nss sulface, nitrate, methanesulfonate, and sodium in the atmosphere over the North Atlantic Ocean [J]. Atmospheric Environment, 1993, 27:235-250.
- [10] Roy S, Negrel P A. Pb isotope and trace element study of rainwater from the Massif Central (France) [J]. Science of Total Environment, 2001, 277: 225-239.
- [11] Chetelat B, Gaillardet J, Freydier R, et al. Boron isotopes in precipitation, Experimental constraints and field evidence from French Guiana[J]. Earth Planet. Sci. Lett., 2005, 235 (1-2): 16-30.

- [12] Negrel P, Guerrot C, Millot R. Chemical and strontium isotope characterization of rainwater in France: Influence of sources and Hydrogeochemical implications[J]. Isotopes in Environmental and Health Studies, 2007, 43(3): 179-196.
- [13] Han G, Liu C Q. Strontium isotope and major ion chemistry of the rainwaters from Guiyang, Guizhou Province, China
 [J]. Science of Total Environment, 2006, 165-174.
- [14] 齐立文,王文兴. 我国低纬度、亚热带地区的降水化学及其雨水酸化趋势分析[J]. 环境科学研究, 1995,8(1):12-20.
 Qi Liwen, Wang Wenxing. Precipitation chemistry and trends of rainwater acidification at the low latitude and subtropics of China[J]. Res. Enviton. Sci., 1995, 8(1):12-20. (in Chinese)
- [15] Yu S, Gao C, Cheng Z, et al. An analysis of chemical composition of different rain types in 'Minnan Golden Triangle' region in the southeastern coast of China[J]. Atmospheric Research, 1998, 47-48, 245-269.
- [16] Berner E K, Berner R A. The Global Water Cycle. Geochemistry and Environment[M]. Prentice-Hall, New York, 1987: 394.
- [17] Sigg, Stum W, Zobrist J, et al. The chemistry of fog factors regulating its composition[J]. Chimia, 1987, 41: 159-165.
- [18] Colin J L, Renard D, Lescoat V, et al. Relationship between rain and snow acidity and air mass trajectory in eastern France[J]. Atmospheric Environment, 1989, 23; 1487-1498.
- [19] Sanusi A, Wortham H, Millet M, et al. Chemical composition of rainwater in eastern France[J]. Atmospheric Environment, 1996, 30(1); 59-71.
- [20] Jacob D J, Waldman J M, Muncer J W, et al. Chemical composition of fogwater collected along the California coast[J].
 Environmental Science & Technology, 1985, 8: 730-739.
- [21] Galloway J N. Acid deposition: Perspectives in time and space[J]. Water, Air and Soil Pollution, 1995, 85:15-23.
- [22] Andreae M O, Andreae T W, Ferek R J, et al. Long-range transport of soot carbon in the marine atmosphere[J]. The Science of the Total Environment, 1984, 36: 73-80.
- [23] Lei H C, Tanner P A, Huang M Y, et al. The acidification process under the cloud in southwest China: Observation results and simulation[J]. Atmospheric Environment, 1997, 31: 851-861.
- [24] Zhang G S, Zhang J, Liu S M. Chemical composition of atmospheric wet depositions from the Yellow Sea and East China Sea[J]. Atmospheric Research, 2007, 85: 84-97.
- [25] Huang K, Zhuang G, Xu C, et al. The chemistry of the severe acidic precipitation in Shanghai, China[J]. Atmospheric Research, 2008, 89: 149-160.