深部岩石圈温压条件下烃类存在的实验研究

王传远 杜建国 王万春 谢鸿森 陈国俊 段 毅 周晓成 (中国地震局地震预测研究所,北京 100036; 中国科学院兰州地质研究所,兰州 730000; 中国科学院地球化学研究所, 贵阳 550002; 中国科学院研究生院,北京 100049. E-mail: wangchy6111@163.com)

摘要 在密闭体系中压力高达 3 GPa, 温度高达 700 的条件下进行了褐煤加水的模拟实验, 分析了实验产物中的烷烃生物标志化合物的变化规律, 并讨论了高压高温对有机质演化的影响. 实验结果表明, 高压抑制了液态烃的生成, 使高峰值后移; 相同压力条件下, 温度升高有利于有机质的成熟演化; 压力增加会抑制或延迟油气的生成和有机质成熟. 高碳数烷烃在地幔高压力条件下仍可以存在, 这不仅突破了"生油窗"的传统概念, 而且还加深了在异常高压高温区寻找油带富集区的认识.

关键词 高温高压 褐煤 烷烃 成熟度 异构化

全球发育180多个超压盆地,超压在有机质热演 化中的作用不仅直接影响超高压盆地的油气资源评 价,而且与深层油气成藏及保存密切相关[1.2].关于 压力在有机质演化和生烃过程中的作用存在三种不 同的观点^[3,4]. 随着非常规油气勘探的开展, 特殊的 温度和压力对有机质热演化和油气生成越来越引人 关注. 可是, 人们对地球深部温压条件下沉积有机质 演化和保存的了解甚少. 姜峰等报道了压力高达 2 GPa的模拟实验结果,发现压力的存在会抑制有机 质的成熟作用[5.6],但是这种认识还需要进一步研究 的支持,深部高压环境抑制了有机质的热成熟和破 坏作用,有利于油气的保存.板块俯冲可以把地壳中 的物质带到地幔中, 使原来认为的油气勘探死亡线 复杂化^[7]. 烷烃是有机质热解的重要组分, 也是自然 界中油气的重要组成部分, 烷烃特征是油气地球化 学研究的重要内容. 对其在地幔高压力下演化特征 的了解可为油气成因以及深层油气勘探提供启示. 本文研究了压力高达 3 GPa, 400~700 的条件下烷 烃的特征,探讨了它们的形成、保存和演化.

1 实验和样品分析

样品为南宁盆地下第三系始新统褐煤,有机碳 含量为 26.32%;其显微组分:腐殖组 77%, 惰质组 1.6%, 黏土矿物 18%,石英 2%,其他 1.4%.

高温高压实验是在中国科学院地球化学研究所 地球深部物质实验室YJ-3000t压力机及所配备紧装 式四滑座六面顶超高压系统上进行的.将样品 (0.6195g)和水(0.1 mL)密封于铜管(0.35 mL)内.传压 介质为叶腊石,中心有一直孔,称为高压腔体,其中 置有加热金属箔片、绝缘氧化铝管,样品管置于中心. 温度点为 400 ,500 ,600 ,700 ; 压力点为 1 GPa, 3 GPa. 高压腔体的压力标定误差为±0.01 GPa; 温度 测量误差±5 ^[8]. 以 300 MPa/min速率升压至所需目 标, 然后开始加热. 加热由程序升温和恒温两部分组 成, 程序升温速率为 60 /min, 达到设定温度保持恒 温 120 min^[9].

GC-MS 分析是在中科院兰州地质所气体地球化 学重点实验室完成的. 对模拟后的样品用氯仿进行 索氏抽提48 h, 再将抽提得到的可溶有机质部分经氧 化铝/硅胶柱(5:1)色层分离为饱和烃、芳烃、非烃和 沥青质. 然后, 饱和烃馏分用美国安捷伦公司 (Agilent)制造的色谱-质谱连用仪(GC-MS)进行分析鉴 定. GC 为 HP6890, 色谱柱为 HP-5(30 m × 0.2 mm × 0.25 μ m), 载气为 He, 柱箱起始温度 80 , 以 4 / min 升至 290 , 然后恒温 30 min; MS 为 5973N, 离 子源温度为 250 , 电离电压为 70 eV.

2 实验结果和讨论

2.1 氯仿沥青"A"及其族组分产率变化

在不同的温度和压力条件下,热模拟气体产物 和液态产物的生成以及不溶有机质的消耗应该存在 一个动态的平衡.热模拟液态产物氯仿沥青"A"的重 量为 1.87~3.91 mg,产率为 11.5~22.6 mg/g TOC;在 1 GPa条件下,其峰值在 400 出现,而在 3 GPa条件 下后移至 600 (图 1(a)),说明高压抑制了液态烃的 生成,使高峰值后移.另外,此与前人在常压下对该 样品的热模拟产物液态烃的产率相比较差异明显. 例如,其液态产物产率高峰出现在 350 左右,并且 600 时已降至 0.3 mg/g TOC^[5,10].这进一步说明了 压力对液态烃生成的抑制作用.液态烃有机组分产 率中, 非烃+沥青质 > 饱和烃 > 芳烃(表 1). 除 700 时饱和烃产率略有异常外, 温度升高, 饱和烃和芳烃 产率随温度和压力的升高都呈上升趋势(图 1(b)), 反 映了超高压条件不利于液态烃裂解成气态产物. 在演 化过程中, 非烃和沥青质随热模拟温度的升高有降低 的趋势, 反映出它们在热演化过程中可以生成部分烃 类. 另外, 饱/芳值为 0.5~2.3, 随温度的升高而总体呈 下降趋势; 压力增加, 饱/芳值减小(表 1), 说明压力升 高有利于有机质降解产物的环化、聚合和芳构化.

2.2 生物标志化合物参数演化特征

原始煤样的镜质体反射率 R_0 为 0.45~0.48%; 正 构烷烃分布呈现双峰态, 碳数分布范围为 nC_{12} ~ nC_{35} , 前后主峰分别为 nC_{16} 和 nC_{27} , $\sum nC_{21}^{-}/\sum nC_{22}^{+}=0.54$, OEP = 2.89, Pr/Ph = 1.39, 并且检出以 C_{29} 占绝对优 势 C_{27} ~ C_{30} 甾族系列化合物(表 2), 说明南宁盆地褐煤 的原始母质来源于陆生高等植物, 形成于较氧化环 境, 成熟度低.

 () 正、异构烷烃生物标志化合物的演化特征. 正构烷烃的分布特征、奇偶优势的变化、Pr/Ph,
 Pr/nC₁₇ 以及Ph/nC₁₈ 值等地球化学参数,是有机质母 源和热演化成熟度的重要指标^[6,11-13].在恒压条件下,

当温度由 400 升高到 500 时,模拟样品正构烷烃 碳数分布出现后峰增强的趋势, $\sum n C_{21}^{-} / \sum n C_{22}^{+}$ 值减 小,该异常反映了在低演化阶段煤样中大分子沥青 质及干酪根边缘烃的断裂降解并加入到样品的原始可 溶有机质中[13]. 随着热模拟温度升高到 600 , 即进入 生烃高峰阶段(表 1), 热降解效逐渐加强, 前峰增强, $\sum nC_{21}^{-} / \sum nC_{22}^{+}$ 值增大(图 2(b)); 700 时正构烷烃由 双峰形变为单峰形, 主峰碳前移(表 2), 是高温下有机 质发生强烈地脱甲基、链断裂和开环作用的结果,在 400~600 温度区间内, 压力由 1 GPa升高到 3 GPa, 碳数分布范围与主峰碳基本不变,但后峰增强, $\sum nC_{21}^{-}/\sum nC_{22}^{+}$ 值减小(表 2). 在1 GPa压力条件时, 温 度升高,模拟样品的OEP值减小,但受压力影响,即使 在 700 时OEP值(1.14)仍未达到均衡状态: 压力为 3 GPa时(图 2(a)), 相应温度点的OEP值变大, 但随温度 变化的规律类似. 这反映了在恒压条件下, 温度升 高, 有机质演化程度加深: 压力增加对有机质的成熟演化 具有抑制作用,而且温度越低,抑制作用越明显.

值得注意是在 700 时, 模拟样品变为以 nC_{27} ~ nC_{31} 占绝对优势的单峰形状, 并且当压力增加时, $\sum nC_{21}^{-}/\sum nC_{22}^{+}$ 值增大, 主峰前移(表 2), 表明在高温

压力/GPa	温度/	有机组分重量/mg				有机组分产率/mg・g ⁻¹ TOC				物/苹比
		氯仿沥青"A"	饱和烃	芳烃	非烃+沥青质	沥青"A"	饱和烃	芳烃	非烃+沥青质	ᆙᄲᄼᇧᇿ
原相	咩	3.10	0.37	0.21	2.52	19.0	2.2	1.4	15.5	1.6
1	400	3.68	0.45	0.19	3.04	22.6	2.8	1.2	18.6	2.3
3	400	3.02	0.48	0.39	2.15	18.5	2.9	2.4	13.2	1.2
1	500	2.41	0.46	0.24	1.71	14.8	2.9	1.5	10.4	1.9
3	500	3.59	0.63	0.64	2.32	22.0	3.9	3.9	14.2	1.0
1	600	2.62	0.68	0.36	1.58	16.1	4.2	2.2	9.7	1.9
3	600	3.91	1.96	0.61	1.34	24.0	5.9	3.7	15.4	1.6
1	700	3.02	0.57	0.72	1.73	18.5	3.4	4.5	10.6	0.8
3	700	1.87	0.38	0.73	0.76	11.5	2.3	4.6	4.6	0.5
1*	700	3.06	0.59	0.71	1.75	18.8	3.6	4.8	10.6	0.8

表 1 氯仿沥青"A"及其族组分产率随温度和压力条件的变化

*为重复样品实验数据,下同

图 1 氯仿沥青"A"产率和族组分产率随温度压力条件的变化

图 2 正、异构烷烃参数随温度压力条件的变化

E t /CDa	温度/	烷烃参数							
压刀/GPa		碳数范围	主峰碳数	OEP ^{a)}	$\sum nC_{21}^{-} / \sum nC_{22}^{+}$	Pr/Ph	Pr/nC_{17}	Ph/nC_{18}	
原样		12-35	16,27	2.89	0.54	1.39	0.47	0.58	
1	400	12-35	17,29	1.57	1.56	1.23	0.26	0.34	
3	400	12-35	17,29	1.95	0.14	1.00	0.28	0.35	
1	500	12-35	17,29	1.63	0.15	1.44	0.36	0.38	
3	500	12-35	18,29	2.03	0.11	1.17	0.63	0.40	
1	600	12-35	16,29	1.20	0.19	4.90	2.45	0.56	
3	600	12-35	16,29	1.46	0.62	1.68	0.52	0.42	
1	700	12-35	27	1.14	0.64	3.26	1.14	0.31	
3	700	12-35	17	1.17	2.22	0.92	0.35	0.48	
1*	700	12-35	27	1.12	0.66	3.22	1.15	0.35	

表 2 烷烃参数随温度和压力条件的变化

a)
$$OEP = \frac{C_{25} + 6C_{27} + C_{29}}{4(C_{26} + C_{28})}$$

条件下,压力的升高促进了重烃裂解,这与饱和烃产 率所反映的现象一致.

在恒压条件下升温,在 400~500 温度范围内, Pr/Ph值缓慢增加,之后该比值急剧增大,700 时值 又减小,其拐点恰好在饱和烃产率高峰处(图 2(c)). 植烷与姥鲛烷相比其热稳定性稍差,故植烷降解速 率比姥鲛烷快^[14,15].因此,600 以前Pr/Ph值会随成 熟度增加而升高,并且1 GPa条件下增加的幅度远大 于 3 GPa时的幅度;温度继续升高,由于结构烃大量 释放使植烷浓度增加^[12],700 时Pr/Ph值反而减小. Burnham等认为在最早的后生作用期间姥鲛烷前驱 物比植烷优先从干酪根释放出来,因此Pr/Ph值先增 加后减小.正构烷烃和异戊二烯烷烃的热稳定性存 在明显的差异,无环类异戊二烯烷烃的热稳定性低 于相邻的正构烷烃^[2].在 400~600 , Pr/nC₁₇ 和 Ph/nC₁₈ 值随温度升高而增大,与正常演化趋势恰恰 相反(图 2(d), (e)). 这种相互矛盾的演化趋势揭示了 超高压条件下热稳定性不同的有机组分的差异演化 ^[2,3,16]. 姥鲛烷和植烷主要为生物成因,形成于成岩作 用早期,随着有机质演化程度的加深,姥鲛烷和植烷 逐渐被热解而导致 700 时的Pr/nC₁₇, Ph/nC₁₈值降低. 压力由 1 GPa增加到 3 GPa, Pr/Ph值减小(图 2(c));在 400~500 的范围内, Pr/nC₁₇值增加,但在 600~ 700

, Pr/nC₁₇ 值减小; 除 600 外, Ph/nC₁₈ 值呈增大趋势(图 2(d), (e)). 这反映了高压对正构烷烃和异戊二 烯烷烃的热演化有抑制和延缓作用.

()甾、萜类生物标志化合物的演化. 甾萜化 合物随热演化程度的加深,低稳定的构型向热力学 较稳定的构型转化,故稳定构型与低稳定构型的比 值随有机质热演化程度的增加而呈一定规律变化 ^[12,17,18]. 在恒压条件下,温度升高,成熟度参数 C₃₁αβ22S/(22S+22R)值和C₂₉ ααα20S/(20S+20R)值总 体呈上升趋势(图 3(b), (c)),反映了温度升高,热成熟 度效应增强,有机质演化程度加深.另外,恒压条件 下升温,C₂₉-5α ββ/(ββ+αα)值和 $T_s/(T_s+T_m)$ 值总体呈 下降趋势(图 3(a), (d)),前者倒转可能是因为在超高 压条件下,C₂₉ 甾烷的ββ构型比αα构型裂解速度更快 的结果^[19],后者可能是因为它受有机质类型及其沉 积环境的影响超过了热作用^[12,17].

压力对甾、萜烷生物标志化合物的演化影响较为 复杂(图 3(a)~(d)). 在较低温度(400~500), 压力升 高, *T_s/(T_s+T_m)*值降低; 在较高温度(600~700), 压力 升高, 该比值增大. 这说明低温条件下, 压力升高抑 制了藿烷立体构型由生物构型向地质构型的转化; 高温条件下,压力促进其转化.除 600 时略有异常 外,在恒温条件下,压力升高,C₃₁αβ22*S*/(22*S*+22*R*)

值总体呈下降趋势, C_{29} -5 $\alpha\beta\beta/(\beta\beta+\alpha\alpha)$ 值总体呈上升 趋势; 700 时 $C_{31}\alpha\beta22S/(22S+22R)$ 值、 C_{29} 甾烷 20S/(20S+20R)和 $\alpha\beta/(\alpha+\beta\beta)$ 比值分别为 0.46~0.50, 0.25~0.27和0.03~0.08(表3),即高压条件下藿烷C-22 及甾烷C-20位上异构化在700 都尚未达到平衡值. 这说明压力升高抑制或延迟了有机质的成熟作用.

压力增大会抑制或延迟油气生成和有机质的成 熟作用.有机质裂解为低分子的碳氢化合物是一个 体积增加的过程,另外,在温度相同时,压力变大增 大了有机质热解反应的活化能^[3,20],因此,从反应的 热力学来看,压力增加就不利于反应进行,压力对有 机质热解产物组成存在影响.纯化合物高压热解实

图 3 甾、萜烷参数随温度压力条件的变化

E D/GPa	涅度/	萜	院参数	甾烷参数			
UF a		$T_{\rm s}/(T_{\rm s}+T_{\rm m})$	$C_{31}\alpha\beta \ 22S/(22S+22R)$	C ₂₉ aaa20S/(20S+20R)	C_{29} -5 $\alpha\beta\beta/(\beta\beta+\alpha\alpha)$		
原	样	0.71	0.13	0.26	0.23		
1	400	0.50	0.38	0.21	0.17		
3	400	0.25	0.19	0.17	0.10		
1	500	0.29	0.34	0.22	0.02		
3	500	0.20	0.30	0.21	0.09		
1	600	0.09	0.24	0.23	0.02		
3	600	0.29	0.41	0.26	0.07		
1	700	0.07	0.50	0.27	0.03		
3	700	0.16	0.46	0.25	0.08		
*1	700	0.07	0.52	0.26	0.04		

表 3 甾萜烷参数随温度和压力条件的变化

验发现压力对反应机理也存在影响:低压下反应物 先降解形成自由基,再进一步反应;而高压下反应物 则是先通过H转移形成自由基再进一步反应^[21,22].有 机质裂解实验发现高压下长链烷烃稳定性提高^[23]; 高压促进干酪根生油而抑制油的裂解^[1,10].高压对热 解产物组成的影响及对反应机理的改变可能使热稳 定性不同的有机组分的演化发生较大差异,并使甾 萜烷的异构化参数变化变得复杂.

3 结语

温度升高,有机质成熟度增加;压力增加会抑制 或延迟油气的生成和有机质成熟.在700 的高温条 件下,根据传统模式早已进入裂解甲烷阶段,但模拟 样品中仍然含有较丰富的液态烃,正构烷烃碳数可 达 C₃₅以上,即使热稳定性较低的异戊二烯烷烃亦能 在液态石油"死亡线"之下大量存在.压力对有机质 热解的影响是是非线性的,从而导致不同热演化反 应成熟参数(Pr/nC₁₇, Ph/nC₁₈, *T_s/(T_s+T_m)*值等)的差异 抑制,并且压力对有机质的成熟过程和对烃类生成 或裂解过程的影响可能不完全同步.实验结果表明 高碳数烷烃在高达 3 GPa 和 700 的条件下仍可以存 在,这不仅突破了"生油窗"的传统概念,而且还加深 了在异常高压高温区寻找油带富集区的认识.

致谢 样品测试得到中国科学院兰州地质研究所孟仟祥研 究员,丁万仁高级工程师的指导和帮助,在此深表感谢. 本工作受国家自然科学重大基金项目(批准号:10299040)、 中国科学院兰州地质研究所知识创新基金项目(批准号: 2003-19-DJG)和国际合作重大项目(GJHZ05)资助.

参考文献

- 1 马启富. 超压盆地与油气分布, 北京: 地质出版社, 2000. 1~17
- 2 郝芳,姜建群,邹华耀,等.超压对有机质演化的差异抑制作用 及层次,中国科学,D辑,2004,34(5):443~451
- 3 Price L C, Wenger L M. The influence of pressure on petroleum generation and maturation as suggested by aqueous pyrolysis. Organic Geochemistry, 1992, 19(1-3):141~159[DOI]
- 4 Carr A D. A vitrinite reflectance kinetic model incorporating overpressure retardation. Marine and Petroleum Geology, 1999, 16: 355~377[DOI]
- 5 姜峰,杜建国,王万春,等.高温高压模拟实验研究: .高压 条件对有机质成熟作用的影响.沉积学报,1998,15(3):153~ 160
- 6 姜峰,杜建国,王万春,等.高温超高压模拟实验研究:高温 高压下烷烃产物的演化特征.沉积学报,1998,16(4):145~149
- 7 陈晋阳,张红,肖万生,等.有机质形成的影响因素-模拟实验的研究进展.石油与天然气地质,2004,25(3):247~253

- 8 谢鸿森.地球深部物质科学导论,北京:科学出版社,1997.
 42~53
- 9 Du J G, Jin Z J, Xie H S, et al. Stable carbon isotope compositions of gaseous hydrocarbons produced from high pressure and high temperature pyrolysis of lignite. Organic Geochemistry, 2003, 34(1): 97~104[DOI]
- 10 杨天宇, 王涵云. 岩石中有机质高温高压模拟实验. 石油与天 然气地质, 1987, 8(4): 380~389
- 11 Peters K E, Moldowan J M. 江乃煌, 张水昌, 林永汉等译. 生物 标记化合物指南, 北京: 石油工业出版社, 1995. 105~107
- 12 Dzou L I P, Noble R A, Senftle J T. Maturation effects on absolute biomarker concentration in a suite of coals and associated vitrinite concentrates. Organic Geochemistry, 1995, 23(7): 681~697[DOI]
- 13 郑建京,温德顺,孟仟祥,等.煤系烃源岩热模拟演化过程的地球化学参数特征-以准格尔盆地侏罗系煤系烃源岩为例.石油天然气地质,2003,14(2):134~138
- 14 Tang Y C, Stauffer M. Formation of pristene, pristane and phytane: kinetic study by laboratory pyrolysis of Monterey source rock. Organic Geochemistry, 1995, 23(5): 451~460[DOI]
- 15 Martin P K, Irene C R, Marëitte M, et al. A thermal and chemical degradation approach to decipher pristine and phytane precursors in sedimentary organic matter. Organic Geochemistry, 1999, 30(9): 1089~1104[DOI]
- 16 Hao F, Li S T, Sun Y C, et al. Characteristics and origin of gas and condensate in the Yinggehai Basin, offshore South China Sea: Evidence for effects of overpressure on petroleum generation and migration. Organic Geochemistry, 1996, 24(3): 363~375[DOI]
- 17 Chakhamakhchev A, Suzuki N, Suzuki M, et al. Biomarker distributions in oils from the Akita Niigata Basins, Japan. Chemical Geology, 1996, 133(1): 1~14[DOI]
- 18 Hanson A D, Zhang S C, Moldowan J M, et al. Molecular organic geochemistry of the Tarim basin, Northwest China. American Association of Petroleum Geologists Bulletin, 2000, 84: 1109~1128
- 19 Domine F, Enguehard F. Kinetics of hexane pyrolysis at high temperature-3, Application to geochemical modeling. Organic Geochemistry, 1992, 18(1): 41~49[DOI]
- 20 Peters K E, Modowan J M, Sundararaman P. Effect of hydrous on biomarker thermal maturity parameters: Monterey phosphatic and siliceous members. Organic Geochemisty, 1990, 15(3): 249~265[DOI]
- 21 Enguehard F, Kressmann S, Domine F. Kinetics of dibutylether pyrolysis at high pressure: Experimental study. Organic Geochemistry, 1990, 16(1-3): 155~160[DOI]
- 22 Domine F. High pressure pyrolysis of n-hexane, 2, 4-dimethyl pentane and 1-phenylbutane, Is pressure an important geochemical parameter? Organic Geochemistry, 1991, 17: 619~634[DOI]
- 23 Sajgó Cs, McEvoy J, Wolff G A, et al. Influence of temperature and pressure on maturation process-, preliminary report. Organic Geochemistry, 1986, 10(1-3): 331~337[DOI]

(2005-06-24 收稿, 2005-08-19 接受)